mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-23 14:24:25 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
537 lines
14 KiB
C
537 lines
14 KiB
C
/*
|
|
* linux/arch/sparc/mm/init.c
|
|
*
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be)
|
|
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
* Copyright (C) 2000 Anton Blanchard (anton@samba.org)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/init.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/system.h>
|
|
#include <asm/vac-ops.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/vaddrs.h>
|
|
#include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */
|
|
#include <asm/tlb.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/leon.h>
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
unsigned long *sparc_valid_addr_bitmap;
|
|
EXPORT_SYMBOL(sparc_valid_addr_bitmap);
|
|
|
|
unsigned long phys_base;
|
|
EXPORT_SYMBOL(phys_base);
|
|
|
|
unsigned long pfn_base;
|
|
EXPORT_SYMBOL(pfn_base);
|
|
|
|
unsigned long page_kernel;
|
|
EXPORT_SYMBOL(page_kernel);
|
|
|
|
struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];
|
|
unsigned long sparc_unmapped_base;
|
|
|
|
struct pgtable_cache_struct pgt_quicklists;
|
|
|
|
/* Initial ramdisk setup */
|
|
extern unsigned int sparc_ramdisk_image;
|
|
extern unsigned int sparc_ramdisk_size;
|
|
|
|
unsigned long highstart_pfn, highend_pfn;
|
|
|
|
pte_t *kmap_pte;
|
|
pgprot_t kmap_prot;
|
|
|
|
#define kmap_get_fixmap_pte(vaddr) \
|
|
pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
|
|
|
|
void __init kmap_init(void)
|
|
{
|
|
/* cache the first kmap pte */
|
|
kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
|
|
kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);
|
|
}
|
|
|
|
void show_mem(void)
|
|
{
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
printk("Free swap: %6ldkB\n",
|
|
nr_swap_pages << (PAGE_SHIFT-10));
|
|
printk("%ld pages of RAM\n", totalram_pages);
|
|
printk("%ld free pages\n", nr_free_pages());
|
|
#if 0 /* undefined pgtable_cache_size, pgd_cache_size */
|
|
printk("%ld pages in page table cache\n",pgtable_cache_size);
|
|
#ifndef CONFIG_SMP
|
|
if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)
|
|
printk("%ld entries in page dir cache\n",pgd_cache_size);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void __init sparc_context_init(int numctx)
|
|
{
|
|
int ctx;
|
|
|
|
ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);
|
|
|
|
for(ctx = 0; ctx < numctx; ctx++) {
|
|
struct ctx_list *clist;
|
|
|
|
clist = (ctx_list_pool + ctx);
|
|
clist->ctx_number = ctx;
|
|
clist->ctx_mm = NULL;
|
|
}
|
|
ctx_free.next = ctx_free.prev = &ctx_free;
|
|
ctx_used.next = ctx_used.prev = &ctx_used;
|
|
for(ctx = 0; ctx < numctx; ctx++)
|
|
add_to_free_ctxlist(ctx_list_pool + ctx);
|
|
}
|
|
|
|
extern unsigned long cmdline_memory_size;
|
|
unsigned long last_valid_pfn;
|
|
|
|
unsigned long calc_highpages(void)
|
|
{
|
|
int i;
|
|
int nr = 0;
|
|
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
|
|
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
|
|
|
|
if (end_pfn <= max_low_pfn)
|
|
continue;
|
|
|
|
if (start_pfn < max_low_pfn)
|
|
start_pfn = max_low_pfn;
|
|
|
|
nr += end_pfn - start_pfn;
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static unsigned long calc_max_low_pfn(void)
|
|
{
|
|
int i;
|
|
unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
|
|
unsigned long curr_pfn, last_pfn;
|
|
|
|
last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;
|
|
for (i = 1; sp_banks[i].num_bytes != 0; i++) {
|
|
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
|
|
|
|
if (curr_pfn >= tmp) {
|
|
if (last_pfn < tmp)
|
|
tmp = last_pfn;
|
|
break;
|
|
}
|
|
|
|
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
unsigned long __init bootmem_init(unsigned long *pages_avail)
|
|
{
|
|
unsigned long bootmap_size, start_pfn;
|
|
unsigned long end_of_phys_memory = 0UL;
|
|
unsigned long bootmap_pfn, bytes_avail, size;
|
|
int i;
|
|
|
|
bytes_avail = 0UL;
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
end_of_phys_memory = sp_banks[i].base_addr +
|
|
sp_banks[i].num_bytes;
|
|
bytes_avail += sp_banks[i].num_bytes;
|
|
if (cmdline_memory_size) {
|
|
if (bytes_avail > cmdline_memory_size) {
|
|
unsigned long slack = bytes_avail - cmdline_memory_size;
|
|
|
|
bytes_avail -= slack;
|
|
end_of_phys_memory -= slack;
|
|
|
|
sp_banks[i].num_bytes -= slack;
|
|
if (sp_banks[i].num_bytes == 0) {
|
|
sp_banks[i].base_addr = 0xdeadbeef;
|
|
} else {
|
|
sp_banks[i+1].num_bytes = 0;
|
|
sp_banks[i+1].base_addr = 0xdeadbeef;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Start with page aligned address of last symbol in kernel
|
|
* image.
|
|
*/
|
|
start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
|
|
|
|
/* Now shift down to get the real physical page frame number. */
|
|
start_pfn >>= PAGE_SHIFT;
|
|
|
|
bootmap_pfn = start_pfn;
|
|
|
|
max_pfn = end_of_phys_memory >> PAGE_SHIFT;
|
|
|
|
max_low_pfn = max_pfn;
|
|
highstart_pfn = highend_pfn = max_pfn;
|
|
|
|
if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
|
|
highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
|
|
max_low_pfn = calc_max_low_pfn();
|
|
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
|
|
calc_highpages() >> (20 - PAGE_SHIFT));
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
|
|
if (sparc_ramdisk_image) {
|
|
if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
|
|
sparc_ramdisk_image -= KERNBASE;
|
|
initrd_start = sparc_ramdisk_image + phys_base;
|
|
initrd_end = initrd_start + sparc_ramdisk_size;
|
|
if (initrd_end > end_of_phys_memory) {
|
|
printk(KERN_CRIT "initrd extends beyond end of memory "
|
|
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
|
|
initrd_end, end_of_phys_memory);
|
|
initrd_start = 0;
|
|
}
|
|
if (initrd_start) {
|
|
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
|
|
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
|
|
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
|
|
}
|
|
}
|
|
#endif
|
|
/* Initialize the boot-time allocator. */
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
|
|
max_low_pfn);
|
|
|
|
/* Now register the available physical memory with the
|
|
* allocator.
|
|
*/
|
|
*pages_avail = 0;
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
unsigned long curr_pfn, last_pfn;
|
|
|
|
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
|
|
if (curr_pfn >= max_low_pfn)
|
|
break;
|
|
|
|
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
|
|
if (last_pfn > max_low_pfn)
|
|
last_pfn = max_low_pfn;
|
|
|
|
/*
|
|
* .. finally, did all the rounding and playing
|
|
* around just make the area go away?
|
|
*/
|
|
if (last_pfn <= curr_pfn)
|
|
continue;
|
|
|
|
size = (last_pfn - curr_pfn) << PAGE_SHIFT;
|
|
*pages_avail += last_pfn - curr_pfn;
|
|
|
|
free_bootmem(sp_banks[i].base_addr, size);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (initrd_start) {
|
|
/* Reserve the initrd image area. */
|
|
size = initrd_end - initrd_start;
|
|
reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
|
|
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
|
|
initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
|
|
}
|
|
#endif
|
|
/* Reserve the kernel text/data/bss. */
|
|
size = (start_pfn << PAGE_SHIFT) - phys_base;
|
|
reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT);
|
|
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
/* Reserve the bootmem map. We do not account for it
|
|
* in pages_avail because we will release that memory
|
|
* in free_all_bootmem.
|
|
*/
|
|
size = bootmap_size;
|
|
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
|
|
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
return max_pfn;
|
|
}
|
|
|
|
/*
|
|
* check_pgt_cache
|
|
*
|
|
* This is called at the end of unmapping of VMA (zap_page_range),
|
|
* to rescan the page cache for architecture specific things,
|
|
* presumably something like sun4/sun4c PMEGs. Most architectures
|
|
* define check_pgt_cache empty.
|
|
*
|
|
* We simply copy the 2.4 implementation for now.
|
|
*/
|
|
static int pgt_cache_water[2] = { 25, 50 };
|
|
|
|
void check_pgt_cache(void)
|
|
{
|
|
do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables: We call the MMU specific
|
|
* init routine based upon the Sun model type on the Sparc.
|
|
*
|
|
*/
|
|
extern void sun4c_paging_init(void);
|
|
extern void srmmu_paging_init(void);
|
|
extern void device_scan(void);
|
|
|
|
pgprot_t PAGE_SHARED __read_mostly;
|
|
EXPORT_SYMBOL(PAGE_SHARED);
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
switch(sparc_cpu_model) {
|
|
case sun4c:
|
|
case sun4e:
|
|
case sun4:
|
|
sun4c_paging_init();
|
|
sparc_unmapped_base = 0xe0000000;
|
|
BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);
|
|
break;
|
|
case sparc_leon:
|
|
leon_init();
|
|
/* fall through */
|
|
case sun4m:
|
|
case sun4d:
|
|
srmmu_paging_init();
|
|
sparc_unmapped_base = 0x50000000;
|
|
BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);
|
|
break;
|
|
default:
|
|
prom_printf("paging_init: Cannot init paging on this Sparc\n");
|
|
prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);
|
|
prom_printf("paging_init: Halting...\n");
|
|
prom_halt();
|
|
};
|
|
|
|
/* Initialize the protection map with non-constant, MMU dependent values. */
|
|
protection_map[0] = PAGE_NONE;
|
|
protection_map[1] = PAGE_READONLY;
|
|
protection_map[2] = PAGE_COPY;
|
|
protection_map[3] = PAGE_COPY;
|
|
protection_map[4] = PAGE_READONLY;
|
|
protection_map[5] = PAGE_READONLY;
|
|
protection_map[6] = PAGE_COPY;
|
|
protection_map[7] = PAGE_COPY;
|
|
protection_map[8] = PAGE_NONE;
|
|
protection_map[9] = PAGE_READONLY;
|
|
protection_map[10] = PAGE_SHARED;
|
|
protection_map[11] = PAGE_SHARED;
|
|
protection_map[12] = PAGE_READONLY;
|
|
protection_map[13] = PAGE_READONLY;
|
|
protection_map[14] = PAGE_SHARED;
|
|
protection_map[15] = PAGE_SHARED;
|
|
btfixup();
|
|
prom_build_devicetree();
|
|
of_fill_in_cpu_data();
|
|
device_scan();
|
|
}
|
|
|
|
static void __init taint_real_pages(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; sp_banks[i].num_bytes; i++) {
|
|
unsigned long start, end;
|
|
|
|
start = sp_banks[i].base_addr;
|
|
end = start + sp_banks[i].num_bytes;
|
|
|
|
while (start < end) {
|
|
set_bit(start >> 20, sparc_valid_addr_bitmap);
|
|
start += PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void map_high_region(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
#ifdef CONFIG_DEBUG_HIGHMEM
|
|
printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);
|
|
#endif
|
|
|
|
for (tmp = start_pfn; tmp < end_pfn; tmp++) {
|
|
struct page *page = pfn_to_page(tmp);
|
|
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
totalhigh_pages++;
|
|
}
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
int codepages = 0;
|
|
int datapages = 0;
|
|
int initpages = 0;
|
|
int reservedpages = 0;
|
|
int i;
|
|
|
|
if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
|
|
prom_printf("BUG: fixmap and pkmap areas overlap\n");
|
|
prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",
|
|
PKMAP_BASE,
|
|
(unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
|
|
FIXADDR_START);
|
|
prom_printf("Please mail sparclinux@vger.kernel.org.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
|
|
/* Saves us work later. */
|
|
memset((void *)&empty_zero_page, 0, PAGE_SIZE);
|
|
|
|
i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
|
|
i += 1;
|
|
sparc_valid_addr_bitmap = (unsigned long *)
|
|
__alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);
|
|
|
|
if (sparc_valid_addr_bitmap == NULL) {
|
|
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
|
|
prom_halt();
|
|
}
|
|
memset(sparc_valid_addr_bitmap, 0, i << 2);
|
|
|
|
taint_real_pages();
|
|
|
|
max_mapnr = last_valid_pfn - pfn_base;
|
|
high_memory = __va(max_low_pfn << PAGE_SHIFT);
|
|
|
|
totalram_pages = free_all_bootmem();
|
|
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
|
|
unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
|
|
|
|
num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;
|
|
|
|
if (end_pfn <= highstart_pfn)
|
|
continue;
|
|
|
|
if (start_pfn < highstart_pfn)
|
|
start_pfn = highstart_pfn;
|
|
|
|
map_high_region(start_pfn, end_pfn);
|
|
}
|
|
|
|
totalram_pages += totalhigh_pages;
|
|
|
|
codepages = (((unsigned long) &_etext) - ((unsigned long)&_start));
|
|
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
|
|
datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext));
|
|
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
|
|
initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));
|
|
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
|
|
|
|
/* Ignore memory holes for the purpose of counting reserved pages */
|
|
for (i=0; i < max_low_pfn; i++)
|
|
if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)
|
|
&& PageReserved(pfn_to_page(i)))
|
|
reservedpages++;
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
|
|
nr_free_pages() << (PAGE_SHIFT-10),
|
|
num_physpages << (PAGE_SHIFT - 10),
|
|
codepages << (PAGE_SHIFT-10),
|
|
reservedpages << (PAGE_SHIFT - 10),
|
|
datapages << (PAGE_SHIFT-10),
|
|
initpages << (PAGE_SHIFT-10),
|
|
totalhigh_pages << (PAGE_SHIFT-10));
|
|
}
|
|
|
|
void free_initmem (void)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long freed;
|
|
|
|
addr = (unsigned long)(&__init_begin);
|
|
freed = (unsigned long)(&__init_end) - addr;
|
|
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
|
|
struct page *p;
|
|
|
|
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
|
|
p = virt_to_page(addr);
|
|
|
|
ClearPageReserved(p);
|
|
init_page_count(p);
|
|
__free_page(p);
|
|
totalram_pages++;
|
|
num_physpages++;
|
|
}
|
|
printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n",
|
|
freed >> 10);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < end)
|
|
printk(KERN_INFO "Freeing initrd memory: %ldk freed\n",
|
|
(end - start) >> 10);
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
struct page *p;
|
|
|
|
memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE);
|
|
p = virt_to_page(start);
|
|
|
|
ClearPageReserved(p);
|
|
init_page_count(p);
|
|
__free_page(p);
|
|
totalram_pages++;
|
|
num_physpages++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void sparc_flush_page_to_ram(struct page *page)
|
|
{
|
|
unsigned long vaddr = (unsigned long)page_address(page);
|
|
|
|
if (vaddr)
|
|
__flush_page_to_ram(vaddr);
|
|
}
|
|
EXPORT_SYMBOL(sparc_flush_page_to_ram);
|