mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-24 06:44:23 +08:00
ec63b84d46
Add a pointer to the ordered_extent to the existing union in struct btrfs_bio, so all code dealing with data write bios can just use a pointer dereference to retrieve the ordered_extent instead of doing multiple rbtree lookups per I/O. The reference to this ordered_extent is dropped at end I/O time, which implies that an extra one must be acquired when the bio is split. This also requires moving the btrfs_extract_ordered_extent call into btrfs_split_bio so that the invariant of always having a valid ordered_extent reference for the btrfs_bio is kept. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
873 lines
24 KiB
C
873 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
* Copyright (C) 2022 Christoph Hellwig.
|
|
*/
|
|
|
|
#include <linux/bio.h>
|
|
#include "bio.h"
|
|
#include "ctree.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "async-thread.h"
|
|
#include "check-integrity.h"
|
|
#include "dev-replace.h"
|
|
#include "rcu-string.h"
|
|
#include "zoned.h"
|
|
#include "file-item.h"
|
|
|
|
static struct bio_set btrfs_bioset;
|
|
static struct bio_set btrfs_clone_bioset;
|
|
static struct bio_set btrfs_repair_bioset;
|
|
static mempool_t btrfs_failed_bio_pool;
|
|
|
|
struct btrfs_failed_bio {
|
|
struct btrfs_bio *bbio;
|
|
int num_copies;
|
|
atomic_t repair_count;
|
|
};
|
|
|
|
/* Is this a data path I/O that needs storage layer checksum and repair? */
|
|
static inline bool is_data_bbio(struct btrfs_bio *bbio)
|
|
{
|
|
return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
|
|
}
|
|
|
|
static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
|
|
{
|
|
return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
|
|
}
|
|
|
|
/*
|
|
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
|
|
* is already initialized by the block layer.
|
|
*/
|
|
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
|
|
btrfs_bio_end_io_t end_io, void *private)
|
|
{
|
|
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
|
|
bbio->fs_info = fs_info;
|
|
bbio->end_io = end_io;
|
|
bbio->private = private;
|
|
atomic_set(&bbio->pending_ios, 1);
|
|
}
|
|
|
|
/*
|
|
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
|
|
* btrfs, and is used for all I/O submitted through btrfs_submit_bio.
|
|
*
|
|
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
|
|
* a mempool.
|
|
*/
|
|
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
|
|
struct btrfs_fs_info *fs_info,
|
|
btrfs_bio_end_io_t end_io, void *private)
|
|
{
|
|
struct btrfs_bio *bbio;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
|
|
bbio = btrfs_bio(bio);
|
|
btrfs_bio_init(bbio, fs_info, end_io, private);
|
|
return bbio;
|
|
}
|
|
|
|
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_bio *orig_bbio,
|
|
u64 map_length, bool use_append)
|
|
{
|
|
struct btrfs_bio *bbio;
|
|
struct bio *bio;
|
|
|
|
if (use_append) {
|
|
unsigned int nr_segs;
|
|
|
|
bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
|
|
&btrfs_clone_bioset, map_length);
|
|
} else {
|
|
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
|
|
GFP_NOFS, &btrfs_clone_bioset);
|
|
}
|
|
bbio = btrfs_bio(bio);
|
|
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
|
|
bbio->inode = orig_bbio->inode;
|
|
bbio->file_offset = orig_bbio->file_offset;
|
|
orig_bbio->file_offset += map_length;
|
|
if (bbio_has_ordered_extent(bbio)) {
|
|
refcount_inc(&orig_bbio->ordered->refs);
|
|
bbio->ordered = orig_bbio->ordered;
|
|
}
|
|
atomic_inc(&orig_bbio->pending_ios);
|
|
return bbio;
|
|
}
|
|
|
|
/* Free a bio that was never submitted to the underlying device. */
|
|
static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio_has_ordered_extent(bbio))
|
|
btrfs_put_ordered_extent(bbio->ordered);
|
|
bio_put(&bbio->bio);
|
|
}
|
|
|
|
static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio_has_ordered_extent(bbio)) {
|
|
struct btrfs_ordered_extent *ordered = bbio->ordered;
|
|
|
|
bbio->end_io(bbio);
|
|
btrfs_put_ordered_extent(ordered);
|
|
} else {
|
|
bbio->end_io(bbio);
|
|
}
|
|
}
|
|
|
|
void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
|
|
{
|
|
bbio->bio.bi_status = status;
|
|
__btrfs_bio_end_io(bbio);
|
|
}
|
|
|
|
static void btrfs_orig_write_end_io(struct bio *bio);
|
|
|
|
static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
|
|
struct btrfs_bio *orig_bbio)
|
|
{
|
|
/*
|
|
* For writes we tolerate nr_mirrors - 1 write failures, so we can't
|
|
* just blindly propagate a write failure here. Instead increment the
|
|
* error count in the original I/O context so that it is guaranteed to
|
|
* be larger than the error tolerance.
|
|
*/
|
|
if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
|
|
struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
|
|
struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
|
|
|
|
atomic_add(orig_bioc->max_errors, &orig_bioc->error);
|
|
} else {
|
|
orig_bbio->bio.bi_status = bbio->bio.bi_status;
|
|
}
|
|
}
|
|
|
|
static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
|
|
struct btrfs_bio *orig_bbio = bbio->private;
|
|
|
|
if (bbio->bio.bi_status)
|
|
btrfs_bbio_propagate_error(bbio, orig_bbio);
|
|
btrfs_cleanup_bio(bbio);
|
|
bbio = orig_bbio;
|
|
}
|
|
|
|
if (atomic_dec_and_test(&bbio->pending_ios))
|
|
__btrfs_bio_end_io(bbio);
|
|
}
|
|
|
|
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
|
|
{
|
|
if (cur_mirror == fbio->num_copies)
|
|
return cur_mirror + 1 - fbio->num_copies;
|
|
return cur_mirror + 1;
|
|
}
|
|
|
|
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
|
|
{
|
|
if (cur_mirror == 1)
|
|
return fbio->num_copies;
|
|
return cur_mirror - 1;
|
|
}
|
|
|
|
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
|
|
{
|
|
if (atomic_dec_and_test(&fbio->repair_count)) {
|
|
btrfs_orig_bbio_end_io(fbio->bbio);
|
|
mempool_free(fbio, &btrfs_failed_bio_pool);
|
|
}
|
|
}
|
|
|
|
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
|
|
struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_failed_bio *fbio = repair_bbio->private;
|
|
struct btrfs_inode *inode = repair_bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
|
|
int mirror = repair_bbio->mirror_num;
|
|
|
|
if (repair_bbio->bio.bi_status ||
|
|
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
|
|
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
|
|
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
|
|
|
|
mirror = next_repair_mirror(fbio, mirror);
|
|
if (mirror == fbio->bbio->mirror_num) {
|
|
btrfs_debug(fs_info, "no mirror left");
|
|
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
|
|
goto done;
|
|
}
|
|
|
|
btrfs_submit_bio(repair_bbio, mirror);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
mirror = prev_repair_mirror(fbio, mirror);
|
|
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
|
|
repair_bbio->file_offset, fs_info->sectorsize,
|
|
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
|
|
bv->bv_page, bv->bv_offset, mirror);
|
|
} while (mirror != fbio->bbio->mirror_num);
|
|
|
|
done:
|
|
btrfs_repair_done(fbio);
|
|
bio_put(&repair_bbio->bio);
|
|
}
|
|
|
|
/*
|
|
* Try to kick off a repair read to the next available mirror for a bad sector.
|
|
*
|
|
* This primarily tries to recover good data to serve the actual read request,
|
|
* but also tries to write the good data back to the bad mirror(s) when a
|
|
* read succeeded to restore the redundancy.
|
|
*/
|
|
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
|
|
u32 bio_offset,
|
|
struct bio_vec *bv,
|
|
struct btrfs_failed_bio *fbio)
|
|
{
|
|
struct btrfs_inode *inode = failed_bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
|
|
struct btrfs_bio *repair_bbio;
|
|
struct bio *repair_bio;
|
|
int num_copies;
|
|
int mirror;
|
|
|
|
btrfs_debug(fs_info, "repair read error: read error at %llu",
|
|
failed_bbio->file_offset + bio_offset);
|
|
|
|
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
|
|
if (num_copies == 1) {
|
|
btrfs_debug(fs_info, "no copy to repair from");
|
|
failed_bbio->bio.bi_status = BLK_STS_IOERR;
|
|
return fbio;
|
|
}
|
|
|
|
if (!fbio) {
|
|
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
|
|
fbio->bbio = failed_bbio;
|
|
fbio->num_copies = num_copies;
|
|
atomic_set(&fbio->repair_count, 1);
|
|
}
|
|
|
|
atomic_inc(&fbio->repair_count);
|
|
|
|
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
|
|
&btrfs_repair_bioset);
|
|
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
|
|
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
|
|
|
|
repair_bbio = btrfs_bio(repair_bio);
|
|
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
|
|
repair_bbio->inode = failed_bbio->inode;
|
|
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
|
|
|
|
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
|
|
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
|
|
btrfs_submit_bio(repair_bbio, mirror);
|
|
return fbio;
|
|
}
|
|
|
|
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
struct bvec_iter *iter = &bbio->saved_iter;
|
|
blk_status_t status = bbio->bio.bi_status;
|
|
struct btrfs_failed_bio *fbio = NULL;
|
|
u32 offset = 0;
|
|
|
|
/* Read-repair requires the inode field to be set by the submitter. */
|
|
ASSERT(inode);
|
|
|
|
/*
|
|
* Hand off repair bios to the repair code as there is no upper level
|
|
* submitter for them.
|
|
*/
|
|
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
|
|
btrfs_end_repair_bio(bbio, dev);
|
|
return;
|
|
}
|
|
|
|
/* Clear the I/O error. A failed repair will reset it. */
|
|
bbio->bio.bi_status = BLK_STS_OK;
|
|
|
|
while (iter->bi_size) {
|
|
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
|
|
|
|
bv.bv_len = min(bv.bv_len, sectorsize);
|
|
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
|
|
fbio = repair_one_sector(bbio, offset, &bv, fbio);
|
|
|
|
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
|
|
offset += sectorsize;
|
|
}
|
|
|
|
if (bbio->csum != bbio->csum_inline)
|
|
kfree(bbio->csum);
|
|
|
|
if (fbio)
|
|
btrfs_repair_done(fbio);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
|
|
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
|
|
{
|
|
if (!dev || !dev->bdev)
|
|
return;
|
|
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
|
|
return;
|
|
|
|
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
else if (!(bio->bi_opf & REQ_RAHEAD))
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
|
|
if (bio->bi_opf & REQ_PREFLUSH)
|
|
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
}
|
|
|
|
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
|
|
struct bio *bio)
|
|
{
|
|
if (bio->bi_opf & REQ_META)
|
|
return fs_info->endio_meta_workers;
|
|
return fs_info->endio_workers;
|
|
}
|
|
|
|
static void btrfs_end_bio_work(struct work_struct *work)
|
|
{
|
|
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
|
|
|
|
/* Metadata reads are checked and repaired by the submitter. */
|
|
if (is_data_bbio(bbio))
|
|
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
|
|
static void btrfs_simple_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
struct btrfs_device *dev = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
|
|
btrfs_bio_counter_dec(fs_info);
|
|
|
|
if (bio->bi_status)
|
|
btrfs_log_dev_io_error(bio, dev);
|
|
|
|
if (bio_op(bio) == REQ_OP_READ) {
|
|
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
|
|
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
|
|
} else {
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
|
|
btrfs_record_physical_zoned(bbio);
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
}
|
|
}
|
|
|
|
static void btrfs_raid56_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_context *bioc = bio->bi_private;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
|
|
btrfs_bio_counter_dec(bioc->fs_info);
|
|
bbio->mirror_num = bioc->mirror_num;
|
|
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
|
|
btrfs_check_read_bio(bbio, NULL);
|
|
else
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
|
|
btrfs_put_bioc(bioc);
|
|
}
|
|
|
|
static void btrfs_orig_write_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_stripe *stripe = bio->bi_private;
|
|
struct btrfs_io_context *bioc = stripe->bioc;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
|
|
btrfs_bio_counter_dec(bioc->fs_info);
|
|
|
|
if (bio->bi_status) {
|
|
atomic_inc(&bioc->error);
|
|
btrfs_log_dev_io_error(bio, stripe->dev);
|
|
}
|
|
|
|
/*
|
|
* Only send an error to the higher layers if it is beyond the tolerance
|
|
* threshold.
|
|
*/
|
|
if (atomic_read(&bioc->error) > bioc->max_errors)
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
else
|
|
bio->bi_status = BLK_STS_OK;
|
|
|
|
btrfs_orig_bbio_end_io(bbio);
|
|
btrfs_put_bioc(bioc);
|
|
}
|
|
|
|
static void btrfs_clone_write_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_io_stripe *stripe = bio->bi_private;
|
|
|
|
if (bio->bi_status) {
|
|
atomic_inc(&stripe->bioc->error);
|
|
btrfs_log_dev_io_error(bio, stripe->dev);
|
|
}
|
|
|
|
/* Pass on control to the original bio this one was cloned from */
|
|
bio_endio(stripe->bioc->orig_bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
|
|
{
|
|
if (!dev || !dev->bdev ||
|
|
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
|
|
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
|
|
bio_set_dev(bio, dev->bdev);
|
|
|
|
/*
|
|
* For zone append writing, bi_sector must point the beginning of the
|
|
* zone
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
|
|
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
|
|
|
|
ASSERT(btrfs_dev_is_sequential(dev, physical));
|
|
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
|
|
}
|
|
btrfs_debug_in_rcu(dev->fs_info,
|
|
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
|
|
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
|
|
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
|
|
dev->devid, bio->bi_iter.bi_size);
|
|
|
|
btrfsic_check_bio(bio);
|
|
|
|
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
|
|
blkcg_punt_bio_submit(bio);
|
|
else
|
|
submit_bio(bio);
|
|
}
|
|
|
|
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
|
|
{
|
|
struct bio *orig_bio = bioc->orig_bio, *bio;
|
|
|
|
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
|
|
|
|
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
|
|
if (dev_nr == bioc->num_stripes - 1) {
|
|
bio = orig_bio;
|
|
bio->bi_end_io = btrfs_orig_write_end_io;
|
|
} else {
|
|
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
|
|
bio_inc_remaining(orig_bio);
|
|
bio->bi_end_io = btrfs_clone_write_end_io;
|
|
}
|
|
|
|
bio->bi_private = &bioc->stripes[dev_nr];
|
|
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
|
|
bioc->stripes[dev_nr].bioc = bioc;
|
|
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
|
|
}
|
|
|
|
static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
|
|
struct btrfs_io_stripe *smap, int mirror_num)
|
|
{
|
|
if (!bioc) {
|
|
/* Single mirror read/write fast path. */
|
|
btrfs_bio(bio)->mirror_num = mirror_num;
|
|
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
|
|
if (bio_op(bio) != REQ_OP_READ)
|
|
btrfs_bio(bio)->orig_physical = smap->physical;
|
|
bio->bi_private = smap->dev;
|
|
bio->bi_end_io = btrfs_simple_end_io;
|
|
btrfs_submit_dev_bio(smap->dev, bio);
|
|
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
|
|
/* Parity RAID write or read recovery. */
|
|
bio->bi_private = bioc;
|
|
bio->bi_end_io = btrfs_raid56_end_io;
|
|
if (bio_op(bio) == REQ_OP_READ)
|
|
raid56_parity_recover(bio, bioc, mirror_num);
|
|
else
|
|
raid56_parity_write(bio, bioc);
|
|
} else {
|
|
/* Write to multiple mirrors. */
|
|
int total_devs = bioc->num_stripes;
|
|
|
|
bioc->orig_bio = bio;
|
|
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
|
|
btrfs_submit_mirrored_bio(bioc, dev_nr);
|
|
}
|
|
}
|
|
|
|
static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
|
|
{
|
|
if (bbio->bio.bi_opf & REQ_META)
|
|
return btree_csum_one_bio(bbio);
|
|
return btrfs_csum_one_bio(bbio);
|
|
}
|
|
|
|
/*
|
|
* Async submit bios are used to offload expensive checksumming onto the worker
|
|
* threads.
|
|
*/
|
|
struct async_submit_bio {
|
|
struct btrfs_bio *bbio;
|
|
struct btrfs_io_context *bioc;
|
|
struct btrfs_io_stripe smap;
|
|
int mirror_num;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the btree.
|
|
*/
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async =
|
|
container_of(work, struct async_submit_bio, work);
|
|
blk_status_t ret;
|
|
|
|
ret = btrfs_bio_csum(async->bbio);
|
|
if (ret)
|
|
async->bbio->bio.bi_status = ret;
|
|
}
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the tree.
|
|
*/
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async =
|
|
container_of(work, struct async_submit_bio, work);
|
|
struct bio *bio = &async->bbio->bio;
|
|
|
|
/* If an error occurred we just want to clean up the bio and move on. */
|
|
if (bio->bi_status) {
|
|
btrfs_orig_bbio_end_io(async->bbio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All of the bios that pass through here are from async helpers.
|
|
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
|
|
* context. This changes nothing when cgroups aren't in use.
|
|
*/
|
|
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
|
|
__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
kfree(container_of(work, struct async_submit_bio, work));
|
|
}
|
|
|
|
static bool should_async_write(struct btrfs_bio *bbio)
|
|
{
|
|
/* Submit synchronously if the checksum implementation is fast. */
|
|
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
|
|
return false;
|
|
|
|
/*
|
|
* Try to defer the submission to a workqueue to parallelize the
|
|
* checksum calculation unless the I/O is issued synchronously.
|
|
*/
|
|
if (op_is_sync(bbio->bio.bi_opf))
|
|
return false;
|
|
|
|
/* Zoned devices require I/O to be submitted in order. */
|
|
if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Submit bio to an async queue.
|
|
*
|
|
* Return true if the work has been succesfuly submitted, else false.
|
|
*/
|
|
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
|
|
struct btrfs_io_context *bioc,
|
|
struct btrfs_io_stripe *smap, int mirror_num)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return false;
|
|
|
|
async->bbio = bbio;
|
|
async->bioc = bioc;
|
|
async->smap = *smap;
|
|
async->mirror_num = mirror_num;
|
|
|
|
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
|
|
run_one_async_free);
|
|
btrfs_queue_work(fs_info->workers, &async->work);
|
|
return true;
|
|
}
|
|
|
|
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
|
|
{
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
struct btrfs_bio *orig_bbio = bbio;
|
|
struct bio *bio = &bbio->bio;
|
|
u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 length = bio->bi_iter.bi_size;
|
|
u64 map_length = length;
|
|
bool use_append = btrfs_use_zone_append(bbio);
|
|
struct btrfs_io_context *bioc = NULL;
|
|
struct btrfs_io_stripe smap;
|
|
blk_status_t ret;
|
|
int error;
|
|
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
|
|
&bioc, &smap, &mirror_num, 1);
|
|
if (error) {
|
|
ret = errno_to_blk_status(error);
|
|
goto fail;
|
|
}
|
|
|
|
map_length = min(map_length, length);
|
|
if (use_append)
|
|
map_length = min(map_length, fs_info->max_zone_append_size);
|
|
|
|
if (map_length < length) {
|
|
bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
|
|
bio = &bbio->bio;
|
|
}
|
|
|
|
/*
|
|
* Save the iter for the end_io handler and preload the checksums for
|
|
* data reads.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
|
|
bbio->saved_iter = bio->bi_iter;
|
|
ret = btrfs_lookup_bio_sums(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
}
|
|
|
|
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
|
|
if (use_append) {
|
|
bio->bi_opf &= ~REQ_OP_WRITE;
|
|
bio->bi_opf |= REQ_OP_ZONE_APPEND;
|
|
}
|
|
|
|
/*
|
|
* Csum items for reloc roots have already been cloned at this
|
|
* point, so they are handled as part of the no-checksum case.
|
|
*/
|
|
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
|
|
!test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
|
|
!btrfs_is_data_reloc_root(inode->root)) {
|
|
if (should_async_write(bbio) &&
|
|
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
|
|
goto done;
|
|
|
|
ret = btrfs_bio_csum(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
} else if (use_append) {
|
|
ret = btrfs_alloc_dummy_sum(bbio);
|
|
if (ret)
|
|
goto fail_put_bio;
|
|
}
|
|
}
|
|
|
|
__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
|
|
done:
|
|
return map_length == length;
|
|
|
|
fail_put_bio:
|
|
if (map_length < length)
|
|
btrfs_cleanup_bio(bbio);
|
|
fail:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
btrfs_bio_end_io(orig_bbio, ret);
|
|
/* Do not submit another chunk */
|
|
return true;
|
|
}
|
|
|
|
void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
|
|
{
|
|
/* If bbio->inode is not populated, its file_offset must be 0. */
|
|
ASSERT(bbio->inode || bbio->file_offset == 0);
|
|
|
|
while (!btrfs_submit_chunk(bbio, mirror_num))
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Submit a repair write.
|
|
*
|
|
* This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
|
|
* RAID setup. Here we only want to write the one bad copy, so we do the
|
|
* mapping ourselves and submit the bio directly.
|
|
*
|
|
* The I/O is issued synchronously to block the repair read completion from
|
|
* freeing the bio.
|
|
*/
|
|
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
|
|
u64 length, u64 logical, struct page *page,
|
|
unsigned int pg_offset, int mirror_num)
|
|
{
|
|
struct btrfs_io_stripe smap = { 0 };
|
|
struct bio_vec bvec;
|
|
struct bio bio;
|
|
int ret = 0;
|
|
|
|
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
|
|
BUG_ON(!mirror_num);
|
|
|
|
if (btrfs_repair_one_zone(fs_info, logical))
|
|
return 0;
|
|
|
|
/*
|
|
* Avoid races with device replace and make sure our bioc has devices
|
|
* associated to its stripes that don't go away while we are doing the
|
|
* read repair operation.
|
|
*/
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
|
|
if (ret < 0)
|
|
goto out_counter_dec;
|
|
|
|
if (!smap.dev->bdev ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
|
|
ret = -EIO;
|
|
goto out_counter_dec;
|
|
}
|
|
|
|
bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
|
|
bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
|
|
__bio_add_page(&bio, page, length, pg_offset);
|
|
|
|
btrfsic_check_bio(&bio);
|
|
ret = submit_bio_wait(&bio);
|
|
if (ret) {
|
|
/* try to remap that extent elsewhere? */
|
|
btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
goto out_bio_uninit;
|
|
}
|
|
|
|
btrfs_info_rl_in_rcu(fs_info,
|
|
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
|
|
ino, start, btrfs_dev_name(smap.dev),
|
|
smap.physical >> SECTOR_SHIFT);
|
|
ret = 0;
|
|
|
|
out_bio_uninit:
|
|
bio_uninit(&bio);
|
|
out_counter_dec:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Submit a btrfs_bio based repair write.
|
|
*
|
|
* If @dev_replace is true, the write would be submitted to dev-replace target.
|
|
*/
|
|
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bbio->fs_info;
|
|
u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 length = bbio->bio.bi_iter.bi_size;
|
|
struct btrfs_io_stripe smap = { 0 };
|
|
int ret;
|
|
|
|
ASSERT(fs_info);
|
|
ASSERT(mirror_num > 0);
|
|
ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
|
|
ASSERT(!bbio->inode);
|
|
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
if (dev_replace) {
|
|
ASSERT(smap.dev == fs_info->dev_replace.srcdev);
|
|
smap.dev = fs_info->dev_replace.tgtdev;
|
|
}
|
|
__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
|
|
return;
|
|
|
|
fail:
|
|
btrfs_bio_counter_dec(fs_info);
|
|
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
int __init btrfs_bioset_init(void)
|
|
{
|
|
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
return -ENOMEM;
|
|
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio), 0))
|
|
goto out_free_bioset;
|
|
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
|
|
offsetof(struct btrfs_bio, bio),
|
|
BIOSET_NEED_BVECS))
|
|
goto out_free_clone_bioset;
|
|
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
|
|
sizeof(struct btrfs_failed_bio)))
|
|
goto out_free_repair_bioset;
|
|
return 0;
|
|
|
|
out_free_repair_bioset:
|
|
bioset_exit(&btrfs_repair_bioset);
|
|
out_free_clone_bioset:
|
|
bioset_exit(&btrfs_clone_bioset);
|
|
out_free_bioset:
|
|
bioset_exit(&btrfs_bioset);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void __cold btrfs_bioset_exit(void)
|
|
{
|
|
mempool_exit(&btrfs_failed_bio_pool);
|
|
bioset_exit(&btrfs_repair_bioset);
|
|
bioset_exit(&btrfs_clone_bioset);
|
|
bioset_exit(&btrfs_bioset);
|
|
}
|