mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 12:28:41 +08:00
fbc90c042c
walkers") is known to cause a performance regression (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff). Yu has a fix which I'll send along later via the hotfixes branch. - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Is anyone reading this stuff? If so, email me! - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8= =z0Lf -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. * tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits) mm/mglru: fix ineffective protection calculation mm/zswap: fix a white space issue mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio mm/hugetlb: fix possible recursive locking detected warning mm/gup: clear the LRU flag of a page before adding to LRU batch mm/numa_balancing: teach mpol_to_str about the balancing mode mm: memcg1: convert charge move flags to unsigned long long alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting lib: reuse page_ext_data() to obtain codetag_ref lib: add missing newline character in the warning message mm/mglru: fix overshooting shrinker memory mm/mglru: fix div-by-zero in vmpressure_calc_level() mm/kmemleak: replace strncpy() with strscpy() mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB mm: ignore data-race in __swap_writepage hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr mm: shmem: rename mTHP shmem counters mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async() mm/migrate: putback split folios when numa hint migration fails ...
907 lines
23 KiB
C
907 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/fs/nfs/file.c
|
|
*
|
|
* Copyright (C) 1992 Rick Sladkey
|
|
*
|
|
* Changes Copyright (C) 1994 by Florian La Roche
|
|
* - Do not copy data too often around in the kernel.
|
|
* - In nfs_file_read the return value of kmalloc wasn't checked.
|
|
* - Put in a better version of read look-ahead buffering. Original idea
|
|
* and implementation by Wai S Kok elekokws@ee.nus.sg.
|
|
*
|
|
* Expire cache on write to a file by Wai S Kok (Oct 1994).
|
|
*
|
|
* Total rewrite of read side for new NFS buffer cache.. Linus.
|
|
*
|
|
* nfs regular file handling functions
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/time.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/nfs_fs.h>
|
|
#include <linux/nfs_mount.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/filelock.h>
|
|
|
|
#include "delegation.h"
|
|
#include "internal.h"
|
|
#include "iostat.h"
|
|
#include "fscache.h"
|
|
#include "pnfs.h"
|
|
|
|
#include "nfstrace.h"
|
|
|
|
#define NFSDBG_FACILITY NFSDBG_FILE
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops;
|
|
|
|
int nfs_check_flags(int flags)
|
|
{
|
|
if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_check_flags);
|
|
|
|
/*
|
|
* Open file
|
|
*/
|
|
static int
|
|
nfs_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int res;
|
|
|
|
dprintk("NFS: open file(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSOPEN);
|
|
res = nfs_check_flags(filp->f_flags);
|
|
if (res)
|
|
return res;
|
|
|
|
res = nfs_open(inode, filp);
|
|
if (res == 0)
|
|
filp->f_mode |= FMODE_CAN_ODIRECT;
|
|
return res;
|
|
}
|
|
|
|
int
|
|
nfs_file_release(struct inode *inode, struct file *filp)
|
|
{
|
|
dprintk("NFS: release(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
|
|
nfs_file_clear_open_context(filp);
|
|
nfs_fscache_release_file(inode, filp);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_release);
|
|
|
|
/**
|
|
* nfs_revalidate_file_size - Revalidate the file size
|
|
* @inode: pointer to inode struct
|
|
* @filp: pointer to struct file
|
|
*
|
|
* Revalidates the file length. This is basically a wrapper around
|
|
* nfs_revalidate_inode() that takes into account the fact that we may
|
|
* have cached writes (in which case we don't care about the server's
|
|
* idea of what the file length is), or O_DIRECT (in which case we
|
|
* shouldn't trust the cache).
|
|
*/
|
|
static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
|
|
{
|
|
struct nfs_server *server = NFS_SERVER(inode);
|
|
|
|
if (filp->f_flags & O_DIRECT)
|
|
goto force_reval;
|
|
if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
|
|
goto force_reval;
|
|
return 0;
|
|
force_reval:
|
|
return __nfs_revalidate_inode(server, inode);
|
|
}
|
|
|
|
loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
|
|
filp, offset, whence);
|
|
|
|
/*
|
|
* whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
|
|
* the cached file length
|
|
*/
|
|
if (whence != SEEK_SET && whence != SEEK_CUR) {
|
|
struct inode *inode = filp->f_mapping->host;
|
|
|
|
int retval = nfs_revalidate_file_size(inode, filp);
|
|
if (retval < 0)
|
|
return (loff_t)retval;
|
|
}
|
|
|
|
return generic_file_llseek(filp, offset, whence);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_llseek);
|
|
|
|
/*
|
|
* Flush all dirty pages, and check for write errors.
|
|
*/
|
|
static int
|
|
nfs_file_flush(struct file *file, fl_owner_t id)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
errseq_t since;
|
|
|
|
dprintk("NFS: flush(%pD2)\n", file);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
|
|
if ((file->f_mode & FMODE_WRITE) == 0)
|
|
return 0;
|
|
|
|
/* Flush writes to the server and return any errors */
|
|
since = filemap_sample_wb_err(file->f_mapping);
|
|
nfs_wb_all(inode);
|
|
return filemap_check_wb_err(file->f_mapping, since);
|
|
}
|
|
|
|
ssize_t
|
|
nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t result;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT)
|
|
return nfs_file_direct_read(iocb, to, false);
|
|
|
|
dprintk("NFS: read(%pD2, %zu@%lu)\n",
|
|
iocb->ki_filp,
|
|
iov_iter_count(to), (unsigned long) iocb->ki_pos);
|
|
|
|
nfs_start_io_read(inode);
|
|
result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
|
|
if (!result) {
|
|
result = generic_file_read_iter(iocb, to);
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
|
|
}
|
|
nfs_end_io_read(inode);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_read);
|
|
|
|
ssize_t
|
|
nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct inode *inode = file_inode(in);
|
|
ssize_t result;
|
|
|
|
dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
|
|
|
|
nfs_start_io_read(inode);
|
|
result = nfs_revalidate_mapping(inode, in->f_mapping);
|
|
if (!result) {
|
|
result = filemap_splice_read(in, ppos, pipe, len, flags);
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
|
|
}
|
|
nfs_end_io_read(inode);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_splice_read);
|
|
|
|
int
|
|
nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int status;
|
|
|
|
dprintk("NFS: mmap(%pD2)\n", file);
|
|
|
|
/* Note: generic_file_mmap() returns ENOSYS on nommu systems
|
|
* so we call that before revalidating the mapping
|
|
*/
|
|
status = generic_file_mmap(file, vma);
|
|
if (!status) {
|
|
vma->vm_ops = &nfs_file_vm_ops;
|
|
status = nfs_revalidate_mapping(inode, file->f_mapping);
|
|
}
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_mmap);
|
|
|
|
/*
|
|
* Flush any dirty pages for this process, and check for write errors.
|
|
* The return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*/
|
|
static int
|
|
nfs_file_fsync_commit(struct file *file, int datasync)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int ret, ret2;
|
|
|
|
dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
|
|
ret = nfs_commit_inode(inode, FLUSH_SYNC);
|
|
ret2 = file_check_and_advance_wb_err(file);
|
|
if (ret2 < 0)
|
|
return ret2;
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct nfs_inode *nfsi = NFS_I(inode);
|
|
long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
|
|
long nredirtied;
|
|
int ret;
|
|
|
|
trace_nfs_fsync_enter(inode);
|
|
|
|
for (;;) {
|
|
ret = file_write_and_wait_range(file, start, end);
|
|
if (ret != 0)
|
|
break;
|
|
ret = nfs_file_fsync_commit(file, datasync);
|
|
if (ret != 0)
|
|
break;
|
|
ret = pnfs_sync_inode(inode, !!datasync);
|
|
if (ret != 0)
|
|
break;
|
|
nredirtied = atomic_long_read(&nfsi->redirtied_pages);
|
|
if (nredirtied == save_nredirtied)
|
|
break;
|
|
save_nredirtied = nredirtied;
|
|
}
|
|
|
|
trace_nfs_fsync_exit(inode, ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_fsync);
|
|
|
|
/*
|
|
* Decide whether a read/modify/write cycle may be more efficient
|
|
* then a modify/write/read cycle when writing to a page in the
|
|
* page cache.
|
|
*
|
|
* Some pNFS layout drivers can only read/write at a certain block
|
|
* granularity like all block devices and therefore we must perform
|
|
* read/modify/write whenever a page hasn't read yet and the data
|
|
* to be written there is not aligned to a block boundary and/or
|
|
* smaller than the block size.
|
|
*
|
|
* The modify/write/read cycle may occur if a page is read before
|
|
* being completely filled by the writer. In this situation, the
|
|
* page must be completely written to stable storage on the server
|
|
* before it can be refilled by reading in the page from the server.
|
|
* This can lead to expensive, small, FILE_SYNC mode writes being
|
|
* done.
|
|
*
|
|
* It may be more efficient to read the page first if the file is
|
|
* open for reading in addition to writing, the page is not marked
|
|
* as Uptodate, it is not dirty or waiting to be committed,
|
|
* indicating that it was previously allocated and then modified,
|
|
* that there were valid bytes of data in that range of the file,
|
|
* and that the new data won't completely replace the old data in
|
|
* that range of the file.
|
|
*/
|
|
static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
|
|
unsigned int len)
|
|
{
|
|
unsigned int pglen = nfs_folio_length(folio);
|
|
unsigned int offset = offset_in_folio(folio, pos);
|
|
unsigned int end = offset + len;
|
|
|
|
return !pglen || (end >= pglen && !offset);
|
|
}
|
|
|
|
static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
|
|
loff_t pos, unsigned int len)
|
|
{
|
|
/*
|
|
* Up-to-date pages, those with ongoing or full-page write
|
|
* don't need read/modify/write
|
|
*/
|
|
if (folio_test_uptodate(folio) || folio_test_private(folio) ||
|
|
nfs_folio_is_full_write(folio, pos, len))
|
|
return false;
|
|
|
|
if (pnfs_ld_read_whole_page(file_inode(file)))
|
|
return true;
|
|
/* Open for reading too? */
|
|
if (file->f_mode & FMODE_READ)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This does the "real" work of the write. We must allocate and lock the
|
|
* page to be sent back to the generic routine, which then copies the
|
|
* data from user space.
|
|
*
|
|
* If the writer ends up delaying the write, the writer needs to
|
|
* increment the page use counts until he is done with the page.
|
|
*/
|
|
static int nfs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, struct page **pagep,
|
|
void **fsdata)
|
|
{
|
|
fgf_t fgp = FGP_WRITEBEGIN;
|
|
struct folio *folio;
|
|
int once_thru = 0;
|
|
int ret;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
fgp |= fgf_set_order(len);
|
|
start:
|
|
folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp,
|
|
mapping_gfp_mask(mapping));
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
*pagep = &folio->page;
|
|
|
|
ret = nfs_flush_incompatible(file, folio);
|
|
if (ret) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
} else if (!once_thru &&
|
|
nfs_want_read_modify_write(file, folio, pos, len)) {
|
|
once_thru = 1;
|
|
ret = nfs_read_folio(file, folio);
|
|
folio_put(folio);
|
|
if (!ret)
|
|
goto start;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nfs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct nfs_open_context *ctx = nfs_file_open_context(file);
|
|
struct folio *folio = page_folio(page);
|
|
unsigned offset = offset_in_folio(folio, pos);
|
|
int status;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
/*
|
|
* Zero any uninitialised parts of the page, and then mark the page
|
|
* as up to date if it turns out that we're extending the file.
|
|
*/
|
|
if (!folio_test_uptodate(folio)) {
|
|
size_t fsize = folio_size(folio);
|
|
unsigned pglen = nfs_folio_length(folio);
|
|
unsigned end = offset + copied;
|
|
|
|
if (pglen == 0) {
|
|
folio_zero_segments(folio, 0, offset, end, fsize);
|
|
folio_mark_uptodate(folio);
|
|
} else if (end >= pglen) {
|
|
folio_zero_segment(folio, end, fsize);
|
|
if (offset == 0)
|
|
folio_mark_uptodate(folio);
|
|
} else
|
|
folio_zero_segment(folio, pglen, fsize);
|
|
}
|
|
|
|
status = nfs_update_folio(file, folio, offset, copied);
|
|
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
NFS_I(mapping->host)->write_io += copied;
|
|
|
|
if (nfs_ctx_key_to_expire(ctx, mapping->host))
|
|
nfs_wb_all(mapping->host);
|
|
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* Partially or wholly invalidate a page
|
|
* - Release the private state associated with a page if undergoing complete
|
|
* page invalidation
|
|
* - Called if either PG_private or PG_fscache is set on the page
|
|
* - Caller holds page lock
|
|
*/
|
|
static void nfs_invalidate_folio(struct folio *folio, size_t offset,
|
|
size_t length)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
|
|
folio->index, offset, length);
|
|
|
|
if (offset != 0 || length < folio_size(folio))
|
|
return;
|
|
/* Cancel any unstarted writes on this page */
|
|
nfs_wb_folio_cancel(inode, folio);
|
|
folio_wait_private_2(folio); /* [DEPRECATED] */
|
|
trace_nfs_invalidate_folio(inode, folio_pos(folio) + offset, length);
|
|
}
|
|
|
|
/*
|
|
* Attempt to release the private state associated with a folio
|
|
* - Called if either private or fscache flags are set on the folio
|
|
* - Caller holds folio lock
|
|
* - Return true (may release folio) or false (may not)
|
|
*/
|
|
static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
|
|
{
|
|
dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
|
|
|
|
/* If the private flag is set, then the folio is not freeable */
|
|
if (folio_test_private(folio)) {
|
|
if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
|
|
current_is_kswapd())
|
|
return false;
|
|
if (nfs_wb_folio(folio->mapping->host, folio) < 0)
|
|
return false;
|
|
}
|
|
return nfs_fscache_release_folio(folio, gfp);
|
|
}
|
|
|
|
static void nfs_check_dirty_writeback(struct folio *folio,
|
|
bool *dirty, bool *writeback)
|
|
{
|
|
struct nfs_inode *nfsi;
|
|
struct address_space *mapping = folio->mapping;
|
|
|
|
/*
|
|
* Check if an unstable folio is currently being committed and
|
|
* if so, have the VM treat it as if the folio is under writeback
|
|
* so it will not block due to folios that will shortly be freeable.
|
|
*/
|
|
nfsi = NFS_I(mapping->host);
|
|
if (atomic_read(&nfsi->commit_info.rpcs_out)) {
|
|
*writeback = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the private flag is set, then the folio is not freeable
|
|
* and as the inode is not being committed, it's not going to
|
|
* be cleaned in the near future so treat it as dirty
|
|
*/
|
|
if (folio_test_private(folio))
|
|
*dirty = true;
|
|
}
|
|
|
|
/*
|
|
* Attempt to clear the private state associated with a page when an error
|
|
* occurs that requires the cached contents of an inode to be written back or
|
|
* destroyed
|
|
* - Called if either PG_private or fscache is set on the page
|
|
* - Caller holds page lock
|
|
* - Return 0 if successful, -error otherwise
|
|
*/
|
|
static int nfs_launder_folio(struct folio *folio)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
int ret;
|
|
|
|
dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
|
|
inode->i_ino, folio_pos(folio));
|
|
|
|
folio_wait_private_2(folio); /* [DEPRECATED] */
|
|
ret = nfs_wb_folio(inode, folio);
|
|
trace_nfs_launder_folio_done(inode, folio_pos(folio),
|
|
folio_size(folio), ret);
|
|
return ret;
|
|
}
|
|
|
|
static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
unsigned long blocks;
|
|
long long isize;
|
|
int ret;
|
|
struct inode *inode = file_inode(file);
|
|
struct rpc_clnt *clnt = NFS_CLIENT(inode);
|
|
struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
blocks = inode->i_blocks;
|
|
isize = inode->i_size;
|
|
spin_unlock(&inode->i_lock);
|
|
if (blocks*512 < isize) {
|
|
pr_warn("swap activate: swapfile has holes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = rpc_clnt_swap_activate(clnt);
|
|
if (ret)
|
|
return ret;
|
|
ret = add_swap_extent(sis, 0, sis->max, 0);
|
|
if (ret < 0) {
|
|
rpc_clnt_swap_deactivate(clnt);
|
|
return ret;
|
|
}
|
|
|
|
*span = sis->pages;
|
|
|
|
if (cl->rpc_ops->enable_swap)
|
|
cl->rpc_ops->enable_swap(inode);
|
|
|
|
sis->flags |= SWP_FS_OPS;
|
|
return ret;
|
|
}
|
|
|
|
static void nfs_swap_deactivate(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct rpc_clnt *clnt = NFS_CLIENT(inode);
|
|
struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
|
|
|
|
rpc_clnt_swap_deactivate(clnt);
|
|
if (cl->rpc_ops->disable_swap)
|
|
cl->rpc_ops->disable_swap(file_inode(file));
|
|
}
|
|
|
|
const struct address_space_operations nfs_file_aops = {
|
|
.read_folio = nfs_read_folio,
|
|
.readahead = nfs_readahead,
|
|
.dirty_folio = filemap_dirty_folio,
|
|
.writepages = nfs_writepages,
|
|
.write_begin = nfs_write_begin,
|
|
.write_end = nfs_write_end,
|
|
.invalidate_folio = nfs_invalidate_folio,
|
|
.release_folio = nfs_release_folio,
|
|
.migrate_folio = nfs_migrate_folio,
|
|
.launder_folio = nfs_launder_folio,
|
|
.is_dirty_writeback = nfs_check_dirty_writeback,
|
|
.error_remove_folio = generic_error_remove_folio,
|
|
.swap_activate = nfs_swap_activate,
|
|
.swap_deactivate = nfs_swap_deactivate,
|
|
.swap_rw = nfs_swap_rw,
|
|
};
|
|
|
|
/*
|
|
* Notification that a PTE pointing to an NFS page is about to be made
|
|
* writable, implying that someone is about to modify the page through a
|
|
* shared-writable mapping
|
|
*/
|
|
static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct file *filp = vmf->vma->vm_file;
|
|
struct inode *inode = file_inode(filp);
|
|
unsigned pagelen;
|
|
vm_fault_t ret = VM_FAULT_NOPAGE;
|
|
struct address_space *mapping;
|
|
struct folio *folio = page_folio(vmf->page);
|
|
|
|
dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
|
|
filp, filp->f_mapping->host->i_ino,
|
|
(long long)folio_pos(folio));
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
/* make sure the cache has finished storing the page */
|
|
if (folio_test_private_2(folio) && /* [DEPRECATED] */
|
|
folio_wait_private_2_killable(folio) < 0) {
|
|
ret = VM_FAULT_RETRY;
|
|
goto out;
|
|
}
|
|
|
|
wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
|
|
nfs_wait_bit_killable,
|
|
TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
|
|
|
|
folio_lock(folio);
|
|
mapping = folio->mapping;
|
|
if (mapping != inode->i_mapping)
|
|
goto out_unlock;
|
|
|
|
folio_wait_writeback(folio);
|
|
|
|
pagelen = nfs_folio_length(folio);
|
|
if (pagelen == 0)
|
|
goto out_unlock;
|
|
|
|
ret = VM_FAULT_LOCKED;
|
|
if (nfs_flush_incompatible(filp, folio) == 0 &&
|
|
nfs_update_folio(filp, folio, 0, pagelen) == 0)
|
|
goto out;
|
|
|
|
ret = VM_FAULT_SIGBUS;
|
|
out_unlock:
|
|
folio_unlock(folio);
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = nfs_vm_page_mkwrite,
|
|
};
|
|
|
|
ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
unsigned int mntflags = NFS_SERVER(inode)->flags;
|
|
ssize_t result, written;
|
|
errseq_t since;
|
|
int error;
|
|
|
|
result = nfs_key_timeout_notify(file, inode);
|
|
if (result)
|
|
return result;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT)
|
|
return nfs_file_direct_write(iocb, from, false);
|
|
|
|
dprintk("NFS: write(%pD2, %zu@%Ld)\n",
|
|
file, iov_iter_count(from), (long long) iocb->ki_pos);
|
|
|
|
if (IS_SWAPFILE(inode))
|
|
goto out_swapfile;
|
|
/*
|
|
* O_APPEND implies that we must revalidate the file length.
|
|
*/
|
|
if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
|
|
result = nfs_revalidate_file_size(inode, file);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
nfs_clear_invalid_mapping(file->f_mapping);
|
|
|
|
since = filemap_sample_wb_err(file->f_mapping);
|
|
nfs_start_io_write(inode);
|
|
result = generic_write_checks(iocb, from);
|
|
if (result > 0)
|
|
result = generic_perform_write(iocb, from);
|
|
nfs_end_io_write(inode);
|
|
if (result <= 0)
|
|
goto out;
|
|
|
|
written = result;
|
|
nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
|
|
|
|
if (mntflags & NFS_MOUNT_WRITE_EAGER) {
|
|
result = filemap_fdatawrite_range(file->f_mapping,
|
|
iocb->ki_pos - written,
|
|
iocb->ki_pos - 1);
|
|
if (result < 0)
|
|
goto out;
|
|
}
|
|
if (mntflags & NFS_MOUNT_WRITE_WAIT) {
|
|
filemap_fdatawait_range(file->f_mapping,
|
|
iocb->ki_pos - written,
|
|
iocb->ki_pos - 1);
|
|
}
|
|
result = generic_write_sync(iocb, written);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
out:
|
|
/* Return error values */
|
|
error = filemap_check_wb_err(file->f_mapping, since);
|
|
switch (error) {
|
|
default:
|
|
break;
|
|
case -EDQUOT:
|
|
case -EFBIG:
|
|
case -ENOSPC:
|
|
nfs_wb_all(inode);
|
|
error = file_check_and_advance_wb_err(file);
|
|
if (error < 0)
|
|
result = error;
|
|
}
|
|
return result;
|
|
|
|
out_swapfile:
|
|
printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
|
|
return -ETXTBSY;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_write);
|
|
|
|
static int
|
|
do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status = 0;
|
|
unsigned int saved_type = fl->c.flc_type;
|
|
|
|
/* Try local locking first */
|
|
posix_test_lock(filp, fl);
|
|
if (fl->c.flc_type != F_UNLCK) {
|
|
/* found a conflict */
|
|
goto out;
|
|
}
|
|
fl->c.flc_type = saved_type;
|
|
|
|
if (nfs_have_read_or_write_delegation(inode))
|
|
goto out_noconflict;
|
|
|
|
if (is_local)
|
|
goto out_noconflict;
|
|
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
out:
|
|
return status;
|
|
out_noconflict:
|
|
fl->c.flc_type = F_UNLCK;
|
|
goto out;
|
|
}
|
|
|
|
static int
|
|
do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
struct nfs_lock_context *l_ctx;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
nfs_wb_all(inode);
|
|
|
|
l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
|
|
if (!IS_ERR(l_ctx)) {
|
|
status = nfs_iocounter_wait(l_ctx);
|
|
nfs_put_lock_context(l_ctx);
|
|
/* NOTE: special case
|
|
* If we're signalled while cleaning up locks on process exit, we
|
|
* still need to complete the unlock.
|
|
*/
|
|
if (status < 0 && !(fl->c.flc_flags & FL_CLOSE))
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = locks_lock_file_wait(filp, fl);
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
status = nfs_sync_mapping(filp->f_mapping);
|
|
if (status != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = locks_lock_file_wait(filp, fl);
|
|
if (status < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Invalidate cache to prevent missing any changes. If
|
|
* the file is mapped, clear the page cache as well so
|
|
* those mappings will be loaded.
|
|
*
|
|
* This makes locking act as a cache coherency point.
|
|
*/
|
|
nfs_sync_mapping(filp->f_mapping);
|
|
if (!nfs_have_read_or_write_delegation(inode)) {
|
|
nfs_zap_caches(inode);
|
|
if (mapping_mapped(filp->f_mapping))
|
|
nfs_revalidate_mapping(inode, filp->f_mapping);
|
|
}
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int ret = -ENOLCK;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
|
|
filp, fl->c.flc_type, fl->c.flc_flags,
|
|
(long long)fl->fl_start, (long long)fl->fl_end);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSLOCK);
|
|
|
|
if (fl->c.flc_flags & FL_RECLAIM)
|
|
return -ENOGRACE;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
|
|
is_local = 1;
|
|
|
|
if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
|
|
ret = NFS_PROTO(inode)->lock_check_bounds(fl);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
}
|
|
|
|
if (IS_GETLK(cmd))
|
|
ret = do_getlk(filp, cmd, fl, is_local);
|
|
else if (lock_is_unlock(fl))
|
|
ret = do_unlk(filp, cmd, fl, is_local);
|
|
else
|
|
ret = do_setlk(filp, cmd, fl, is_local);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_lock);
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
|
|
filp, fl->c.flc_type, fl->c.flc_flags);
|
|
|
|
if (!(fl->c.flc_flags & FL_FLOCK))
|
|
return -ENOLCK;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
|
|
is_local = 1;
|
|
|
|
/* We're simulating flock() locks using posix locks on the server */
|
|
if (lock_is_unlock(fl))
|
|
return do_unlk(filp, cmd, fl, is_local);
|
|
return do_setlk(filp, cmd, fl, is_local);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_flock);
|
|
|
|
const struct file_operations nfs_file_operations = {
|
|
.llseek = nfs_file_llseek,
|
|
.read_iter = nfs_file_read,
|
|
.write_iter = nfs_file_write,
|
|
.mmap = nfs_file_mmap,
|
|
.open = nfs_file_open,
|
|
.flush = nfs_file_flush,
|
|
.release = nfs_file_release,
|
|
.fsync = nfs_file_fsync,
|
|
.lock = nfs_lock,
|
|
.flock = nfs_flock,
|
|
.splice_read = nfs_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.check_flags = nfs_check_flags,
|
|
.setlease = simple_nosetlease,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nfs_file_operations);
|