linux/arch/x86/xen/enlighten.c
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00

426 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
#include <linux/memblock.h>
#endif
#include <linux/cpu.h>
#include <linux/kexec.h>
#include <linux/slab.h>
#include <xen/xen.h>
#include <xen/features.h>
#include <xen/page.h>
#include <xen/interface/memory.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/cpu.h>
#include <asm/e820/api.h>
#include "xen-ops.h"
#include "smp.h"
#include "pmu.h"
EXPORT_SYMBOL_GPL(hypercall_page);
/*
* Pointer to the xen_vcpu_info structure or
* &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
* and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
* but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
* to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
* acknowledge pending events.
* Also more subtly it is used by the patched version of irq enable/disable
* e.g. xen_irq_enable_direct and xen_iret in PV mode.
*
* The desire to be able to do those mask/unmask operations as a single
* instruction by using the per-cpu offset held in %gs is the real reason
* vcpu info is in a per-cpu pointer and the original reason for this
* hypercall.
*
*/
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
/*
* Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
* hypercall. This can be used both in PV and PVHVM mode. The structure
* overrides the default per_cpu(xen_vcpu, cpu) value.
*/
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
/* Linux <-> Xen vCPU id mapping */
DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
enum xen_domain_type xen_domain_type = XEN_NATIVE;
EXPORT_SYMBOL_GPL(xen_domain_type);
unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
EXPORT_SYMBOL(machine_to_phys_mapping);
unsigned long machine_to_phys_nr;
EXPORT_SYMBOL(machine_to_phys_nr);
struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);
struct shared_info xen_dummy_shared_info;
__read_mostly int xen_have_vector_callback;
EXPORT_SYMBOL_GPL(xen_have_vector_callback);
/*
* NB: needs to live in .data because it's used by xen_prepare_pvh which runs
* before clearing the bss.
*/
uint32_t xen_start_flags __attribute__((section(".data"))) = 0;
EXPORT_SYMBOL(xen_start_flags);
/*
* Point at some empty memory to start with. We map the real shared_info
* page as soon as fixmap is up and running.
*/
struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
/*
* Flag to determine whether vcpu info placement is available on all
* VCPUs. We assume it is to start with, and then set it to zero on
* the first failure. This is because it can succeed on some VCPUs
* and not others, since it can involve hypervisor memory allocation,
* or because the guest failed to guarantee all the appropriate
* constraints on all VCPUs (ie buffer can't cross a page boundary).
*
* Note that any particular CPU may be using a placed vcpu structure,
* but we can only optimise if the all are.
*
* 0: not available, 1: available
*/
int xen_have_vcpu_info_placement = 1;
static int xen_cpu_up_online(unsigned int cpu)
{
xen_init_lock_cpu(cpu);
return 0;
}
int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
int (*cpu_dead_cb)(unsigned int))
{
int rc;
rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
"x86/xen/guest:prepare",
cpu_up_prepare_cb, cpu_dead_cb);
if (rc >= 0) {
rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"x86/xen/guest:online",
xen_cpu_up_online, NULL);
if (rc < 0)
cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
}
return rc >= 0 ? 0 : rc;
}
static int xen_vcpu_setup_restore(int cpu)
{
int rc = 0;
/* Any per_cpu(xen_vcpu) is stale, so reset it */
xen_vcpu_info_reset(cpu);
/*
* For PVH and PVHVM, setup online VCPUs only. The rest will
* be handled by hotplug.
*/
if (xen_pv_domain() ||
(xen_hvm_domain() && cpu_online(cpu))) {
rc = xen_vcpu_setup(cpu);
}
return rc;
}
/*
* On restore, set the vcpu placement up again.
* If it fails, then we're in a bad state, since
* we can't back out from using it...
*/
void xen_vcpu_restore(void)
{
int cpu, rc;
for_each_possible_cpu(cpu) {
bool other_cpu = (cpu != smp_processor_id());
bool is_up;
if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID)
continue;
/* Only Xen 4.5 and higher support this. */
is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up,
xen_vcpu_nr(cpu), NULL) > 0;
if (other_cpu && is_up &&
HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
BUG();
if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
xen_setup_runstate_info(cpu);
rc = xen_vcpu_setup_restore(cpu);
if (rc)
pr_emerg_once("vcpu restore failed for cpu=%d err=%d. "
"System will hang.\n", cpu, rc);
/*
* In case xen_vcpu_setup_restore() fails, do not bring up the
* VCPU. This helps us avoid the resulting OOPS when the VCPU
* accesses pvclock_vcpu_time via xen_vcpu (which is NULL.)
* Note that this does not improve the situation much -- now the
* VM hangs instead of OOPSing -- with the VCPUs that did not
* fail, spinning in stop_machine(), waiting for the failed
* VCPUs to come up.
*/
if (other_cpu && is_up && (rc == 0) &&
HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
BUG();
}
}
void xen_vcpu_info_reset(int cpu)
{
if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) {
per_cpu(xen_vcpu, cpu) =
&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
} else {
/* Set to NULL so that if somebody accesses it we get an OOPS */
per_cpu(xen_vcpu, cpu) = NULL;
}
}
int xen_vcpu_setup(int cpu)
{
struct vcpu_register_vcpu_info info;
int err;
struct vcpu_info *vcpup;
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
/*
* This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu)
* and at restore (xen_vcpu_restore). Also called for hotplugged
* VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm).
* However, the hypercall can only be done once (see below) so if a VCPU
* is offlined and comes back online then let's not redo the hypercall.
*
* For PV it is called during restore (xen_vcpu_restore) and bootup
* (xen_setup_vcpu_info_placement). The hotplug mechanism does not
* use this function.
*/
if (xen_hvm_domain()) {
if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
return 0;
}
if (xen_have_vcpu_info_placement) {
vcpup = &per_cpu(xen_vcpu_info, cpu);
info.mfn = arbitrary_virt_to_mfn(vcpup);
info.offset = offset_in_page(vcpup);
/*
* Check to see if the hypervisor will put the vcpu_info
* structure where we want it, which allows direct access via
* a percpu-variable.
* N.B. This hypercall can _only_ be called once per CPU.
* Subsequent calls will error out with -EINVAL. This is due to
* the fact that hypervisor has no unregister variant and this
* hypercall does not allow to over-write info.mfn and
* info.offset.
*/
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info,
xen_vcpu_nr(cpu), &info);
if (err) {
pr_warn_once("register_vcpu_info failed: cpu=%d err=%d\n",
cpu, err);
xen_have_vcpu_info_placement = 0;
} else {
/*
* This cpu is using the registered vcpu info, even if
* later ones fail to.
*/
per_cpu(xen_vcpu, cpu) = vcpup;
}
}
if (!xen_have_vcpu_info_placement)
xen_vcpu_info_reset(cpu);
return ((per_cpu(xen_vcpu, cpu) == NULL) ? -ENODEV : 0);
}
void xen_reboot(int reason)
{
struct sched_shutdown r = { .reason = reason };
int cpu;
for_each_online_cpu(cpu)
xen_pmu_finish(cpu);
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
BUG();
}
void xen_emergency_restart(void)
{
xen_reboot(SHUTDOWN_reboot);
}
static int
xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
{
if (!kexec_crash_loaded())
xen_reboot(SHUTDOWN_crash);
return NOTIFY_DONE;
}
static struct notifier_block xen_panic_block = {
.notifier_call = xen_panic_event,
.priority = INT_MIN
};
int xen_panic_handler_init(void)
{
atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
return 0;
}
void xen_pin_vcpu(int cpu)
{
static bool disable_pinning;
struct sched_pin_override pin_override;
int ret;
if (disable_pinning)
return;
pin_override.pcpu = cpu;
ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
/* Ignore errors when removing override. */
if (cpu < 0)
return;
switch (ret) {
case -ENOSYS:
pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
cpu);
disable_pinning = true;
break;
case -EPERM:
WARN(1, "Trying to pin vcpu without having privilege to do so\n");
disable_pinning = true;
break;
case -EINVAL:
case -EBUSY:
pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
cpu);
break;
case 0:
break;
default:
WARN(1, "rc %d while trying to pin vcpu\n", ret);
disable_pinning = true;
}
}
#ifdef CONFIG_HOTPLUG_CPU
void xen_arch_register_cpu(int num)
{
arch_register_cpu(num);
}
EXPORT_SYMBOL(xen_arch_register_cpu);
void xen_arch_unregister_cpu(int num)
{
arch_unregister_cpu(num);
}
EXPORT_SYMBOL(xen_arch_unregister_cpu);
#endif
#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
void __init arch_xen_balloon_init(struct resource *hostmem_resource)
{
struct xen_memory_map memmap;
int rc;
unsigned int i, last_guest_ram;
phys_addr_t max_addr = PFN_PHYS(max_pfn);
struct e820_table *xen_e820_table;
const struct e820_entry *entry;
struct resource *res;
if (!xen_initial_domain())
return;
xen_e820_table = kmalloc(sizeof(*xen_e820_table), GFP_KERNEL);
if (!xen_e820_table)
return;
memmap.nr_entries = ARRAY_SIZE(xen_e820_table->entries);
set_xen_guest_handle(memmap.buffer, xen_e820_table->entries);
rc = HYPERVISOR_memory_op(XENMEM_machine_memory_map, &memmap);
if (rc) {
pr_warn("%s: Can't read host e820 (%d)\n", __func__, rc);
goto out;
}
last_guest_ram = 0;
for (i = 0; i < memmap.nr_entries; i++) {
if (xen_e820_table->entries[i].addr >= max_addr)
break;
if (xen_e820_table->entries[i].type == E820_TYPE_RAM)
last_guest_ram = i;
}
entry = &xen_e820_table->entries[last_guest_ram];
if (max_addr >= entry->addr + entry->size)
goto out; /* No unallocated host RAM. */
hostmem_resource->start = max_addr;
hostmem_resource->end = entry->addr + entry->size;
/*
* Mark non-RAM regions between the end of dom0 RAM and end of host RAM
* as unavailable. The rest of that region can be used for hotplug-based
* ballooning.
*/
for (; i < memmap.nr_entries; i++) {
entry = &xen_e820_table->entries[i];
if (entry->type == E820_TYPE_RAM)
continue;
if (entry->addr >= hostmem_resource->end)
break;
res = kzalloc(sizeof(*res), GFP_KERNEL);
if (!res)
goto out;
res->name = "Unavailable host RAM";
res->start = entry->addr;
res->end = (entry->addr + entry->size < hostmem_resource->end) ?
entry->addr + entry->size : hostmem_resource->end;
rc = insert_resource(hostmem_resource, res);
if (rc) {
pr_warn("%s: Can't insert [%llx - %llx) (%d)\n",
__func__, res->start, res->end, rc);
kfree(res);
goto out;
}
}
out:
kfree(xen_e820_table);
}
#endif /* CONFIG_XEN_BALLOON_MEMORY_HOTPLUG */