mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 10:04:12 +08:00
506c30790f
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmCYCksQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpkPrD/wJfoVMHBH3qlFg+q6SVoIW2bHFZpJXmDxm y1kAh//8qDlAGHw2ndUois8iB06uqrrfIFHr1edmEplMoSVydK+jEx+Iq1+zt9UG uFzkFYgeiKVd7bO28ftbjjN7crcwViXcVbEOBvAGp+qj2rBlncO4LEnK0sgLdZmO Yk8drmyT5VpMDuLgokedEaijv97feMJCmZu/P7klLQoiDuMvgUuFhNsaJUVQ9DrK 9eUuqdbWmqeucT0E2crF+wOL9gwARttpV/wyuHqDzEG7BlfpOMc02IJCVO5eazKW nZpkAs9kkzTtGOK0lqFKo+DHOG98uzJ1gkxPF7Pp4gx0bx9M82sc211J2vqypYv2 35Btdjo6UlMk11chqCsMPvnZJCFvE4DOIUEFwWiqttwkX+k8IRXL06SjfNJKy4yS hLL/gxqJLpgZgOskWjXaH1iZVtsu8V1gKKaAQWy3gR+JbxoawbGok1IYKRHq9N7a Mzzd8jgVnRNRafTOGahLpqXqOJDscQzZYMmlmorejss7m3NdtcigVm6kx85ZkH/a u6VlffguLB3aF6EKxxOkOACgQBYU6zdaazMkwn8xHc1E1sDTl2LFjuUIhUnaeNmJ x0gyZZl0ioW9ym93AJYYrvXMnj1qnKnS93pPsCAZ0SXM18lvLYAF9uMNCI3RUnKE D1x8gii0OQ== =afQ9 -----END PGP SIGNATURE----- Merge tag 'block-5.13-2021-05-09' of git://git.kernel.dk/linux-block Pull block fix from Jens Axboe: "Turns out the bio max size change still has issues, so let's get it reverted for 5.13-rc1. We'll shake out the issues there and defer it to 5.14 instead" * tag 'block-5.13-2021-05-09' of git://git.kernel.dk/linux-block: Revert "bio: limit bio max size"
902 lines
28 KiB
C
902 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to setting various queue properties from drivers
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/gcd.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
|
|
{
|
|
q->rq_timeout = timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
|
|
|
|
/**
|
|
* blk_set_default_limits - reset limits to default values
|
|
* @lim: the queue_limits structure to reset
|
|
*
|
|
* Description:
|
|
* Returns a queue_limit struct to its default state.
|
|
*/
|
|
void blk_set_default_limits(struct queue_limits *lim)
|
|
{
|
|
lim->max_segments = BLK_MAX_SEGMENTS;
|
|
lim->max_discard_segments = 1;
|
|
lim->max_integrity_segments = 0;
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
lim->virt_boundary_mask = 0;
|
|
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
|
|
lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
|
|
lim->max_dev_sectors = 0;
|
|
lim->chunk_sectors = 0;
|
|
lim->max_write_same_sectors = 0;
|
|
lim->max_write_zeroes_sectors = 0;
|
|
lim->max_zone_append_sectors = 0;
|
|
lim->max_discard_sectors = 0;
|
|
lim->max_hw_discard_sectors = 0;
|
|
lim->discard_granularity = 0;
|
|
lim->discard_alignment = 0;
|
|
lim->discard_misaligned = 0;
|
|
lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
|
|
lim->bounce = BLK_BOUNCE_NONE;
|
|
lim->alignment_offset = 0;
|
|
lim->io_opt = 0;
|
|
lim->misaligned = 0;
|
|
lim->zoned = BLK_ZONED_NONE;
|
|
lim->zone_write_granularity = 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_set_default_limits);
|
|
|
|
/**
|
|
* blk_set_stacking_limits - set default limits for stacking devices
|
|
* @lim: the queue_limits structure to reset
|
|
*
|
|
* Description:
|
|
* Returns a queue_limit struct to its default state. Should be used
|
|
* by stacking drivers like DM that have no internal limits.
|
|
*/
|
|
void blk_set_stacking_limits(struct queue_limits *lim)
|
|
{
|
|
blk_set_default_limits(lim);
|
|
|
|
/* Inherit limits from component devices */
|
|
lim->max_segments = USHRT_MAX;
|
|
lim->max_discard_segments = USHRT_MAX;
|
|
lim->max_hw_sectors = UINT_MAX;
|
|
lim->max_segment_size = UINT_MAX;
|
|
lim->max_sectors = UINT_MAX;
|
|
lim->max_dev_sectors = UINT_MAX;
|
|
lim->max_write_same_sectors = UINT_MAX;
|
|
lim->max_write_zeroes_sectors = UINT_MAX;
|
|
lim->max_zone_append_sectors = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_set_stacking_limits);
|
|
|
|
/**
|
|
* blk_queue_bounce_limit - set bounce buffer limit for queue
|
|
* @q: the request queue for the device
|
|
* @bounce: bounce limit to enforce
|
|
*
|
|
* Description:
|
|
* Force bouncing for ISA DMA ranges or highmem.
|
|
*
|
|
* DEPRECATED, don't use in new code.
|
|
**/
|
|
void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
|
|
{
|
|
q->limits.bounce = bounce;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_bounce_limit);
|
|
|
|
/**
|
|
* blk_queue_max_hw_sectors - set max sectors for a request for this queue
|
|
* @q: the request queue for the device
|
|
* @max_hw_sectors: max hardware sectors in the usual 512b unit
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set a hard upper limit,
|
|
* max_hw_sectors, on the size of requests. max_hw_sectors is set by
|
|
* the device driver based upon the capabilities of the I/O
|
|
* controller.
|
|
*
|
|
* max_dev_sectors is a hard limit imposed by the storage device for
|
|
* READ/WRITE requests. It is set by the disk driver.
|
|
*
|
|
* max_sectors is a soft limit imposed by the block layer for
|
|
* filesystem type requests. This value can be overridden on a
|
|
* per-device basis in /sys/block/<device>/queue/max_sectors_kb.
|
|
* The soft limit can not exceed max_hw_sectors.
|
|
**/
|
|
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
|
|
{
|
|
struct queue_limits *limits = &q->limits;
|
|
unsigned int max_sectors;
|
|
|
|
if ((max_hw_sectors << 9) < PAGE_SIZE) {
|
|
max_hw_sectors = 1 << (PAGE_SHIFT - 9);
|
|
printk(KERN_INFO "%s: set to minimum %d\n",
|
|
__func__, max_hw_sectors);
|
|
}
|
|
|
|
max_hw_sectors = round_down(max_hw_sectors,
|
|
limits->logical_block_size >> SECTOR_SHIFT);
|
|
limits->max_hw_sectors = max_hw_sectors;
|
|
|
|
max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
|
|
max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
|
|
max_sectors = round_down(max_sectors,
|
|
limits->logical_block_size >> SECTOR_SHIFT);
|
|
limits->max_sectors = max_sectors;
|
|
|
|
q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
|
|
|
|
/**
|
|
* blk_queue_chunk_sectors - set size of the chunk for this queue
|
|
* @q: the request queue for the device
|
|
* @chunk_sectors: chunk sectors in the usual 512b unit
|
|
*
|
|
* Description:
|
|
* If a driver doesn't want IOs to cross a given chunk size, it can set
|
|
* this limit and prevent merging across chunks. Note that the block layer
|
|
* must accept a page worth of data at any offset. So if the crossing of
|
|
* chunks is a hard limitation in the driver, it must still be prepared
|
|
* to split single page bios.
|
|
**/
|
|
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
|
|
{
|
|
q->limits.chunk_sectors = chunk_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_chunk_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_discard_sectors - set max sectors for a single discard
|
|
* @q: the request queue for the device
|
|
* @max_discard_sectors: maximum number of sectors to discard
|
|
**/
|
|
void blk_queue_max_discard_sectors(struct request_queue *q,
|
|
unsigned int max_discard_sectors)
|
|
{
|
|
q->limits.max_hw_discard_sectors = max_discard_sectors;
|
|
q->limits.max_discard_sectors = max_discard_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_discard_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_write_same_sectors - set max sectors for a single write same
|
|
* @q: the request queue for the device
|
|
* @max_write_same_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_write_same_sectors(struct request_queue *q,
|
|
unsigned int max_write_same_sectors)
|
|
{
|
|
q->limits.max_write_same_sectors = max_write_same_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_write_zeroes_sectors - set max sectors for a single
|
|
* write zeroes
|
|
* @q: the request queue for the device
|
|
* @max_write_zeroes_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
|
|
unsigned int max_write_zeroes_sectors)
|
|
{
|
|
q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_zone_append_sectors - set max sectors for a single zone append
|
|
* @q: the request queue for the device
|
|
* @max_zone_append_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_zone_append_sectors(struct request_queue *q,
|
|
unsigned int max_zone_append_sectors)
|
|
{
|
|
unsigned int max_sectors;
|
|
|
|
if (WARN_ON(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
|
|
max_sectors = min(q->limits.chunk_sectors, max_sectors);
|
|
|
|
/*
|
|
* Signal eventual driver bugs resulting in the max_zone_append sectors limit
|
|
* being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
|
|
* or the max_hw_sectors limit not set.
|
|
*/
|
|
WARN_ON(!max_sectors);
|
|
|
|
q->limits.max_zone_append_sectors = max_sectors;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_segments - set max hw segments for a request for this queue
|
|
* @q: the request queue for the device
|
|
* @max_segments: max number of segments
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the number of
|
|
* hw data segments in a request.
|
|
**/
|
|
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
|
|
{
|
|
if (!max_segments) {
|
|
max_segments = 1;
|
|
printk(KERN_INFO "%s: set to minimum %d\n",
|
|
__func__, max_segments);
|
|
}
|
|
|
|
q->limits.max_segments = max_segments;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_segments);
|
|
|
|
/**
|
|
* blk_queue_max_discard_segments - set max segments for discard requests
|
|
* @q: the request queue for the device
|
|
* @max_segments: max number of segments
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the number of
|
|
* segments in a discard request.
|
|
**/
|
|
void blk_queue_max_discard_segments(struct request_queue *q,
|
|
unsigned short max_segments)
|
|
{
|
|
q->limits.max_discard_segments = max_segments;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
|
|
|
|
/**
|
|
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
|
|
* @q: the request queue for the device
|
|
* @max_size: max size of segment in bytes
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the size of a
|
|
* coalesced segment
|
|
**/
|
|
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
|
|
{
|
|
if (max_size < PAGE_SIZE) {
|
|
max_size = PAGE_SIZE;
|
|
printk(KERN_INFO "%s: set to minimum %d\n",
|
|
__func__, max_size);
|
|
}
|
|
|
|
/* see blk_queue_virt_boundary() for the explanation */
|
|
WARN_ON_ONCE(q->limits.virt_boundary_mask);
|
|
|
|
q->limits.max_segment_size = max_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_segment_size);
|
|
|
|
/**
|
|
* blk_queue_logical_block_size - set logical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the logical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible block size that the
|
|
* storage device can address. The default of 512 covers most
|
|
* hardware.
|
|
**/
|
|
void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
struct queue_limits *limits = &q->limits;
|
|
|
|
limits->logical_block_size = size;
|
|
|
|
if (limits->physical_block_size < size)
|
|
limits->physical_block_size = size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
|
|
limits->max_hw_sectors =
|
|
round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
|
|
limits->max_sectors =
|
|
round_down(limits->max_sectors, size >> SECTOR_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_logical_block_size);
|
|
|
|
/**
|
|
* blk_queue_physical_block_size - set physical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the physical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible sector size that the
|
|
* hardware can operate on without reverting to read-modify-write
|
|
* operations.
|
|
*/
|
|
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
q->limits.physical_block_size = size;
|
|
|
|
if (q->limits.physical_block_size < q->limits.logical_block_size)
|
|
q->limits.physical_block_size = q->limits.logical_block_size;
|
|
|
|
if (q->limits.io_min < q->limits.physical_block_size)
|
|
q->limits.io_min = q->limits.physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_physical_block_size);
|
|
|
|
/**
|
|
* blk_queue_zone_write_granularity - set zone write granularity for the queue
|
|
* @q: the request queue for the zoned device
|
|
* @size: the zone write granularity size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible size allowing to write in
|
|
* sequential zones of a zoned block device.
|
|
*/
|
|
void blk_queue_zone_write_granularity(struct request_queue *q,
|
|
unsigned int size)
|
|
{
|
|
if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
q->limits.zone_write_granularity = size;
|
|
|
|
if (q->limits.zone_write_granularity < q->limits.logical_block_size)
|
|
q->limits.zone_write_granularity = q->limits.logical_block_size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
|
|
|
|
/**
|
|
* blk_queue_alignment_offset - set physical block alignment offset
|
|
* @q: the request queue for the device
|
|
* @offset: alignment offset in bytes
|
|
*
|
|
* Description:
|
|
* Some devices are naturally misaligned to compensate for things like
|
|
* the legacy DOS partition table 63-sector offset. Low-level drivers
|
|
* should call this function for devices whose first sector is not
|
|
* naturally aligned.
|
|
*/
|
|
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
|
|
{
|
|
q->limits.alignment_offset =
|
|
offset & (q->limits.physical_block_size - 1);
|
|
q->limits.misaligned = 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_alignment_offset);
|
|
|
|
void blk_queue_update_readahead(struct request_queue *q)
|
|
{
|
|
/*
|
|
* For read-ahead of large files to be effective, we need to read ahead
|
|
* at least twice the optimal I/O size.
|
|
*/
|
|
q->backing_dev_info->ra_pages =
|
|
max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
q->backing_dev_info->io_pages =
|
|
queue_max_sectors(q) >> (PAGE_SHIFT - 9);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
|
|
|
|
/**
|
|
* blk_limits_io_min - set minimum request size for a device
|
|
* @limits: the queue limits
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Some devices have an internal block size bigger than the reported
|
|
* hardware sector size. This function can be used to signal the
|
|
* smallest I/O the device can perform without incurring a performance
|
|
* penalty.
|
|
*/
|
|
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
|
|
{
|
|
limits->io_min = min;
|
|
|
|
if (limits->io_min < limits->logical_block_size)
|
|
limits->io_min = limits->logical_block_size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_min);
|
|
|
|
/**
|
|
* blk_queue_io_min - set minimum request size for the queue
|
|
* @q: the request queue for the device
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report a granularity or preferred minimum I/O
|
|
* size which is the smallest request the device can perform without
|
|
* incurring a performance penalty. For disk drives this is often the
|
|
* physical block size. For RAID arrays it is often the stripe chunk
|
|
* size. A properly aligned multiple of minimum_io_size is the
|
|
* preferred request size for workloads where a high number of I/O
|
|
* operations is desired.
|
|
*/
|
|
void blk_queue_io_min(struct request_queue *q, unsigned int min)
|
|
{
|
|
blk_limits_io_min(&q->limits, min);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_io_min);
|
|
|
|
/**
|
|
* blk_limits_io_opt - set optimal request size for a device
|
|
* @limits: the queue limits
|
|
* @opt: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report an optimal I/O size, which is the
|
|
* device's preferred unit for sustained I/O. This is rarely reported
|
|
* for disk drives. For RAID arrays it is usually the stripe width or
|
|
* the internal track size. A properly aligned multiple of
|
|
* optimal_io_size is the preferred request size for workloads where
|
|
* sustained throughput is desired.
|
|
*/
|
|
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
|
|
{
|
|
limits->io_opt = opt;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_opt);
|
|
|
|
/**
|
|
* blk_queue_io_opt - set optimal request size for the queue
|
|
* @q: the request queue for the device
|
|
* @opt: optimal request size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report an optimal I/O size, which is the
|
|
* device's preferred unit for sustained I/O. This is rarely reported
|
|
* for disk drives. For RAID arrays it is usually the stripe width or
|
|
* the internal track size. A properly aligned multiple of
|
|
* optimal_io_size is the preferred request size for workloads where
|
|
* sustained throughput is desired.
|
|
*/
|
|
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
|
|
{
|
|
blk_limits_io_opt(&q->limits, opt);
|
|
q->backing_dev_info->ra_pages =
|
|
max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_io_opt);
|
|
|
|
static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
|
|
{
|
|
sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
|
|
if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
|
|
sectors = PAGE_SIZE >> SECTOR_SHIFT;
|
|
return sectors;
|
|
}
|
|
|
|
/**
|
|
* blk_stack_limits - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @b: the underlying queue limits (bottom, component device)
|
|
* @start: first data sector within component device
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*
|
|
* Returns 0 if the top and bottom queue_limits are compatible. The
|
|
* top device's block sizes and alignment offsets may be adjusted to
|
|
* ensure alignment with the bottom device. If no compatible sizes
|
|
* and alignments exist, -1 is returned and the resulting top
|
|
* queue_limits will have the misaligned flag set to indicate that
|
|
* the alignment_offset is undefined.
|
|
*/
|
|
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
|
|
sector_t start)
|
|
{
|
|
unsigned int top, bottom, alignment, ret = 0;
|
|
|
|
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
|
|
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
|
|
t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
|
|
t->max_write_same_sectors = min(t->max_write_same_sectors,
|
|
b->max_write_same_sectors);
|
|
t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
|
|
b->max_write_zeroes_sectors);
|
|
t->max_zone_append_sectors = min(t->max_zone_append_sectors,
|
|
b->max_zone_append_sectors);
|
|
t->bounce = max(t->bounce, b->bounce);
|
|
|
|
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
|
|
b->seg_boundary_mask);
|
|
t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
|
|
b->virt_boundary_mask);
|
|
|
|
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
|
|
t->max_discard_segments = min_not_zero(t->max_discard_segments,
|
|
b->max_discard_segments);
|
|
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
|
|
b->max_integrity_segments);
|
|
|
|
t->max_segment_size = min_not_zero(t->max_segment_size,
|
|
b->max_segment_size);
|
|
|
|
t->misaligned |= b->misaligned;
|
|
|
|
alignment = queue_limit_alignment_offset(b, start);
|
|
|
|
/* Bottom device has different alignment. Check that it is
|
|
* compatible with the current top alignment.
|
|
*/
|
|
if (t->alignment_offset != alignment) {
|
|
|
|
top = max(t->physical_block_size, t->io_min)
|
|
+ t->alignment_offset;
|
|
bottom = max(b->physical_block_size, b->io_min) + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if (max(top, bottom) % min(top, bottom)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
t->logical_block_size = max(t->logical_block_size,
|
|
b->logical_block_size);
|
|
|
|
t->physical_block_size = max(t->physical_block_size,
|
|
b->physical_block_size);
|
|
|
|
t->io_min = max(t->io_min, b->io_min);
|
|
t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
|
|
|
|
/* Set non-power-of-2 compatible chunk_sectors boundary */
|
|
if (b->chunk_sectors)
|
|
t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
|
|
|
|
/* Physical block size a multiple of the logical block size? */
|
|
if (t->physical_block_size & (t->logical_block_size - 1)) {
|
|
t->physical_block_size = t->logical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Minimum I/O a multiple of the physical block size? */
|
|
if (t->io_min & (t->physical_block_size - 1)) {
|
|
t->io_min = t->physical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Optimal I/O a multiple of the physical block size? */
|
|
if (t->io_opt & (t->physical_block_size - 1)) {
|
|
t->io_opt = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* chunk_sectors a multiple of the physical block size? */
|
|
if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
|
|
t->chunk_sectors = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->raid_partial_stripes_expensive =
|
|
max(t->raid_partial_stripes_expensive,
|
|
b->raid_partial_stripes_expensive);
|
|
|
|
/* Find lowest common alignment_offset */
|
|
t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
|
|
% max(t->physical_block_size, t->io_min);
|
|
|
|
/* Verify that new alignment_offset is on a logical block boundary */
|
|
if (t->alignment_offset & (t->logical_block_size - 1)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
|
|
t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
|
|
t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
|
|
|
|
/* Discard alignment and granularity */
|
|
if (b->discard_granularity) {
|
|
alignment = queue_limit_discard_alignment(b, start);
|
|
|
|
if (t->discard_granularity != 0 &&
|
|
t->discard_alignment != alignment) {
|
|
top = t->discard_granularity + t->discard_alignment;
|
|
bottom = b->discard_granularity + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if ((max(top, bottom) % min(top, bottom)) != 0)
|
|
t->discard_misaligned = 1;
|
|
}
|
|
|
|
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
|
|
b->max_discard_sectors);
|
|
t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
|
|
b->max_hw_discard_sectors);
|
|
t->discard_granularity = max(t->discard_granularity,
|
|
b->discard_granularity);
|
|
t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
|
|
t->discard_granularity;
|
|
}
|
|
|
|
t->zone_write_granularity = max(t->zone_write_granularity,
|
|
b->zone_write_granularity);
|
|
t->zoned = max(t->zoned, b->zoned);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_stack_limits);
|
|
|
|
/**
|
|
* disk_stack_limits - adjust queue limits for stacked drivers
|
|
* @disk: MD/DM gendisk (top)
|
|
* @bdev: the underlying block device (bottom)
|
|
* @offset: offset to beginning of data within component device
|
|
*
|
|
* Description:
|
|
* Merges the limits for a top level gendisk and a bottom level
|
|
* block_device.
|
|
*/
|
|
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
|
|
sector_t offset)
|
|
{
|
|
struct request_queue *t = disk->queue;
|
|
|
|
if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
|
|
get_start_sect(bdev) + (offset >> 9)) < 0) {
|
|
char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
|
|
|
|
disk_name(disk, 0, top);
|
|
bdevname(bdev, bottom);
|
|
|
|
printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
|
|
top, bottom);
|
|
}
|
|
|
|
blk_queue_update_readahead(disk->queue);
|
|
}
|
|
EXPORT_SYMBOL(disk_stack_limits);
|
|
|
|
/**
|
|
* blk_queue_update_dma_pad - update pad mask
|
|
* @q: the request queue for the device
|
|
* @mask: pad mask
|
|
*
|
|
* Update dma pad mask.
|
|
*
|
|
* Appending pad buffer to a request modifies the last entry of a
|
|
* scatter list such that it includes the pad buffer.
|
|
**/
|
|
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
|
|
{
|
|
if (mask > q->dma_pad_mask)
|
|
q->dma_pad_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_update_dma_pad);
|
|
|
|
/**
|
|
* blk_queue_segment_boundary - set boundary rules for segment merging
|
|
* @q: the request queue for the device
|
|
* @mask: the memory boundary mask
|
|
**/
|
|
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
|
|
{
|
|
if (mask < PAGE_SIZE - 1) {
|
|
mask = PAGE_SIZE - 1;
|
|
printk(KERN_INFO "%s: set to minimum %lx\n",
|
|
__func__, mask);
|
|
}
|
|
|
|
q->limits.seg_boundary_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_segment_boundary);
|
|
|
|
/**
|
|
* blk_queue_virt_boundary - set boundary rules for bio merging
|
|
* @q: the request queue for the device
|
|
* @mask: the memory boundary mask
|
|
**/
|
|
void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
|
|
{
|
|
q->limits.virt_boundary_mask = mask;
|
|
|
|
/*
|
|
* Devices that require a virtual boundary do not support scatter/gather
|
|
* I/O natively, but instead require a descriptor list entry for each
|
|
* page (which might not be idential to the Linux PAGE_SIZE). Because
|
|
* of that they are not limited by our notion of "segment size".
|
|
*/
|
|
if (mask)
|
|
q->limits.max_segment_size = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_virt_boundary);
|
|
|
|
/**
|
|
* blk_queue_dma_alignment - set dma length and memory alignment
|
|
* @q: the request queue for the device
|
|
* @mask: alignment mask
|
|
*
|
|
* description:
|
|
* set required memory and length alignment for direct dma transactions.
|
|
* this is used when building direct io requests for the queue.
|
|
*
|
|
**/
|
|
void blk_queue_dma_alignment(struct request_queue *q, int mask)
|
|
{
|
|
q->dma_alignment = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_dma_alignment);
|
|
|
|
/**
|
|
* blk_queue_update_dma_alignment - update dma length and memory alignment
|
|
* @q: the request queue for the device
|
|
* @mask: alignment mask
|
|
*
|
|
* description:
|
|
* update required memory and length alignment for direct dma transactions.
|
|
* If the requested alignment is larger than the current alignment, then
|
|
* the current queue alignment is updated to the new value, otherwise it
|
|
* is left alone. The design of this is to allow multiple objects
|
|
* (driver, device, transport etc) to set their respective
|
|
* alignments without having them interfere.
|
|
*
|
|
**/
|
|
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
|
|
{
|
|
BUG_ON(mask > PAGE_SIZE);
|
|
|
|
if (mask > q->dma_alignment)
|
|
q->dma_alignment = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_update_dma_alignment);
|
|
|
|
/**
|
|
* blk_set_queue_depth - tell the block layer about the device queue depth
|
|
* @q: the request queue for the device
|
|
* @depth: queue depth
|
|
*
|
|
*/
|
|
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
|
|
{
|
|
q->queue_depth = depth;
|
|
rq_qos_queue_depth_changed(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_set_queue_depth);
|
|
|
|
/**
|
|
* blk_queue_write_cache - configure queue's write cache
|
|
* @q: the request queue for the device
|
|
* @wc: write back cache on or off
|
|
* @fua: device supports FUA writes, if true
|
|
*
|
|
* Tell the block layer about the write cache of @q.
|
|
*/
|
|
void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
|
|
{
|
|
if (wc)
|
|
blk_queue_flag_set(QUEUE_FLAG_WC, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_WC, q);
|
|
if (fua)
|
|
blk_queue_flag_set(QUEUE_FLAG_FUA, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
|
|
|
|
wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_write_cache);
|
|
|
|
/**
|
|
* blk_queue_required_elevator_features - Set a queue required elevator features
|
|
* @q: the request queue for the target device
|
|
* @features: Required elevator features OR'ed together
|
|
*
|
|
* Tell the block layer that for the device controlled through @q, only the
|
|
* only elevators that can be used are those that implement at least the set of
|
|
* features specified by @features.
|
|
*/
|
|
void blk_queue_required_elevator_features(struct request_queue *q,
|
|
unsigned int features)
|
|
{
|
|
q->required_elevator_features = features;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
|
|
|
|
/**
|
|
* blk_queue_can_use_dma_map_merging - configure queue for merging segments.
|
|
* @q: the request queue for the device
|
|
* @dev: the device pointer for dma
|
|
*
|
|
* Tell the block layer about merging the segments by dma map of @q.
|
|
*/
|
|
bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
|
|
struct device *dev)
|
|
{
|
|
unsigned long boundary = dma_get_merge_boundary(dev);
|
|
|
|
if (!boundary)
|
|
return false;
|
|
|
|
/* No need to update max_segment_size. see blk_queue_virt_boundary() */
|
|
blk_queue_virt_boundary(q, boundary);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
|
|
|
|
/**
|
|
* blk_queue_set_zoned - configure a disk queue zoned model.
|
|
* @disk: the gendisk of the queue to configure
|
|
* @model: the zoned model to set
|
|
*
|
|
* Set the zoned model of the request queue of @disk according to @model.
|
|
* When @model is BLK_ZONED_HM (host managed), this should be called only
|
|
* if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
|
|
* If @model specifies BLK_ZONED_HA (host aware), the effective model used
|
|
* depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
|
|
* on the disk.
|
|
*/
|
|
void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
|
|
{
|
|
struct request_queue *q = disk->queue;
|
|
|
|
switch (model) {
|
|
case BLK_ZONED_HM:
|
|
/*
|
|
* Host managed devices are supported only if
|
|
* CONFIG_BLK_DEV_ZONED is enabled.
|
|
*/
|
|
WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
|
|
break;
|
|
case BLK_ZONED_HA:
|
|
/*
|
|
* Host aware devices can be treated either as regular block
|
|
* devices (similar to drive managed devices) or as zoned block
|
|
* devices to take advantage of the zone command set, similarly
|
|
* to host managed devices. We try the latter if there are no
|
|
* partitions and zoned block device support is enabled, else
|
|
* we do nothing special as far as the block layer is concerned.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
|
|
!xa_empty(&disk->part_tbl))
|
|
model = BLK_ZONED_NONE;
|
|
break;
|
|
case BLK_ZONED_NONE:
|
|
default:
|
|
if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
|
|
model = BLK_ZONED_NONE;
|
|
break;
|
|
}
|
|
|
|
q->limits.zoned = model;
|
|
if (model != BLK_ZONED_NONE) {
|
|
/*
|
|
* Set the zone write granularity to the device logical block
|
|
* size by default. The driver can change this value if needed.
|
|
*/
|
|
blk_queue_zone_write_granularity(q,
|
|
queue_logical_block_size(q));
|
|
} else {
|
|
blk_queue_clear_zone_settings(q);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
|