mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-17 07:54:54 +08:00
b5c616a754
The documentation says that an SDVO command takes a maximum of 15us to be processed by the device, and that it is sufficient to read the status byte 3 times (whilst the command is still in the PENDING state) for the driver to be confident that sufficient time has elapsed. We err on the safe side and try 5 times before giving up. The only question that remains: was the old behaviour derived by experiments with real hardware? A look into the murky history of UMS, implies that the behaviour was accidental and the current retry mechanism was solely designed to catch the status byte indicating PENDING with no reference to hardware behaviour. (commit ac9181c014638dbeb334b40b4029d0ccb2b7a0fc in xf86-video-intel) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> |
||
---|---|---|
.. | ||
i2c | ||
i810 | ||
i830 | ||
i915 | ||
mga | ||
nouveau | ||
r128 | ||
radeon | ||
savage | ||
sis | ||
tdfx | ||
ttm | ||
via | ||
vmwgfx | ||
ati_pcigart.c | ||
drm_agpsupport.c | ||
drm_auth.c | ||
drm_buffer.c | ||
drm_bufs.c | ||
drm_cache.c | ||
drm_context.c | ||
drm_crtc_helper.c | ||
drm_crtc.c | ||
drm_debugfs.c | ||
drm_dma.c | ||
drm_dp_i2c_helper.c | ||
drm_drv.c | ||
drm_edid_modes.h | ||
drm_edid.c | ||
drm_encoder_slave.c | ||
drm_fb_helper.c | ||
drm_fops.c | ||
drm_gem.c | ||
drm_global.c | ||
drm_hashtab.c | ||
drm_info.c | ||
drm_ioc32.c | ||
drm_ioctl.c | ||
drm_irq.c | ||
drm_lock.c | ||
drm_memory.c | ||
drm_mm.c | ||
drm_modes.c | ||
drm_pci.c | ||
drm_platform.c | ||
drm_proc.c | ||
drm_scatter.c | ||
drm_sman.c | ||
drm_stub.c | ||
drm_sysfs.c | ||
drm_trace_points.c | ||
drm_trace.h | ||
drm_vm.c | ||
Kconfig | ||
Makefile | ||
README.drm |
************************************************************ * For the very latest on DRI development, please see: * * http://dri.freedesktop.org/ * ************************************************************ The Direct Rendering Manager (drm) is a device-independent kernel-level device driver that provides support for the XFree86 Direct Rendering Infrastructure (DRI). The DRM supports the Direct Rendering Infrastructure (DRI) in four major ways: 1. The DRM provides synchronized access to the graphics hardware via the use of an optimized two-tiered lock. 2. The DRM enforces the DRI security policy for access to the graphics hardware by only allowing authenticated X11 clients access to restricted regions of memory. 3. The DRM provides a generic DMA engine, complete with multiple queues and the ability to detect the need for an OpenGL context switch. 4. The DRM is extensible via the use of small device-specific modules that rely extensively on the API exported by the DRM module. Documentation on the DRI is available from: http://dri.freedesktop.org/wiki/Documentation http://sourceforge.net/project/showfiles.php?group_id=387 http://dri.sourceforge.net/doc/ For specific information about kernel-level support, see: The Direct Rendering Manager, Kernel Support for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/drm_low_level.html Hardware Locking for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/hardware_locking_low_level.html A Security Analysis of the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/security_low_level.html