linux/drivers/net/mv643xx_eth.c
Dale Farnsworth b4de9051a9 [PATCH] mv643xx_eth: Whitespace cleanup
Signed-off-by: Dale Farnsworth <dale@farnsworth.org>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2006-01-27 11:09:24 -05:00

3181 lines
91 KiB
C

/*
* drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
* Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
*
* Based on the 64360 driver from:
* Copyright (C) 2002 rabeeh@galileo.co.il
*
* Copyright (C) 2003 PMC-Sierra, Inc.,
* written by Manish Lachwani
*
* Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
*
* Copyright (C) 2004-2005 MontaVista Software, Inc.
* Dale Farnsworth <dale@farnsworth.org>
*
* Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
* <sjhill@realitydiluted.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/types.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/delay.h>
#include "mv643xx_eth.h"
/*
* The first part is the high level driver of the gigE ethernet ports.
*/
/* Constants */
#define VLAN_HLEN 4
#define FCS_LEN 4
#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
#define HW_IP_ALIGN 2 /* hw aligns IP header */
#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
#define INT_UNMASK_ALL 0x0007ffff
#define INT_UNMASK_ALL_EXT 0x0011ffff
#define INT_MASK_ALL 0x00000000
#define INT_MASK_ALL_EXT 0x00000000
#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
#else
#define MAX_DESCS_PER_SKB 1
#endif
#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
#define PHY_WAIT_MICRO_SECONDS 10
/* Static function declarations */
static int eth_port_link_is_up(unsigned int eth_port_num);
static void eth_port_uc_addr_get(struct net_device *dev,
unsigned char *MacAddr);
static void eth_port_set_multicast_list(struct net_device *);
static int mv643xx_eth_open(struct net_device *);
static int mv643xx_eth_stop(struct net_device *);
static int mv643xx_eth_change_mtu(struct net_device *, int);
static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
static void eth_port_init_mac_tables(unsigned int eth_port_num);
#ifdef MV643XX_NAPI
static int mv643xx_poll(struct net_device *dev, int *budget);
#endif
static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
static int ethernet_phy_detect(unsigned int eth_port_num);
static struct ethtool_ops mv643xx_ethtool_ops;
static char mv643xx_driver_name[] = "mv643xx_eth";
static char mv643xx_driver_version[] = "1.0";
static void __iomem *mv643xx_eth_shared_base;
/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
static inline u32 mv_read(int offset)
{
void __iomem *reg_base;
reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
return readl(reg_base + offset);
}
static inline void mv_write(int offset, u32 data)
{
void __iomem *reg_base;
reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
writel(data, reg_base + offset);
}
/*
* Changes MTU (maximum transfer unit) of the gigabit ethenret port
*
* Input : pointer to ethernet interface network device structure
* new mtu size
* Output : 0 upon success, -EINVAL upon failure
*/
static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu > 9500) || (new_mtu < 64))
return -EINVAL;
dev->mtu = new_mtu;
/*
* Stop then re-open the interface. This will allocate RX skb's with
* the new MTU.
* There is a possible danger that the open will not successed, due
* to memory is full, which might fail the open function.
*/
if (netif_running(dev)) {
mv643xx_eth_stop(dev);
if (mv643xx_eth_open(dev))
printk(KERN_ERR
"%s: Fatal error on opening device\n",
dev->name);
}
return 0;
}
/*
* mv643xx_eth_rx_task
*
* Fills / refills RX queue on a certain gigabit ethernet port
*
* Input : pointer to ethernet interface network device structure
* Output : N/A
*/
static void mv643xx_eth_rx_task(void *data)
{
struct net_device *dev = (struct net_device *)data;
struct mv643xx_private *mp = netdev_priv(dev);
struct pkt_info pkt_info;
struct sk_buff *skb;
int unaligned;
if (test_and_set_bit(0, &mp->rx_task_busy))
panic("%s: Error in test_set_bit / clear_bit", dev->name);
while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
if (!skb)
break;
mp->rx_ring_skbs++;
unaligned = (u32)skb->data & (DMA_ALIGN - 1);
if (unaligned)
skb_reserve(skb, DMA_ALIGN - unaligned);
pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
pkt_info.byte_cnt = RX_SKB_SIZE;
pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
DMA_FROM_DEVICE);
pkt_info.return_info = skb;
if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
printk(KERN_ERR
"%s: Error allocating RX Ring\n", dev->name);
break;
}
skb_reserve(skb, HW_IP_ALIGN);
}
clear_bit(0, &mp->rx_task_busy);
/*
* If RX ring is empty of SKB, set a timer to try allocating
* again in a later time .
*/
if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
/* After 100mSec */
mp->timeout.expires = jiffies + (HZ / 10);
add_timer(&mp->timeout);
mp->rx_timer_flag = 1;
}
#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
else {
/* Return interrupts */
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
INT_UNMASK_ALL);
}
#endif
}
/*
* mv643xx_eth_rx_task_timer_wrapper
*
* Timer routine to wake up RX queue filling task. This function is
* used only in case the RX queue is empty, and all alloc_skb has
* failed (due to out of memory event).
*
* Input : pointer to ethernet interface network device structure
* Output : N/A
*/
static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct mv643xx_private *mp = netdev_priv(dev);
mp->rx_timer_flag = 0;
mv643xx_eth_rx_task((void *)data);
}
/*
* mv643xx_eth_update_mac_address
*
* Update the MAC address of the port in the address table
*
* Input : pointer to ethernet interface network device structure
* Output : N/A
*/
static void mv643xx_eth_update_mac_address(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
eth_port_init_mac_tables(port_num);
memcpy(mp->port_mac_addr, dev->dev_addr, 6);
eth_port_uc_addr_set(port_num, mp->port_mac_addr);
}
/*
* mv643xx_eth_set_rx_mode
*
* Change from promiscuos to regular rx mode
*
* Input : pointer to ethernet interface network device structure
* Output : N/A
*/
static void mv643xx_eth_set_rx_mode(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
if (dev->flags & IFF_PROMISC)
mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
else
mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
eth_port_set_multicast_list(dev);
}
/*
* mv643xx_eth_set_mac_address
*
* Change the interface's mac address.
* No special hardware thing should be done because interface is always
* put in promiscuous mode.
*
* Input : pointer to ethernet interface network device structure and
* a pointer to the designated entry to be added to the cache.
* Output : zero upon success, negative upon failure
*/
static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
{
int i;
for (i = 0; i < 6; i++)
/* +2 is for the offset of the HW addr type */
dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
mv643xx_eth_update_mac_address(dev);
return 0;
}
/*
* mv643xx_eth_tx_timeout
*
* Called upon a timeout on transmitting a packet
*
* Input : pointer to ethernet interface network device structure.
* Output : N/A
*/
static void mv643xx_eth_tx_timeout(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
printk(KERN_INFO "%s: TX timeout ", dev->name);
/* Do the reset outside of interrupt context */
schedule_work(&mp->tx_timeout_task);
}
/*
* mv643xx_eth_tx_timeout_task
*
* Actual routine to reset the adapter when a timeout on Tx has occurred
*/
static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
netif_device_detach(dev);
eth_port_reset(mp->port_num);
eth_port_start(mp);
netif_device_attach(dev);
}
/*
* mv643xx_eth_free_tx_queue
*
* Input : dev - a pointer to the required interface
*
* Output : 0 if was able to release skb , nonzero otherwise
*/
static int mv643xx_eth_free_tx_queue(struct net_device *dev,
unsigned int eth_int_cause_ext)
{
struct mv643xx_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &mp->stats;
struct pkt_info pkt_info;
int released = 1;
if (!(eth_int_cause_ext & (BIT0 | BIT8)))
return released;
/* Check only queue 0 */
while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
if (pkt_info.cmd_sts & BIT0) {
printk("%s: Error in TX\n", dev->name);
stats->tx_errors++;
}
if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
dma_unmap_single(NULL, pkt_info.buf_ptr,
pkt_info.byte_cnt,
DMA_TO_DEVICE);
else
dma_unmap_page(NULL, pkt_info.buf_ptr,
pkt_info.byte_cnt,
DMA_TO_DEVICE);
if (pkt_info.return_info) {
dev_kfree_skb_irq(pkt_info.return_info);
released = 0;
}
}
return released;
}
/*
* mv643xx_eth_receive
*
* This function is forward packets that are received from the port's
* queues toward kernel core or FastRoute them to another interface.
*
* Input : dev - a pointer to the required interface
* max - maximum number to receive (0 means unlimted)
*
* Output : number of served packets
*/
#ifdef MV643XX_NAPI
static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
#else
static int mv643xx_eth_receive_queue(struct net_device *dev)
#endif
{
struct mv643xx_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &mp->stats;
unsigned int received_packets = 0;
struct sk_buff *skb;
struct pkt_info pkt_info;
#ifdef MV643XX_NAPI
while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
#else
while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
#endif
mp->rx_ring_skbs--;
received_packets++;
/* Update statistics. Note byte count includes 4 byte CRC count */
stats->rx_packets++;
stats->rx_bytes += pkt_info.byte_cnt;
skb = pkt_info.return_info;
/*
* In case received a packet without first / last bits on OR
* the error summary bit is on, the packets needs to be dropeed.
*/
if (((pkt_info.cmd_sts
& (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
(ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
|| (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
stats->rx_dropped++;
if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
ETH_RX_LAST_DESC)) !=
(ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
if (net_ratelimit())
printk(KERN_ERR
"%s: Received packet spread "
"on multiple descriptors\n",
dev->name);
}
if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
stats->rx_errors++;
dev_kfree_skb_irq(skb);
} else {
/*
* The -4 is for the CRC in the trailer of the
* received packet
*/
skb_put(skb, pkt_info.byte_cnt - 4);
skb->dev = dev;
if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum = htons(
(pkt_info.cmd_sts & 0x0007fff8) >> 3);
}
skb->protocol = eth_type_trans(skb, dev);
#ifdef MV643XX_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
}
dev->last_rx = jiffies;
}
return received_packets;
}
/*
* mv643xx_eth_int_handler
*
* Main interrupt handler for the gigbit ethernet ports
*
* Input : irq - irq number (not used)
* dev_id - a pointer to the required interface's data structure
* regs - not used
* Output : N/A
*/
static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct mv643xx_private *mp = netdev_priv(dev);
u32 eth_int_cause, eth_int_cause_ext = 0;
unsigned int port_num = mp->port_num;
/* Read interrupt cause registers */
eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
INT_UNMASK_ALL;
if (eth_int_cause & BIT1)
eth_int_cause_ext = mv_read(
MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
INT_UNMASK_ALL_EXT;
#ifdef MV643XX_NAPI
if (!(eth_int_cause & 0x0007fffd)) {
/* Dont ack the Rx interrupt */
#endif
/*
* Clear specific ethernet port intrerrupt registers by
* acknowleding relevant bits.
*/
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
~eth_int_cause);
if (eth_int_cause_ext != 0x0)
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
(port_num), ~eth_int_cause_ext);
/* UDP change : We may need this */
if ((eth_int_cause_ext & 0x0000ffff) &&
(mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
(mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
netif_wake_queue(dev);
#ifdef MV643XX_NAPI
} else {
if (netif_rx_schedule_prep(dev)) {
/* Mask all the interrupts */
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
INT_MASK_ALL);
/* wait for previous write to complete */
mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
__netif_rx_schedule(dev);
}
#else
if (eth_int_cause & (BIT2 | BIT11))
mv643xx_eth_receive_queue(dev, 0);
/*
* After forwarded received packets to upper layer, add a task
* in an interrupts enabled context that refills the RX ring
* with skb's.
*/
#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
/* Mask all interrupts on ethernet port */
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
INT_MASK_ALL);
/* wait for previous write to take effect */
mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
queue_task(&mp->rx_task, &tq_immediate);
mark_bh(IMMEDIATE_BH);
#else
mp->rx_task.func(dev);
#endif
#endif
}
/* PHY status changed */
if (eth_int_cause_ext & (BIT16 | BIT20)) {
if (eth_port_link_is_up(port_num)) {
netif_carrier_on(dev);
netif_wake_queue(dev);
/* Start TX queue */
mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
(port_num), 1);
} else {
netif_carrier_off(dev);
netif_stop_queue(dev);
}
}
/*
* If no real interrupt occured, exit.
* This can happen when using gigE interrupt coalescing mechanism.
*/
if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
return IRQ_NONE;
return IRQ_HANDLED;
}
#ifdef MV643XX_COAL
/*
* eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
*
* DESCRIPTION:
* This routine sets the RX coalescing interrupt mechanism parameter.
* This parameter is a timeout counter, that counts in 64 t_clk
* chunks ; that when timeout event occurs a maskable interrupt
* occurs.
* The parameter is calculated using the tClk of the MV-643xx chip
* , and the required delay of the interrupt in usec.
*
* INPUT:
* unsigned int eth_port_num Ethernet port number
* unsigned int t_clk t_clk of the MV-643xx chip in HZ units
* unsigned int delay Delay in usec
*
* OUTPUT:
* Interrupt coalescing mechanism value is set in MV-643xx chip.
*
* RETURN:
* The interrupt coalescing value set in the gigE port.
*
*/
static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
unsigned int t_clk, unsigned int delay)
{
unsigned int coal = ((t_clk / 1000000) * delay) / 64;
/* Set RX Coalescing mechanism */
mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
((coal & 0x3fff) << 8) |
(mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
& 0xffc000ff));
return coal;
}
#endif
/*
* eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
*
* DESCRIPTION:
* This routine sets the TX coalescing interrupt mechanism parameter.
* This parameter is a timeout counter, that counts in 64 t_clk
* chunks ; that when timeout event occurs a maskable interrupt
* occurs.
* The parameter is calculated using the t_cLK frequency of the
* MV-643xx chip and the required delay in the interrupt in uSec
*
* INPUT:
* unsigned int eth_port_num Ethernet port number
* unsigned int t_clk t_clk of the MV-643xx chip in HZ units
* unsigned int delay Delay in uSeconds
*
* OUTPUT:
* Interrupt coalescing mechanism value is set in MV-643xx chip.
*
* RETURN:
* The interrupt coalescing value set in the gigE port.
*
*/
static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
unsigned int t_clk, unsigned int delay)
{
unsigned int coal;
coal = ((t_clk / 1000000) * delay) / 64;
/* Set TX Coalescing mechanism */
mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
coal << 4);
return coal;
}
/*
* ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
*
* DESCRIPTION:
* This function prepares a Rx chained list of descriptors and packet
* buffers in a form of a ring. The routine must be called after port
* initialization routine and before port start routine.
* The Ethernet SDMA engine uses CPU bus addresses to access the various
* devices in the system (i.e. DRAM). This function uses the ethernet
* struct 'virtual to physical' routine (set by the user) to set the ring
* with physical addresses.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
*
* OUTPUT:
* The routine updates the Ethernet port control struct with information
* regarding the Rx descriptors and buffers.
*
* RETURN:
* None.
*/
static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
{
volatile struct eth_rx_desc *p_rx_desc;
int rx_desc_num = mp->rx_ring_size;
int i;
/* initialize the next_desc_ptr links in the Rx descriptors ring */
p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
for (i = 0; i < rx_desc_num; i++) {
p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
}
/* Save Rx desc pointer to driver struct. */
mp->rx_curr_desc_q = 0;
mp->rx_used_desc_q = 0;
mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
/* Add the queue to the list of RX queues of this port */
mp->port_rx_queue_command |= 1;
}
/*
* ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
*
* DESCRIPTION:
* This function prepares a Tx chained list of descriptors and packet
* buffers in a form of a ring. The routine must be called after port
* initialization routine and before port start routine.
* The Ethernet SDMA engine uses CPU bus addresses to access the various
* devices in the system (i.e. DRAM). This function uses the ethernet
* struct 'virtual to physical' routine (set by the user) to set the ring
* with physical addresses.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
*
* OUTPUT:
* The routine updates the Ethernet port control struct with information
* regarding the Tx descriptors and buffers.
*
* RETURN:
* None.
*/
static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
{
int tx_desc_num = mp->tx_ring_size;
struct eth_tx_desc *p_tx_desc;
int i;
/* Initialize the next_desc_ptr links in the Tx descriptors ring */
p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
for (i = 0; i < tx_desc_num; i++) {
p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
}
mp->tx_curr_desc_q = 0;
mp->tx_used_desc_q = 0;
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
mp->tx_first_desc_q = 0;
#endif
mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
/* Add the queue to the list of Tx queues of this port */
mp->port_tx_queue_command |= 1;
}
/*
* mv643xx_eth_open
*
* This function is called when openning the network device. The function
* should initialize all the hardware, initialize cyclic Rx/Tx
* descriptors chain and buffers and allocate an IRQ to the network
* device.
*
* Input : a pointer to the network device structure
*
* Output : zero of success , nonzero if fails.
*/
static int mv643xx_eth_open(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
unsigned int size;
int err;
err = request_irq(dev->irq, mv643xx_eth_int_handler,
SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
if (err) {
printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
port_num);
return -EAGAIN;
}
/* Stop RX Queues */
mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
/* Set the MAC Address */
memcpy(mp->port_mac_addr, dev->dev_addr, 6);
eth_port_init(mp);
INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
memset(&mp->timeout, 0, sizeof(struct timer_list));
mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
mp->timeout.data = (unsigned long)dev;
mp->rx_task_busy = 0;
mp->rx_timer_flag = 0;
/* Allocate RX and TX skb rings */
mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
GFP_KERNEL);
if (!mp->rx_skb) {
printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
err = -ENOMEM;
goto out_free_irq;
}
mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
GFP_KERNEL);
if (!mp->tx_skb) {
printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
err = -ENOMEM;
goto out_free_rx_skb;
}
/* Allocate TX ring */
mp->tx_ring_skbs = 0;
size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
mp->tx_desc_area_size = size;
if (mp->tx_sram_size) {
mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
mp->tx_sram_size);
mp->tx_desc_dma = mp->tx_sram_addr;
} else
mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
&mp->tx_desc_dma,
GFP_KERNEL);
if (!mp->p_tx_desc_area) {
printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
dev->name, size);
err = -ENOMEM;
goto out_free_tx_skb;
}
BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
ether_init_tx_desc_ring(mp);
/* Allocate RX ring */
mp->rx_ring_skbs = 0;
size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
mp->rx_desc_area_size = size;
if (mp->rx_sram_size) {
mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
mp->rx_sram_size);
mp->rx_desc_dma = mp->rx_sram_addr;
} else
mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
&mp->rx_desc_dma,
GFP_KERNEL);
if (!mp->p_rx_desc_area) {
printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
dev->name, size);
printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
dev->name);
if (mp->rx_sram_size)
iounmap(mp->p_tx_desc_area);
else
dma_free_coherent(NULL, mp->tx_desc_area_size,
mp->p_tx_desc_area, mp->tx_desc_dma);
err = -ENOMEM;
goto out_free_tx_skb;
}
memset((void *)mp->p_rx_desc_area, 0, size);
ether_init_rx_desc_ring(mp);
mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
eth_port_start(mp);
/* Interrupt Coalescing */
#ifdef MV643XX_COAL
mp->rx_int_coal =
eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
#endif
mp->tx_int_coal =
eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
/* Clear any pending ethernet port interrupts */
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
/* Unmask phy and link status changes interrupts */
mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
INT_UNMASK_ALL_EXT);
/* Unmask RX buffer and TX end interrupt */
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
return 0;
out_free_tx_skb:
kfree(mp->tx_skb);
out_free_rx_skb:
kfree(mp->rx_skb);
out_free_irq:
free_irq(dev->irq, dev);
return err;
}
static void mv643xx_eth_free_tx_rings(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
unsigned int curr;
struct sk_buff *skb;
/* Stop Tx Queues */
mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
/* Free outstanding skb's on TX rings */
for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
skb = mp->tx_skb[curr];
if (skb) {
mp->tx_ring_skbs -= skb_shinfo(skb)->nr_frags;
dev_kfree_skb(skb);
mp->tx_ring_skbs--;
}
}
if (mp->tx_ring_skbs)
printk("%s: Error on Tx descriptor free - could not free %d"
" descriptors\n", dev->name, mp->tx_ring_skbs);
/* Free TX ring */
if (mp->tx_sram_size)
iounmap(mp->p_tx_desc_area);
else
dma_free_coherent(NULL, mp->tx_desc_area_size,
mp->p_tx_desc_area, mp->tx_desc_dma);
}
static void mv643xx_eth_free_rx_rings(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
int curr;
/* Stop RX Queues */
mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
/* Free preallocated skb's on RX rings */
for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
if (mp->rx_skb[curr]) {
dev_kfree_skb(mp->rx_skb[curr]);
mp->rx_ring_skbs--;
}
}
if (mp->rx_ring_skbs)
printk(KERN_ERR
"%s: Error in freeing Rx Ring. %d skb's still"
" stuck in RX Ring - ignoring them\n", dev->name,
mp->rx_ring_skbs);
/* Free RX ring */
if (mp->rx_sram_size)
iounmap(mp->p_rx_desc_area);
else
dma_free_coherent(NULL, mp->rx_desc_area_size,
mp->p_rx_desc_area, mp->rx_desc_dma);
}
/*
* mv643xx_eth_stop
*
* This function is used when closing the network device.
* It updates the hardware,
* release all memory that holds buffers and descriptors and release the IRQ.
* Input : a pointer to the device structure
* Output : zero if success , nonzero if fails
*/
static int mv643xx_eth_stop(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int port_num = mp->port_num;
/* Mask all interrupts on ethernet port */
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
/* wait for previous write to complete */
mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
#ifdef MV643XX_NAPI
netif_poll_disable(dev);
#endif
netif_carrier_off(dev);
netif_stop_queue(dev);
eth_port_reset(mp->port_num);
mv643xx_eth_free_tx_rings(dev);
mv643xx_eth_free_rx_rings(dev);
#ifdef MV643XX_NAPI
netif_poll_enable(dev);
#endif
free_irq(dev->irq, dev);
return 0;
}
#ifdef MV643XX_NAPI
static void mv643xx_tx(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
struct pkt_info pkt_info;
while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
dma_unmap_single(NULL, pkt_info.buf_ptr,
pkt_info.byte_cnt,
DMA_TO_DEVICE);
else
dma_unmap_page(NULL, pkt_info.buf_ptr,
pkt_info.byte_cnt,
DMA_TO_DEVICE);
if (pkt_info.return_info)
dev_kfree_skb_irq(pkt_info.return_info);
}
if (netif_queue_stopped(dev) &&
mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
netif_wake_queue(dev);
}
/*
* mv643xx_poll
*
* This function is used in case of NAPI
*/
static int mv643xx_poll(struct net_device *dev, int *budget)
{
struct mv643xx_private *mp = netdev_priv(dev);
int done = 1, orig_budget, work_done;
unsigned int port_num = mp->port_num;
#ifdef MV643XX_TX_FAST_REFILL
if (++mp->tx_clean_threshold > 5) {
mv643xx_tx(dev);
mp->tx_clean_threshold = 0;
}
#endif
if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
!= (u32) mp->rx_used_desc_q) {
orig_budget = *budget;
if (orig_budget > dev->quota)
orig_budget = dev->quota;
work_done = mv643xx_eth_receive_queue(dev, orig_budget);
mp->rx_task.func(dev);
*budget -= work_done;
dev->quota -= work_done;
if (work_done >= orig_budget)
done = 0;
}
if (done) {
netif_rx_complete(dev);
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
INT_UNMASK_ALL);
}
return done ? 0 : 1;
}
#endif
/* Hardware can't handle unaligned fragments smaller than 9 bytes.
* This helper function detects that case.
*/
static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
{
unsigned int frag;
skb_frag_t *fragp;
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
fragp = &skb_shinfo(skb)->frags[frag];
if (fragp->size <= 8 && fragp->page_offset & 0x7)
return 1;
}
return 0;
}
/*
* mv643xx_eth_start_xmit
*
* This function is queues a packet in the Tx descriptor for
* required port.
*
* Input : skb - a pointer to socket buffer
* dev - a pointer to the required port
*
* Output : zero upon success
*/
static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &mp->stats;
ETH_FUNC_RET_STATUS status;
unsigned long flags;
struct pkt_info pkt_info;
if (netif_queue_stopped(dev)) {
printk(KERN_ERR
"%s: Tried sending packet when interface is stopped\n",
dev->name);
return 1;
}
/* This is a hard error, log it. */
if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
(skb_shinfo(skb)->nr_frags + 1)) {
netif_stop_queue(dev);
printk(KERN_ERR
"%s: Bug in mv643xx_eth - Trying to transmit when"
" queue full !\n", dev->name);
return 1;
}
/* Paranoid check - this shouldn't happen */
if (skb == NULL) {
stats->tx_dropped++;
printk(KERN_ERR "mv64320_eth paranoid check failed\n");
return 1;
}
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
if (has_tiny_unaligned_frags(skb)) {
if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
stats->tx_dropped++;
printk(KERN_DEBUG "%s: failed to linearize tiny "
"unaligned fragment\n", dev->name);
return 1;
}
}
spin_lock_irqsave(&mp->lock, flags);
if (!skb_shinfo(skb)->nr_frags) {
if (skb->ip_summed != CHECKSUM_HW) {
/* Errata BTS #50, IHL must be 5 if no HW checksum */
pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
ETH_TX_FIRST_DESC |
ETH_TX_LAST_DESC |
5 << ETH_TX_IHL_SHIFT;
pkt_info.l4i_chk = 0;
} else {
pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
ETH_TX_FIRST_DESC |
ETH_TX_LAST_DESC |
ETH_GEN_TCP_UDP_CHECKSUM |
ETH_GEN_IP_V_4_CHECKSUM |
skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
/* CPU already calculated pseudo header checksum. */
if ((skb->protocol == ETH_P_IP) &&
(skb->nh.iph->protocol == IPPROTO_UDP) ) {
pkt_info.cmd_sts |= ETH_UDP_FRAME;
pkt_info.l4i_chk = skb->h.uh->check;
} else if ((skb->protocol == ETH_P_IP) &&
(skb->nh.iph->protocol == IPPROTO_TCP))
pkt_info.l4i_chk = skb->h.th->check;
else {
printk(KERN_ERR
"%s: chksum proto != IPv4 TCP or UDP\n",
dev->name);
spin_unlock_irqrestore(&mp->lock, flags);
return 1;
}
}
pkt_info.byte_cnt = skb->len;
pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
DMA_TO_DEVICE);
pkt_info.return_info = skb;
status = eth_port_send(mp, &pkt_info);
if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
printk(KERN_ERR "%s: Error on transmitting packet\n",
dev->name);
stats->tx_bytes += pkt_info.byte_cnt;
} else {
unsigned int frag;
/* first frag which is skb header */
pkt_info.byte_cnt = skb_headlen(skb);
pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
skb_headlen(skb),
DMA_TO_DEVICE);
pkt_info.l4i_chk = 0;
pkt_info.return_info = 0;
if (skb->ip_summed != CHECKSUM_HW)
/* Errata BTS #50, IHL must be 5 if no HW checksum */
pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
5 << ETH_TX_IHL_SHIFT;
else {
pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
ETH_GEN_TCP_UDP_CHECKSUM |
ETH_GEN_IP_V_4_CHECKSUM |
skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
/* CPU already calculated pseudo header checksum. */
if ((skb->protocol == ETH_P_IP) &&
(skb->nh.iph->protocol == IPPROTO_UDP)) {
pkt_info.cmd_sts |= ETH_UDP_FRAME;
pkt_info.l4i_chk = skb->h.uh->check;
} else if ((skb->protocol == ETH_P_IP) &&
(skb->nh.iph->protocol == IPPROTO_TCP))
pkt_info.l4i_chk = skb->h.th->check;
else {
printk(KERN_ERR
"%s: chksum proto != IPv4 TCP or UDP\n",
dev->name);
spin_unlock_irqrestore(&mp->lock, flags);
return 1;
}
}
status = eth_port_send(mp, &pkt_info);
if (status != ETH_OK) {
if ((status == ETH_ERROR))
printk(KERN_ERR
"%s: Error on transmitting packet\n",
dev->name);
if (status == ETH_QUEUE_FULL)
printk("Error on Queue Full \n");
if (status == ETH_QUEUE_LAST_RESOURCE)
printk("Tx resource error \n");
}
stats->tx_bytes += pkt_info.byte_cnt;
/* Check for the remaining frags */
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
pkt_info.l4i_chk = 0x0000;
pkt_info.cmd_sts = 0x00000000;
/* Last Frag enables interrupt and frees the skb */
if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
ETH_TX_LAST_DESC;
pkt_info.return_info = skb;
} else {
pkt_info.return_info = 0;
}
pkt_info.l4i_chk = 0;
pkt_info.byte_cnt = this_frag->size;
pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
this_frag->page_offset,
this_frag->size,
DMA_TO_DEVICE);
status = eth_port_send(mp, &pkt_info);
if (status != ETH_OK) {
if ((status == ETH_ERROR))
printk(KERN_ERR "%s: Error on "
"transmitting packet\n",
dev->name);
if (status == ETH_QUEUE_LAST_RESOURCE)
printk("Tx resource error \n");
if (status == ETH_QUEUE_FULL)
printk("Queue is full \n");
}
stats->tx_bytes += pkt_info.byte_cnt;
}
}
#else
spin_lock_irqsave(&mp->lock, flags);
pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
ETH_TX_LAST_DESC;
pkt_info.l4i_chk = 0;
pkt_info.byte_cnt = skb->len;
pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
DMA_TO_DEVICE);
pkt_info.return_info = skb;
status = eth_port_send(mp, &pkt_info);
if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
printk(KERN_ERR "%s: Error on transmitting packet\n",
dev->name);
stats->tx_bytes += pkt_info.byte_cnt;
#endif
/* Check if TX queue can handle another skb. If not, then
* signal higher layers to stop requesting TX
*/
if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
/*
* Stop getting skb's from upper layers.
* Getting skb's from upper layers will be enabled again after
* packets are released.
*/
netif_stop_queue(dev);
/* Update statistics and start of transmittion time */
stats->tx_packets++;
dev->trans_start = jiffies;
spin_unlock_irqrestore(&mp->lock, flags);
return 0; /* success */
}
/*
* mv643xx_eth_get_stats
*
* Returns a pointer to the interface statistics.
*
* Input : dev - a pointer to the required interface
*
* Output : a pointer to the interface's statistics
*/
static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
{
struct mv643xx_private *mp = netdev_priv(dev);
return &mp->stats;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mv643xx_netpoll(struct net_device *netdev)
{
struct mv643xx_private *mp = netdev_priv(netdev);
int port_num = mp->port_num;
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
/* wait for previous write to complete */
mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
}
#endif
/*/
* mv643xx_eth_probe
*
* First function called after registering the network device.
* It's purpose is to initialize the device as an ethernet device,
* fill the ethernet device structure with pointers * to functions,
* and set the MAC address of the interface
*
* Input : struct device *
* Output : -ENOMEM if failed , 0 if success
*/
static int mv643xx_eth_probe(struct platform_device *pdev)
{
struct mv643xx_eth_platform_data *pd;
int port_num = pdev->id;
struct mv643xx_private *mp;
struct net_device *dev;
u8 *p;
struct resource *res;
int err;
dev = alloc_etherdev(sizeof(struct mv643xx_private));
if (!dev)
return -ENOMEM;
platform_set_drvdata(pdev, dev);
mp = netdev_priv(dev);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
BUG_ON(!res);
dev->irq = res->start;
mp->port_num = port_num;
dev->open = mv643xx_eth_open;
dev->stop = mv643xx_eth_stop;
dev->hard_start_xmit = mv643xx_eth_start_xmit;
dev->get_stats = mv643xx_eth_get_stats;
dev->set_mac_address = mv643xx_eth_set_mac_address;
dev->set_multicast_list = mv643xx_eth_set_rx_mode;
/* No need to Tx Timeout */
dev->tx_timeout = mv643xx_eth_tx_timeout;
#ifdef MV643XX_NAPI
dev->poll = mv643xx_poll;
dev->weight = 64;
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = mv643xx_netpoll;
#endif
dev->watchdog_timeo = 2 * HZ;
dev->tx_queue_len = mp->tx_ring_size;
dev->base_addr = 0;
dev->change_mtu = mv643xx_eth_change_mtu;
SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
#ifdef MAX_SKB_FRAGS
/*
* Zero copy can only work if we use Discovery II memory. Else, we will
* have to map the buffers to ISA memory which is only 16 MB
*/
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
#endif
#endif
/* Configure the timeout task */
INIT_WORK(&mp->tx_timeout_task,
(void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
spin_lock_init(&mp->lock);
/* set default config values */
eth_port_uc_addr_get(dev, dev->dev_addr);
mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
pd = pdev->dev.platform_data;
if (pd) {
if (pd->mac_addr != NULL)
memcpy(dev->dev_addr, pd->mac_addr, 6);
if (pd->phy_addr || pd->force_phy_addr)
ethernet_phy_set(port_num, pd->phy_addr);
if (pd->port_config || pd->force_port_config)
mp->port_config = pd->port_config;
if (pd->port_config_extend || pd->force_port_config_extend)
mp->port_config_extend = pd->port_config_extend;
if (pd->port_sdma_config || pd->force_port_sdma_config)
mp->port_sdma_config = pd->port_sdma_config;
if (pd->port_serial_control || pd->force_port_serial_control)
mp->port_serial_control = pd->port_serial_control;
if (pd->rx_queue_size)
mp->rx_ring_size = pd->rx_queue_size;
if (pd->tx_queue_size)
mp->tx_ring_size = pd->tx_queue_size;
if (pd->tx_sram_size) {
mp->tx_sram_size = pd->tx_sram_size;
mp->tx_sram_addr = pd->tx_sram_addr;
}
if (pd->rx_sram_size) {
mp->rx_sram_size = pd->rx_sram_size;
mp->rx_sram_addr = pd->rx_sram_addr;
}
}
err = ethernet_phy_detect(port_num);
if (err) {
pr_debug("MV643xx ethernet port %d: "
"No PHY detected at addr %d\n",
port_num, ethernet_phy_get(port_num));
return err;
}
err = register_netdev(dev);
if (err)
goto out;
p = dev->dev_addr;
printk(KERN_NOTICE
"%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
if (dev->features & NETIF_F_SG)
printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
if (dev->features & NETIF_F_IP_CSUM)
printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
dev->name);
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
#endif
#ifdef MV643XX_COAL
printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
dev->name);
#endif
#ifdef MV643XX_NAPI
printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
#endif
if (mp->tx_sram_size > 0)
printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
return 0;
out:
free_netdev(dev);
return err;
}
static int mv643xx_eth_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
flush_scheduled_work();
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static int mv643xx_eth_shared_probe(struct platform_device *pdev)
{
struct resource *res;
printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
return -ENODEV;
mv643xx_eth_shared_base = ioremap(res->start,
MV643XX_ETH_SHARED_REGS_SIZE);
if (mv643xx_eth_shared_base == NULL)
return -ENOMEM;
return 0;
}
static int mv643xx_eth_shared_remove(struct platform_device *pdev)
{
iounmap(mv643xx_eth_shared_base);
mv643xx_eth_shared_base = NULL;
return 0;
}
static struct platform_driver mv643xx_eth_driver = {
.probe = mv643xx_eth_probe,
.remove = mv643xx_eth_remove,
.driver = {
.name = MV643XX_ETH_NAME,
},
};
static struct platform_driver mv643xx_eth_shared_driver = {
.probe = mv643xx_eth_shared_probe,
.remove = mv643xx_eth_shared_remove,
.driver = {
.name = MV643XX_ETH_SHARED_NAME,
},
};
/*
* mv643xx_init_module
*
* Registers the network drivers into the Linux kernel
*
* Input : N/A
*
* Output : N/A
*/
static int __init mv643xx_init_module(void)
{
int rc;
rc = platform_driver_register(&mv643xx_eth_shared_driver);
if (!rc) {
rc = platform_driver_register(&mv643xx_eth_driver);
if (rc)
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
return rc;
}
/*
* mv643xx_cleanup_module
*
* Registers the network drivers into the Linux kernel
*
* Input : N/A
*
* Output : N/A
*/
static void __exit mv643xx_cleanup_module(void)
{
platform_driver_unregister(&mv643xx_eth_driver);
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
module_init(mv643xx_init_module);
module_exit(mv643xx_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
" and Dale Farnsworth");
MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
/*
* The second part is the low level driver of the gigE ethernet ports.
*/
/*
* Marvell's Gigabit Ethernet controller low level driver
*
* DESCRIPTION:
* This file introduce low level API to Marvell's Gigabit Ethernet
* controller. This Gigabit Ethernet Controller driver API controls
* 1) Operations (i.e. port init, start, reset etc').
* 2) Data flow (i.e. port send, receive etc').
* Each Gigabit Ethernet port is controlled via
* struct mv643xx_private.
* This struct includes user configuration information as well as
* driver internal data needed for its operations.
*
* Supported Features:
* - This low level driver is OS independent. Allocating memory for
* the descriptor rings and buffers are not within the scope of
* this driver.
* - The user is free from Rx/Tx queue managing.
* - This low level driver introduce functionality API that enable
* the to operate Marvell's Gigabit Ethernet Controller in a
* convenient way.
* - Simple Gigabit Ethernet port operation API.
* - Simple Gigabit Ethernet port data flow API.
* - Data flow and operation API support per queue functionality.
* - Support cached descriptors for better performance.
* - Enable access to all four DRAM banks and internal SRAM memory
* spaces.
* - PHY access and control API.
* - Port control register configuration API.
* - Full control over Unicast and Multicast MAC configurations.
*
* Operation flow:
*
* Initialization phase
* This phase complete the initialization of the the
* mv643xx_private struct.
* User information regarding port configuration has to be set
* prior to calling the port initialization routine.
*
* In this phase any port Tx/Rx activity is halted, MIB counters
* are cleared, PHY address is set according to user parameter and
* access to DRAM and internal SRAM memory spaces.
*
* Driver ring initialization
* Allocating memory for the descriptor rings and buffers is not
* within the scope of this driver. Thus, the user is required to
* allocate memory for the descriptors ring and buffers. Those
* memory parameters are used by the Rx and Tx ring initialization
* routines in order to curve the descriptor linked list in a form
* of a ring.
* Note: Pay special attention to alignment issues when using
* cached descriptors/buffers. In this phase the driver store
* information in the mv643xx_private struct regarding each queue
* ring.
*
* Driver start
* This phase prepares the Ethernet port for Rx and Tx activity.
* It uses the information stored in the mv643xx_private struct to
* initialize the various port registers.
*
* Data flow:
* All packet references to/from the driver are done using
* struct pkt_info.
* This struct is a unified struct used with Rx and Tx operations.
* This way the user is not required to be familiar with neither
* Tx nor Rx descriptors structures.
* The driver's descriptors rings are management by indexes.
* Those indexes controls the ring resources and used to indicate
* a SW resource error:
* 'current'
* This index points to the current available resource for use. For
* example in Rx process this index will point to the descriptor
* that will be passed to the user upon calling the receive
* routine. In Tx process, this index will point to the descriptor
* that will be assigned with the user packet info and transmitted.
* 'used'
* This index points to the descriptor that need to restore its
* resources. For example in Rx process, using the Rx buffer return
* API will attach the buffer returned in packet info to the
* descriptor pointed by 'used'. In Tx process, using the Tx
* descriptor return will merely return the user packet info with
* the command status of the transmitted buffer pointed by the
* 'used' index. Nevertheless, it is essential to use this routine
* to update the 'used' index.
* 'first'
* This index supports Tx Scatter-Gather. It points to the first
* descriptor of a packet assembled of multiple buffers. For
* example when in middle of Such packet we have a Tx resource
* error the 'curr' index get the value of 'first' to indicate
* that the ring returned to its state before trying to transmit
* this packet.
*
* Receive operation:
* The eth_port_receive API set the packet information struct,
* passed by the caller, with received information from the
* 'current' SDMA descriptor.
* It is the user responsibility to return this resource back
* to the Rx descriptor ring to enable the reuse of this source.
* Return Rx resource is done using the eth_rx_return_buff API.
*
* Transmit operation:
* The eth_port_send API supports Scatter-Gather which enables to
* send a packet spanned over multiple buffers. This means that
* for each packet info structure given by the user and put into
* the Tx descriptors ring, will be transmitted only if the 'LAST'
* bit will be set in the packet info command status field. This
* API also consider restriction regarding buffer alignments and
* sizes.
* The user must return a Tx resource after ensuring the buffer
* has been transmitted to enable the Tx ring indexes to update.
*
* BOARD LAYOUT
* This device is on-board. No jumper diagram is necessary.
*
* EXTERNAL INTERFACE
*
* Prior to calling the initialization routine eth_port_init() the user
* must set the following fields under mv643xx_private struct:
* port_num User Ethernet port number.
* port_mac_addr[6] User defined port MAC address.
* port_config User port configuration value.
* port_config_extend User port config extend value.
* port_sdma_config User port SDMA config value.
* port_serial_control User port serial control value.
*
* This driver data flow is done using the struct pkt_info which
* is a unified struct for Rx and Tx operations:
*
* byte_cnt Tx/Rx descriptor buffer byte count.
* l4i_chk CPU provided TCP Checksum. For Tx operation
* only.
* cmd_sts Tx/Rx descriptor command status.
* buf_ptr Tx/Rx descriptor buffer pointer.
* return_info Tx/Rx user resource return information.
*/
/* defines */
/* SDMA command macros */
#define ETH_ENABLE_TX_QUEUE(eth_port) \
mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
/* locals */
/* PHY routines */
static int ethernet_phy_get(unsigned int eth_port_num);
static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
/* Ethernet Port routines */
static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
int option);
/*
* eth_port_init - Initialize the Ethernet port driver
*
* DESCRIPTION:
* This function prepares the ethernet port to start its activity:
* 1) Completes the ethernet port driver struct initialization toward port
* start routine.
* 2) Resets the device to a quiescent state in case of warm reboot.
* 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
* 4) Clean MAC tables. The reset status of those tables is unknown.
* 5) Set PHY address.
* Note: Call this routine prior to eth_port_start routine and after
* setting user values in the user fields of Ethernet port control
* struct.
*
* INPUT:
* struct mv643xx_private *mp Ethernet port control struct
*
* OUTPUT:
* See description.
*
* RETURN:
* None.
*/
static void eth_port_init(struct mv643xx_private *mp)
{
mp->port_rx_queue_command = 0;
mp->port_tx_queue_command = 0;
mp->rx_resource_err = 0;
mp->tx_resource_err = 0;
eth_port_reset(mp->port_num);
eth_port_init_mac_tables(mp->port_num);
ethernet_phy_reset(mp->port_num);
}
/*
* eth_port_start - Start the Ethernet port activity.
*
* DESCRIPTION:
* This routine prepares the Ethernet port for Rx and Tx activity:
* 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
* has been initialized a descriptor's ring (using
* ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
* 2. Initialize and enable the Ethernet configuration port by writing to
* the port's configuration and command registers.
* 3. Initialize and enable the SDMA by writing to the SDMA's
* configuration and command registers. After completing these steps,
* the ethernet port SDMA can starts to perform Rx and Tx activities.
*
* Note: Each Rx and Tx queue descriptor's list must be initialized prior
* to calling this function (use ether_init_tx_desc_ring for Tx queues
* and ether_init_rx_desc_ring for Rx queues).
*
* INPUT:
* struct mv643xx_private *mp Ethernet port control struct
*
* OUTPUT:
* Ethernet port is ready to receive and transmit.
*
* RETURN:
* None.
*/
static void eth_port_start(struct mv643xx_private *mp)
{
unsigned int port_num = mp->port_num;
int tx_curr_desc, rx_curr_desc;
/* Assignment of Tx CTRP of given queue */
tx_curr_desc = mp->tx_curr_desc_q;
mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
(u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
/* Assignment of Rx CRDP of given queue */
rx_curr_desc = mp->rx_curr_desc_q;
mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
(u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
/* Add the assigned Ethernet address to the port's address table */
eth_port_uc_addr_set(port_num, mp->port_mac_addr);
/* Assign port configuration and command. */
mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
mp->port_config_extend);
/* Increase the Rx side buffer size if supporting GigE */
if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
(mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
else
mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
mp->port_serial_control);
mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
MV643XX_ETH_SERIAL_PORT_ENABLE);
/* Assign port SDMA configuration */
mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
mp->port_sdma_config);
/* Enable port Rx. */
mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
mp->port_rx_queue_command);
/* Disable port bandwidth limits by clearing MTU register */
mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
}
/*
* eth_port_uc_addr_set - This function Set the port Unicast address.
*
* DESCRIPTION:
* This function Set the port Ethernet MAC address.
*
* INPUT:
* unsigned int eth_port_num Port number.
* char * p_addr Address to be set
*
* OUTPUT:
* Set MAC address low and high registers. also calls eth_port_uc_addr()
* To set the unicast table with the proper information.
*
* RETURN:
* N/A.
*
*/
static void eth_port_uc_addr_set(unsigned int eth_port_num,
unsigned char *p_addr)
{
unsigned int mac_h;
unsigned int mac_l;
mac_l = (p_addr[4] << 8) | (p_addr[5]);
mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
(p_addr[3] << 0);
mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
/* Accept frames of this address */
eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
return;
}
/*
* eth_port_uc_addr_get - This function retrieves the port Unicast address
* (MAC address) from the ethernet hw registers.
*
* DESCRIPTION:
* This function retrieves the port Ethernet MAC address.
*
* INPUT:
* unsigned int eth_port_num Port number.
* char *MacAddr pointer where the MAC address is stored
*
* OUTPUT:
* Copy the MAC address to the location pointed to by MacAddr
*
* RETURN:
* N/A.
*
*/
static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
{
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int mac_h;
unsigned int mac_l;
mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
p_addr[0] = (mac_h >> 24) & 0xff;
p_addr[1] = (mac_h >> 16) & 0xff;
p_addr[2] = (mac_h >> 8) & 0xff;
p_addr[3] = mac_h & 0xff;
p_addr[4] = (mac_l >> 8) & 0xff;
p_addr[5] = mac_l & 0xff;
}
/*
* eth_port_uc_addr - This function Set the port unicast address table
*
* DESCRIPTION:
* This function locates the proper entry in the Unicast table for the
* specified MAC nibble and sets its properties according to function
* parameters.
*
* INPUT:
* unsigned int eth_port_num Port number.
* unsigned char uc_nibble Unicast MAC Address last nibble.
* int option 0 = Add, 1 = remove address.
*
* OUTPUT:
* This function add/removes MAC addresses from the port unicast address
* table.
*
* RETURN:
* true is output succeeded.
* false if option parameter is invalid.
*
*/
static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
int option)
{
unsigned int unicast_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Locate the Unicast table entry */
uc_nibble = (0xf & uc_nibble);
tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
reg_offset = uc_nibble % 4; /* Entry offset within the above register */
switch (option) {
case REJECT_MAC_ADDR:
/* Clear accepts frame bit at given unicast DA table entry */
unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
(eth_port_num) + tbl_offset));
unicast_reg &= (0x0E << (8 * reg_offset));
mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
(eth_port_num) + tbl_offset), unicast_reg);
break;
case ACCEPT_MAC_ADDR:
/* Set accepts frame bit at unicast DA filter table entry */
unicast_reg =
mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
(eth_port_num) + tbl_offset));
unicast_reg |= (0x01 << (8 * reg_offset));
mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
(eth_port_num) + tbl_offset), unicast_reg);
break;
default:
return 0;
}
return 1;
}
/*
* The entries in each table are indexed by a hash of a packet's MAC
* address. One bit in each entry determines whether the packet is
* accepted. There are 4 entries (each 8 bits wide) in each register
* of the table. The bits in each entry are defined as follows:
* 0 Accept=1, Drop=0
* 3-1 Queue (ETH_Q0=0)
* 7-4 Reserved = 0;
*/
static void eth_port_set_filter_table_entry(int table, unsigned char entry)
{
unsigned int table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
reg_offset = entry % 4; /* Entry offset within the register */
/* Set "accepts frame bit" at specified table entry */
table_reg = mv_read(table + tbl_offset);
table_reg |= 0x01 << (8 * reg_offset);
mv_write(table + tbl_offset, table_reg);
}
/*
* eth_port_mc_addr - Multicast address settings.
*
* The MV device supports multicast using two tables:
* 1) Special Multicast Table for MAC addresses of the form
* 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
* The MAC DA[7:0] bits are used as a pointer to the Special Multicast
* Table entries in the DA-Filter table.
* 2) Other Multicast Table for multicast of another type. A CRC-8bit
* is used as an index to the Other Multicast Table entries in the
* DA-Filter table. This function calculates the CRC-8bit value.
* In either case, eth_port_set_filter_table_entry() is then called
* to set to set the actual table entry.
*/
static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
{
unsigned int mac_h;
unsigned int mac_l;
unsigned char crc_result = 0;
int table;
int mac_array[48];
int crc[8];
int i;
if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
(p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
(eth_port_num);
eth_port_set_filter_table_entry(table, p_addr[5]);
return;
}
/* Calculate CRC-8 out of the given address */
mac_h = (p_addr[0] << 8) | (p_addr[1]);
mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
(p_addr[4] << 8) | (p_addr[5] << 0);
for (i = 0; i < 32; i++)
mac_array[i] = (mac_l >> i) & 0x1;
for (i = 32; i < 48; i++)
mac_array[i] = (mac_h >> (i - 32)) & 0x1;
crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
mac_array[3] ^ mac_array[2] ^ mac_array[1];
crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
mac_array[3] ^ mac_array[2];
crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
mac_array[4] ^ mac_array[3];
crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
mac_array[4];
crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
for (i = 0; i < 8; i++)
crc_result = crc_result | (crc[i] << i);
table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
eth_port_set_filter_table_entry(table, crc_result);
}
/*
* Set the entire multicast list based on dev->mc_list.
*/
static void eth_port_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *mc_list;
int i;
int table_index;
struct mv643xx_private *mp = netdev_priv(dev);
unsigned int eth_port_num = mp->port_num;
/* If the device is in promiscuous mode or in all multicast mode,
* we will fully populate both multicast tables with accept.
* This is guaranteed to yield a match on all multicast addresses...
*/
if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Set all entries in DA filter special multicast
* table (Ex_dFSMT)
* Set for ETH_Q0 for now
* Bits
* 0 Accept=1, Drop=0
* 3-1 Queue ETH_Q0=0
* 7-4 Reserved = 0;
*/
mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
/* Set all entries in DA filter other multicast
* table (Ex_dFOMT)
* Set for ETH_Q0 for now
* Bits
* 0 Accept=1, Drop=0
* 3-1 Queue ETH_Q0=0
* 7-4 Reserved = 0;
*/
mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
}
return;
}
/* We will clear out multicast tables every time we get the list.
* Then add the entire new list...
*/
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Clear DA filter special multicast table (Ex_dFSMT) */
mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
(eth_port_num) + table_index, 0);
/* Clear DA filter other multicast table (Ex_dFOMT) */
mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
(eth_port_num) + table_index, 0);
}
/* Get pointer to net_device multicast list and add each one... */
for (i = 0, mc_list = dev->mc_list;
(i < 256) && (mc_list != NULL) && (i < dev->mc_count);
i++, mc_list = mc_list->next)
if (mc_list->dmi_addrlen == 6)
eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
}
/*
* eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
*
* DESCRIPTION:
* Go through all the DA filter tables (Unicast, Special Multicast &
* Other Multicast) and set each entry to 0.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* Multicast and Unicast packets are rejected.
*
* RETURN:
* None.
*/
static void eth_port_init_mac_tables(unsigned int eth_port_num)
{
int table_index;
/* Clear DA filter unicast table (Ex_dFUT) */
for (table_index = 0; table_index <= 0xC; table_index += 4)
mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
(eth_port_num) + table_index), 0);
for (table_index = 0; table_index <= 0xFC; table_index += 4) {
/* Clear DA filter special multicast table (Ex_dFSMT) */
mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
(eth_port_num) + table_index, 0);
/* Clear DA filter other multicast table (Ex_dFOMT) */
mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
(eth_port_num) + table_index, 0);
}
}
/*
* eth_clear_mib_counters - Clear all MIB counters
*
* DESCRIPTION:
* This function clears all MIB counters of a specific ethernet port.
* A read from the MIB counter will reset the counter.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* After reading all MIB counters, the counters resets.
*
* RETURN:
* MIB counter value.
*
*/
static void eth_clear_mib_counters(unsigned int eth_port_num)
{
int i;
/* Perform dummy reads from MIB counters */
for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
i += 4)
mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
}
static inline u32 read_mib(struct mv643xx_private *mp, int offset)
{
return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
}
static void eth_update_mib_counters(struct mv643xx_private *mp)
{
struct mv643xx_mib_counters *p = &mp->mib_counters;
int offset;
p->good_octets_received +=
read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
p->good_octets_received +=
(u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
offset += 4)
*(u32 *)((char *)p + offset) = read_mib(mp, offset);
p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
p->good_octets_sent +=
(u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
for (offset = ETH_MIB_GOOD_FRAMES_SENT;
offset <= ETH_MIB_LATE_COLLISION;
offset += 4)
*(u32 *)((char *)p + offset) = read_mib(mp, offset);
}
/*
* ethernet_phy_detect - Detect whether a phy is present
*
* DESCRIPTION:
* This function tests whether there is a PHY present on
* the specified port.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* None
*
* RETURN:
* 0 on success
* -ENODEV on failure
*
*/
static int ethernet_phy_detect(unsigned int port_num)
{
unsigned int phy_reg_data0;
int auto_neg;
eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
auto_neg = phy_reg_data0 & 0x1000;
phy_reg_data0 ^= 0x1000; /* invert auto_neg */
eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
if ((phy_reg_data0 & 0x1000) == auto_neg)
return -ENODEV; /* change didn't take */
phy_reg_data0 ^= 0x1000;
eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
return 0;
}
/*
* ethernet_phy_get - Get the ethernet port PHY address.
*
* DESCRIPTION:
* This routine returns the given ethernet port PHY address.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* None.
*
* RETURN:
* PHY address.
*
*/
static int ethernet_phy_get(unsigned int eth_port_num)
{
unsigned int reg_data;
reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
return ((reg_data >> (5 * eth_port_num)) & 0x1f);
}
/*
* ethernet_phy_set - Set the ethernet port PHY address.
*
* DESCRIPTION:
* This routine sets the given ethernet port PHY address.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
* int phy_addr PHY address.
*
* OUTPUT:
* None.
*
* RETURN:
* None.
*
*/
static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
{
u32 reg_data;
int addr_shift = 5 * eth_port_num;
reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
reg_data &= ~(0x1f << addr_shift);
reg_data |= (phy_addr & 0x1f) << addr_shift;
mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
}
/*
* ethernet_phy_reset - Reset Ethernet port PHY.
*
* DESCRIPTION:
* This routine utilizes the SMI interface to reset the ethernet port PHY.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* The PHY is reset.
*
* RETURN:
* None.
*
*/
static void ethernet_phy_reset(unsigned int eth_port_num)
{
unsigned int phy_reg_data;
/* Reset the PHY */
eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
}
/*
* eth_port_reset - Reset Ethernet port
*
* DESCRIPTION:
* This routine resets the chip by aborting any SDMA engine activity and
* clearing the MIB counters. The Receiver and the Transmit unit are in
* idle state after this command is performed and the port is disabled.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
*
* OUTPUT:
* Channel activity is halted.
*
* RETURN:
* None.
*
*/
static void eth_port_reset(unsigned int port_num)
{
unsigned int reg_data;
/* Stop Tx port activity. Check port Tx activity. */
reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
if (reg_data & 0xFF) {
/* Issue stop command for active channels only */
mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
(reg_data << 8));
/* Wait for all Tx activity to terminate. */
/* Check port cause register that all Tx queues are stopped */
while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
& 0xFF)
udelay(10);
}
/* Stop Rx port activity. Check port Rx activity. */
reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
if (reg_data & 0xFF) {
/* Issue stop command for active channels only */
mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
(reg_data << 8));
/* Wait for all Rx activity to terminate. */
/* Check port cause register that all Rx queues are stopped */
while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
& 0xFF)
udelay(10);
}
/* Clear all MIB counters */
eth_clear_mib_counters(port_num);
/* Reset the Enable bit in the Configuration Register */
reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
}
static int eth_port_autoneg_supported(unsigned int eth_port_num)
{
unsigned int phy_reg_data0;
eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
return phy_reg_data0 & 0x1000;
}
static int eth_port_link_is_up(unsigned int eth_port_num)
{
unsigned int phy_reg_data1;
eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
if (eth_port_autoneg_supported(eth_port_num)) {
if (phy_reg_data1 & 0x20) /* auto-neg complete */
return 1;
} else if (phy_reg_data1 & 0x4) /* link up */
return 1;
return 0;
}
/*
* eth_port_read_smi_reg - Read PHY registers
*
* DESCRIPTION:
* This routine utilize the SMI interface to interact with the PHY in
* order to perform PHY register read.
*
* INPUT:
* unsigned int port_num Ethernet Port number.
* unsigned int phy_reg PHY register address offset.
* unsigned int *value Register value buffer.
*
* OUTPUT:
* Write the value of a specified PHY register into given buffer.
*
* RETURN:
* false if the PHY is busy or read data is not in valid state.
* true otherwise.
*
*/
static void eth_port_read_smi_reg(unsigned int port_num,
unsigned int phy_reg, unsigned int *value)
{
int phy_addr = ethernet_phy_get(port_num);
unsigned long flags;
int i;
/* the SMI register is a shared resource */
spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
if (i == PHY_WAIT_ITERATIONS) {
printk("mv643xx PHY busy timeout, port %d\n", port_num);
goto out;
}
udelay(PHY_WAIT_MICRO_SECONDS);
}
mv_write(MV643XX_ETH_SMI_REG,
(phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
/* now wait for the data to be valid */
for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
if (i == PHY_WAIT_ITERATIONS) {
printk("mv643xx PHY read timeout, port %d\n", port_num);
goto out;
}
udelay(PHY_WAIT_MICRO_SECONDS);
}
*value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
out:
spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
}
/*
* eth_port_write_smi_reg - Write to PHY registers
*
* DESCRIPTION:
* This routine utilize the SMI interface to interact with the PHY in
* order to perform writes to PHY registers.
*
* INPUT:
* unsigned int eth_port_num Ethernet Port number.
* unsigned int phy_reg PHY register address offset.
* unsigned int value Register value.
*
* OUTPUT:
* Write the given value to the specified PHY register.
*
* RETURN:
* false if the PHY is busy.
* true otherwise.
*
*/
static void eth_port_write_smi_reg(unsigned int eth_port_num,
unsigned int phy_reg, unsigned int value)
{
int phy_addr;
int i;
unsigned long flags;
phy_addr = ethernet_phy_get(eth_port_num);
/* the SMI register is a shared resource */
spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
if (i == PHY_WAIT_ITERATIONS) {
printk("mv643xx PHY busy timeout, port %d\n",
eth_port_num);
goto out;
}
udelay(PHY_WAIT_MICRO_SECONDS);
}
mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
ETH_SMI_OPCODE_WRITE | (value & 0xffff));
out:
spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
}
/*
* eth_port_send - Send an Ethernet packet
*
* DESCRIPTION:
* This routine send a given packet described by p_pktinfo parameter. It
* supports transmitting of a packet spaned over multiple buffers. The
* routine updates 'curr' and 'first' indexes according to the packet
* segment passed to the routine. In case the packet segment is first,
* the 'first' index is update. In any case, the 'curr' index is updated.
* If the routine get into Tx resource error it assigns 'curr' index as
* 'first'. This way the function can abort Tx process of multiple
* descriptors per packet.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
* struct pkt_info *p_pkt_info User packet buffer.
*
* OUTPUT:
* Tx ring 'curr' and 'first' indexes are updated.
*
* RETURN:
* ETH_QUEUE_FULL in case of Tx resource error.
* ETH_ERROR in case the routine can not access Tx desc ring.
* ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
* ETH_OK otherwise.
*
*/
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
/*
* Modified to include the first descriptor pointer in case of SG
*/
static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
struct pkt_info *p_pkt_info)
{
int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
struct eth_tx_desc *current_descriptor;
struct eth_tx_desc *first_descriptor;
u32 command;
/* Do not process Tx ring in case of Tx ring resource error */
if (mp->tx_resource_err)
return ETH_QUEUE_FULL;
/*
* The hardware requires that each buffer that is <= 8 bytes
* in length must be aligned on an 8 byte boundary.
*/
if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
printk(KERN_ERR
"mv643xx_eth port %d: packet size <= 8 problem\n",
mp->port_num);
return ETH_ERROR;
}
mp->tx_ring_skbs++;
BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
/* Get the Tx Desc ring indexes */
tx_desc_curr = mp->tx_curr_desc_q;
tx_desc_used = mp->tx_used_desc_q;
current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
ETH_BUFFER_OWNED_BY_DMA;
if (command & ETH_TX_FIRST_DESC) {
tx_first_desc = tx_desc_curr;
mp->tx_first_desc_q = tx_first_desc;
first_descriptor = current_descriptor;
mp->tx_first_command = command;
} else {
tx_first_desc = mp->tx_first_desc_q;
first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
BUG_ON(first_descriptor == NULL);
current_descriptor->cmd_sts = command;
}
if (command & ETH_TX_LAST_DESC) {
wmb();
first_descriptor->cmd_sts = mp->tx_first_command;
wmb();
ETH_ENABLE_TX_QUEUE(mp->port_num);
/*
* Finish Tx packet. Update first desc in case of Tx resource
* error */
tx_first_desc = tx_next_desc;
mp->tx_first_desc_q = tx_first_desc;
}
/* Check for ring index overlap in the Tx desc ring */
if (tx_next_desc == tx_desc_used) {
mp->tx_resource_err = 1;
mp->tx_curr_desc_q = tx_first_desc;
return ETH_QUEUE_LAST_RESOURCE;
}
mp->tx_curr_desc_q = tx_next_desc;
return ETH_OK;
}
#else
static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
struct pkt_info *p_pkt_info)
{
int tx_desc_curr;
int tx_desc_used;
struct eth_tx_desc *current_descriptor;
unsigned int command_status;
/* Do not process Tx ring in case of Tx ring resource error */
if (mp->tx_resource_err)
return ETH_QUEUE_FULL;
mp->tx_ring_skbs++;
BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
/* Get the Tx Desc ring indexes */
tx_desc_curr = mp->tx_curr_desc_q;
tx_desc_used = mp->tx_used_desc_q;
current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
/* Set last desc with DMA ownership and interrupt enable. */
wmb();
current_descriptor->cmd_sts = command_status |
ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
wmb();
ETH_ENABLE_TX_QUEUE(mp->port_num);
/* Finish Tx packet. Update first desc in case of Tx resource error */
tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
/* Update the current descriptor */
mp->tx_curr_desc_q = tx_desc_curr;
/* Check for ring index overlap in the Tx desc ring */
if (tx_desc_curr == tx_desc_used) {
mp->tx_resource_err = 1;
return ETH_QUEUE_LAST_RESOURCE;
}
return ETH_OK;
}
#endif
/*
* eth_tx_return_desc - Free all used Tx descriptors
*
* DESCRIPTION:
* This routine returns the transmitted packet information to the caller.
* It uses the 'first' index to support Tx desc return in case a transmit
* of a packet spanned over multiple buffer still in process.
* In case the Tx queue was in "resource error" condition, where there are
* no available Tx resources, the function resets the resource error flag.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
* struct pkt_info *p_pkt_info User packet buffer.
*
* OUTPUT:
* Tx ring 'first' and 'used' indexes are updated.
*
* RETURN:
* ETH_OK on success
* ETH_ERROR otherwise.
*
*/
static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
struct pkt_info *p_pkt_info)
{
int tx_desc_used;
int tx_busy_desc;
struct eth_tx_desc *p_tx_desc_used;
unsigned int command_status;
unsigned long flags;
int err = ETH_OK;
spin_lock_irqsave(&mp->lock, flags);
#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
tx_busy_desc = mp->tx_first_desc_q;
#else
tx_busy_desc = mp->tx_curr_desc_q;
#endif
/* Get the Tx Desc ring indexes */
tx_desc_used = mp->tx_used_desc_q;
p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
/* Sanity check */
if (p_tx_desc_used == NULL) {
err = ETH_ERROR;
goto out;
}
/* Stop release. About to overlap the current available Tx descriptor */
if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
err = ETH_ERROR;
goto out;
}
command_status = p_tx_desc_used->cmd_sts;
/* Still transmitting... */
if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
err = ETH_ERROR;
goto out;
}
/* Pass the packet information to the caller */
p_pkt_info->cmd_sts = command_status;
p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
mp->tx_skb[tx_desc_used] = NULL;
/* Update the next descriptor to release. */
mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
/* Any Tx return cancels the Tx resource error status */
mp->tx_resource_err = 0;
BUG_ON(mp->tx_ring_skbs == 0);
mp->tx_ring_skbs--;
out:
spin_unlock_irqrestore(&mp->lock, flags);
return err;
}
/*
* eth_port_receive - Get received information from Rx ring.
*
* DESCRIPTION:
* This routine returns the received data to the caller. There is no
* data copying during routine operation. All information is returned
* using pointer to packet information struct passed from the caller.
* If the routine exhausts Rx ring resources then the resource error flag
* is set.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
* struct pkt_info *p_pkt_info User packet buffer.
*
* OUTPUT:
* Rx ring current and used indexes are updated.
*
* RETURN:
* ETH_ERROR in case the routine can not access Rx desc ring.
* ETH_QUEUE_FULL if Rx ring resources are exhausted.
* ETH_END_OF_JOB if there is no received data.
* ETH_OK otherwise.
*/
static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
struct pkt_info *p_pkt_info)
{
int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
volatile struct eth_rx_desc *p_rx_desc;
unsigned int command_status;
unsigned long flags;
/* Do not process Rx ring in case of Rx ring resource error */
if (mp->rx_resource_err)
return ETH_QUEUE_FULL;
spin_lock_irqsave(&mp->lock, flags);
/* Get the Rx Desc ring 'curr and 'used' indexes */
rx_curr_desc = mp->rx_curr_desc_q;
rx_used_desc = mp->rx_used_desc_q;
p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
/* The following parameters are used to save readings from memory */
command_status = p_rx_desc->cmd_sts;
rmb();
/* Nothing to receive... */
if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_END_OF_JOB;
}
p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
p_pkt_info->cmd_sts = command_status;
p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
p_pkt_info->l4i_chk = p_rx_desc->buf_size;
/*
* Clean the return info field to indicate that the
* packet has been moved to the upper layers
*/
mp->rx_skb[rx_curr_desc] = NULL;
/* Update current index in data structure */
rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
mp->rx_curr_desc_q = rx_next_curr_desc;
/* Rx descriptors exhausted. Set the Rx ring resource error flag */
if (rx_next_curr_desc == rx_used_desc)
mp->rx_resource_err = 1;
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_OK;
}
/*
* eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
*
* DESCRIPTION:
* This routine returns a Rx buffer back to the Rx ring. It retrieves the
* next 'used' descriptor and attached the returned buffer to it.
* In case the Rx ring was in "resource error" condition, where there are
* no available Rx resources, the function resets the resource error flag.
*
* INPUT:
* struct mv643xx_private *mp Ethernet Port Control srtuct.
* struct pkt_info *p_pkt_info Information on returned buffer.
*
* OUTPUT:
* New available Rx resource in Rx descriptor ring.
*
* RETURN:
* ETH_ERROR in case the routine can not access Rx desc ring.
* ETH_OK otherwise.
*/
static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
struct pkt_info *p_pkt_info)
{
int used_rx_desc; /* Where to return Rx resource */
volatile struct eth_rx_desc *p_used_rx_desc;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
/* Get 'used' Rx descriptor */
used_rx_desc = mp->rx_used_desc_q;
p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
/* Flush the write pipe */
/* Return the descriptor to DMA ownership */
wmb();
p_used_rx_desc->cmd_sts =
ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
wmb();
/* Move the used descriptor pointer to the next descriptor */
mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
/* Any Rx return cancels the Rx resource error status */
mp->rx_resource_err = 0;
spin_unlock_irqrestore(&mp->lock, flags);
return ETH_OK;
}
/************* Begin ethtool support *************************/
struct mv643xx_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
offsetof(struct mv643xx_private, m)
static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
{ "rx_packets", MV643XX_STAT(stats.rx_packets) },
{ "tx_packets", MV643XX_STAT(stats.tx_packets) },
{ "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
{ "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
{ "rx_errors", MV643XX_STAT(stats.rx_errors) },
{ "tx_errors", MV643XX_STAT(stats.tx_errors) },
{ "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
{ "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
{ "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
{ "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
{ "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
{ "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
{ "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
{ "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
{ "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
{ "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
{ "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
{ "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
{ "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
{ "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
{ "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
{ "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
{ "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
{ "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
{ "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
{ "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
{ "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
{ "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
{ "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
{ "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
{ "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
{ "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
{ "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
{ "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
{ "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
{ "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
{ "collision", MV643XX_STAT(mib_counters.collision) },
{ "late_collision", MV643XX_STAT(mib_counters.late_collision) },
};
#define MV643XX_STATS_LEN \
sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
static int
mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct mv643xx_private *mp = netdev->priv;
int port_num = mp->port_num;
int autoneg = eth_port_autoneg_supported(port_num);
int mode_10_bit;
int auto_duplex;
int half_duplex = 0;
int full_duplex = 0;
int auto_speed;
int speed_10 = 0;
int speed_100 = 0;
int speed_1000 = 0;
u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
if (mode_10_bit) {
ecmd->supported = SUPPORTED_10baseT_Half;
} else {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
(autoneg ? SUPPORTED_Autoneg : 0) |
SUPPORTED_TP);
auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
ecmd->advertising = ADVERTISED_TP;
if (autoneg) {
ecmd->advertising |= ADVERTISED_Autoneg;
if (auto_duplex) {
half_duplex = 1;
full_duplex = 1;
} else {
if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
full_duplex = 1;
else
half_duplex = 1;
}
if (auto_speed) {
speed_10 = 1;
speed_100 = 1;
speed_1000 = 1;
} else {
if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
speed_1000 = 1;
else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
speed_100 = 1;
else
speed_10 = 1;
}
if (speed_10 & half_duplex)
ecmd->advertising |= ADVERTISED_10baseT_Half;
if (speed_10 & full_duplex)
ecmd->advertising |= ADVERTISED_10baseT_Full;
if (speed_100 & half_duplex)
ecmd->advertising |= ADVERTISED_100baseT_Half;
if (speed_100 & full_duplex)
ecmd->advertising |= ADVERTISED_100baseT_Full;
if (speed_1000)
ecmd->advertising |= ADVERTISED_1000baseT_Full;
}
}
ecmd->port = PORT_TP;
ecmd->phy_address = ethernet_phy_get(port_num);
ecmd->transceiver = XCVR_EXTERNAL;
if (netif_carrier_ok(netdev)) {
if (mode_10_bit)
ecmd->speed = SPEED_10;
else {
if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
ecmd->speed = SPEED_1000;
else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
ecmd->speed = SPEED_100;
else
ecmd->speed = SPEED_10;
}
if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
static void mv643xx_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
strncpy(drvinfo->driver, mv643xx_driver_name, 32);
strncpy(drvinfo->version, mv643xx_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 32);
strncpy(drvinfo->bus_info, "mv643xx", 32);
drvinfo->n_stats = MV643XX_STATS_LEN;
}
static int mv643xx_get_stats_count(struct net_device *netdev)
{
return MV643XX_STATS_LEN;
}
static void mv643xx_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, uint64_t *data)
{
struct mv643xx_private *mp = netdev->priv;
int i;
eth_update_mib_counters(mp);
for (i = 0; i < MV643XX_STATS_LEN; i++) {
char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
}
}
static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
uint8_t *data)
{
int i;
switch(stringset) {
case ETH_SS_STATS:
for (i=0; i < MV643XX_STATS_LEN; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
mv643xx_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
}
break;
}
}
static struct ethtool_ops mv643xx_ethtool_ops = {
.get_settings = mv643xx_get_settings,
.get_drvinfo = mv643xx_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_strings = mv643xx_get_strings,
.get_stats_count = mv643xx_get_stats_count,
.get_ethtool_stats = mv643xx_get_ethtool_stats,
};
/************* End ethtool support *************************/