mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-20 10:44:23 +08:00
2a3cf6a359
Some devices drivers make use of optional GPIO parameters. For such drivers, it is important to discriminate between the case where no GPIO mapping has been defined for the function they are requesting, and the case where a mapping exists but an error occured while resolving it or when acquiring the GPIO. This patch changes the family of gpiod_get() functions such that they will return -ENOENT if and only if no GPIO mapping is defined for the requested function. Other error codes are used when an actual error occured during the GPIO resolution. Signed-off-by: Alexandre Courbot <acourbot@nvidia.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
202 lines
8.3 KiB
Plaintext
202 lines
8.3 KiB
Plaintext
GPIO Descriptor Consumer Interface
|
|
==================================
|
|
|
|
This document describes the consumer interface of the GPIO framework. Note that
|
|
it describes the new descriptor-based interface. For a description of the
|
|
deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
|
|
|
|
|
|
Guidelines for GPIOs consumers
|
|
==============================
|
|
|
|
Drivers that can't work without standard GPIO calls should have Kconfig entries
|
|
that depend on GPIOLIB. The functions that allow a driver to obtain and use
|
|
GPIOs are available by including the following file:
|
|
|
|
#include <linux/gpio/consumer.h>
|
|
|
|
All the functions that work with the descriptor-based GPIO interface are
|
|
prefixed with gpiod_. The gpio_ prefix is used for the legacy interface. No
|
|
other function in the kernel should use these prefixes.
|
|
|
|
|
|
Obtaining and Disposing GPIOs
|
|
=============================
|
|
|
|
With the descriptor-based interface, GPIOs are identified with an opaque,
|
|
non-forgeable handler that must be obtained through a call to one of the
|
|
gpiod_get() functions. Like many other kernel subsystems, gpiod_get() takes the
|
|
device that will use the GPIO and the function the requested GPIO is supposed to
|
|
fulfill:
|
|
|
|
struct gpio_desc *gpiod_get(struct device *dev, const char *con_id)
|
|
|
|
If a function is implemented by using several GPIOs together (e.g. a simple LED
|
|
device that displays digits), an additional index argument can be specified:
|
|
|
|
struct gpio_desc *gpiod_get_index(struct device *dev,
|
|
const char *con_id, unsigned int idx)
|
|
|
|
Both functions return either a valid GPIO descriptor, or an error code checkable
|
|
with IS_ERR() (they will never return a NULL pointer). -ENOENT will be returned
|
|
if and only if no GPIO has been assigned to the device/function/index triplet,
|
|
other error codes are used for cases where a GPIO has been assigned but an error
|
|
occured while trying to acquire it. This is useful to discriminate between mere
|
|
errors and an absence of GPIO for optional GPIO parameters.
|
|
|
|
Device-managed variants of these functions are also defined:
|
|
|
|
struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id)
|
|
|
|
struct gpio_desc *devm_gpiod_get_index(struct device *dev,
|
|
const char *con_id,
|
|
unsigned int idx)
|
|
|
|
A GPIO descriptor can be disposed of using the gpiod_put() function:
|
|
|
|
void gpiod_put(struct gpio_desc *desc)
|
|
|
|
It is strictly forbidden to use a descriptor after calling this function. The
|
|
device-managed variant is, unsurprisingly:
|
|
|
|
void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)
|
|
|
|
|
|
Using GPIOs
|
|
===========
|
|
|
|
Setting Direction
|
|
-----------------
|
|
The first thing a driver must do with a GPIO is setting its direction. This is
|
|
done by invoking one of the gpiod_direction_*() functions:
|
|
|
|
int gpiod_direction_input(struct gpio_desc *desc)
|
|
int gpiod_direction_output(struct gpio_desc *desc, int value)
|
|
|
|
The return value is zero for success, else a negative errno. It should be
|
|
checked, since the get/set calls don't return errors and since misconfiguration
|
|
is possible. You should normally issue these calls from a task context. However,
|
|
for spinlock-safe GPIOs it is OK to use them before tasking is enabled, as part
|
|
of early board setup.
|
|
|
|
For output GPIOs, the value provided becomes the initial output value. This
|
|
helps avoid signal glitching during system startup.
|
|
|
|
A driver can also query the current direction of a GPIO:
|
|
|
|
int gpiod_get_direction(const struct gpio_desc *desc)
|
|
|
|
This function will return either GPIOF_DIR_IN or GPIOF_DIR_OUT.
|
|
|
|
Be aware that there is no default direction for GPIOs. Therefore, **using a GPIO
|
|
without setting its direction first is illegal and will result in undefined
|
|
behavior!**
|
|
|
|
|
|
Spinlock-Safe GPIO Access
|
|
-------------------------
|
|
Most GPIO controllers can be accessed with memory read/write instructions. Those
|
|
don't need to sleep, and can safely be done from inside hard (non-threaded) IRQ
|
|
handlers and similar contexts.
|
|
|
|
Use the following calls to access GPIOs from an atomic context:
|
|
|
|
int gpiod_get_value(const struct gpio_desc *desc);
|
|
void gpiod_set_value(struct gpio_desc *desc, int value);
|
|
|
|
The values are boolean, zero for low, nonzero for high. When reading the value
|
|
of an output pin, the value returned should be what's seen on the pin. That
|
|
won't always match the specified output value, because of issues including
|
|
open-drain signaling and output latencies.
|
|
|
|
The get/set calls do not return errors because "invalid GPIO" should have been
|
|
reported earlier from gpiod_direction_*(). However, note that not all platforms
|
|
can read the value of output pins; those that can't should always return zero.
|
|
Also, using these calls for GPIOs that can't safely be accessed without sleeping
|
|
(see below) is an error.
|
|
|
|
|
|
GPIO Access That May Sleep
|
|
--------------------------
|
|
Some GPIO controllers must be accessed using message based buses like I2C or
|
|
SPI. Commands to read or write those GPIO values require waiting to get to the
|
|
head of a queue to transmit a command and get its response. This requires
|
|
sleeping, which can't be done from inside IRQ handlers.
|
|
|
|
Platforms that support this type of GPIO distinguish them from other GPIOs by
|
|
returning nonzero from this call:
|
|
|
|
int gpiod_cansleep(const struct gpio_desc *desc)
|
|
|
|
To access such GPIOs, a different set of accessors is defined:
|
|
|
|
int gpiod_get_value_cansleep(const struct gpio_desc *desc)
|
|
void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
|
|
|
|
Accessing such GPIOs requires a context which may sleep, for example a threaded
|
|
IRQ handler, and those accessors must be used instead of spinlock-safe
|
|
accessors without the cansleep() name suffix.
|
|
|
|
Other than the fact that these accessors might sleep, and will work on GPIOs
|
|
that can't be accessed from hardIRQ handlers, these calls act the same as the
|
|
spinlock-safe calls.
|
|
|
|
|
|
Active-low State and Raw GPIO Values
|
|
------------------------------------
|
|
Device drivers like to manage the logical state of a GPIO, i.e. the value their
|
|
device will actually receive, no matter what lies between it and the GPIO line.
|
|
In some cases, it might make sense to control the actual GPIO line value. The
|
|
following set of calls ignore the active-low property of a GPIO and work on the
|
|
raw line value:
|
|
|
|
int gpiod_get_raw_value(const struct gpio_desc *desc)
|
|
void gpiod_set_raw_value(struct gpio_desc *desc, int value)
|
|
int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
|
|
void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
|
|
|
|
The active-low state of a GPIO can also be queried using the following call:
|
|
|
|
int gpiod_is_active_low(const struct gpio_desc *desc)
|
|
|
|
Note that these functions should only be used with great moderation ; a driver
|
|
should not have to care about the physical line level.
|
|
|
|
GPIOs mapped to IRQs
|
|
--------------------
|
|
GPIO lines can quite often be used as IRQs. You can get the IRQ number
|
|
corresponding to a given GPIO using the following call:
|
|
|
|
int gpiod_to_irq(const struct gpio_desc *desc)
|
|
|
|
It will return an IRQ number, or an negative errno code if the mapping can't be
|
|
done (most likely because that particular GPIO cannot be used as IRQ). It is an
|
|
unchecked error to use a GPIO that wasn't set up as an input using
|
|
gpiod_direction_input(), or to use an IRQ number that didn't originally come
|
|
from gpiod_to_irq(). gpiod_to_irq() is not allowed to sleep.
|
|
|
|
Non-error values returned from gpiod_to_irq() can be passed to request_irq() or
|
|
free_irq(). They will often be stored into IRQ resources for platform devices,
|
|
by the board-specific initialization code. Note that IRQ trigger options are
|
|
part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup
|
|
capabilities.
|
|
|
|
|
|
Interacting With the Legacy GPIO Subsystem
|
|
==========================================
|
|
Many kernel subsystems still handle GPIOs using the legacy integer-based
|
|
interface. Although it is strongly encouraged to upgrade them to the safer
|
|
descriptor-based API, the following two functions allow you to convert a GPIO
|
|
descriptor into the GPIO integer namespace and vice-versa:
|
|
|
|
int desc_to_gpio(const struct gpio_desc *desc)
|
|
struct gpio_desc *gpio_to_desc(unsigned gpio)
|
|
|
|
The GPIO number returned by desc_to_gpio() can be safely used as long as the
|
|
GPIO descriptor has not been freed. All the same, a GPIO number passed to
|
|
gpio_to_desc() must have been properly acquired, and usage of the returned GPIO
|
|
descriptor is only possible after the GPIO number has been released.
|
|
|
|
Freeing a GPIO obtained by one API with the other API is forbidden and an
|
|
unchecked error.
|