mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 06:55:13 +08:00
733482e445
This patch removes almost all inclusions of linux/version.h. The 3 #defines are unused in most of the touched files. A few drivers use the simple KERNEL_VERSION(a,b,c) macro, which is unfortunatly in linux/version.h. There are also lots of #ifdef for long obsolete kernels, this was not touched. In a few places, the linux/version.h include was move to where the LINUX_VERSION_CODE was used. quilt vi `find * -type f -name "*.[ch]"|xargs grep -El '(UTS_RELEASE|LINUX_VERSION_CODE|KERNEL_VERSION|linux/version.h)'|grep -Ev '(/(boot|coda|drm)/|~$)'` search pattern: /UTS_RELEASE\|LINUX_VERSION_CODE\|KERNEL_VERSION\|linux\/\(utsname\|version\).h Signed-off-by: Olaf Hering <olh@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
4559 lines
138 KiB
C
4559 lines
138 KiB
C
/*
|
|
* usb-host.c: ETRAX 100LX USB Host Controller Driver (HCD)
|
|
*
|
|
* Copyright (c) 2002, 2003 Axis Communications AB.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/system.h>
|
|
#include <asm/arch/svinto.h>
|
|
|
|
#include <linux/usb.h>
|
|
/* Ugly include because we don't live with the other host drivers. */
|
|
#include <../drivers/usb/core/hcd.h>
|
|
#include <../drivers/usb/core/usb.h>
|
|
|
|
#include "hc_crisv10.h"
|
|
|
|
#define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR
|
|
#define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR
|
|
#define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR
|
|
|
|
static const char *usb_hcd_version = "$Revision: 1.2 $";
|
|
|
|
#undef KERN_DEBUG
|
|
#define KERN_DEBUG ""
|
|
|
|
|
|
#undef USB_DEBUG_RH
|
|
#undef USB_DEBUG_EPID
|
|
#undef USB_DEBUG_SB
|
|
#undef USB_DEBUG_DESC
|
|
#undef USB_DEBUG_URB
|
|
#undef USB_DEBUG_TRACE
|
|
#undef USB_DEBUG_BULK
|
|
#undef USB_DEBUG_CTRL
|
|
#undef USB_DEBUG_INTR
|
|
#undef USB_DEBUG_ISOC
|
|
|
|
#ifdef USB_DEBUG_RH
|
|
#define dbg_rh(format, arg...) printk(KERN_DEBUG __FILE__ ": (RH) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_rh(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_EPID
|
|
#define dbg_epid(format, arg...) printk(KERN_DEBUG __FILE__ ": (EPID) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_epid(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_SB
|
|
#define dbg_sb(format, arg...) printk(KERN_DEBUG __FILE__ ": (SB) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_sb(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_CTRL
|
|
#define dbg_ctrl(format, arg...) printk(KERN_DEBUG __FILE__ ": (CTRL) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_ctrl(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_BULK
|
|
#define dbg_bulk(format, arg...) printk(KERN_DEBUG __FILE__ ": (BULK) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_bulk(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_INTR
|
|
#define dbg_intr(format, arg...) printk(KERN_DEBUG __FILE__ ": (INTR) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_intr(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_ISOC
|
|
#define dbg_isoc(format, arg...) printk(KERN_DEBUG __FILE__ ": (ISOC) " format "\n" , ## arg)
|
|
#else
|
|
#define dbg_isoc(format, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_TRACE
|
|
#define DBFENTER (printk(": Entering: %s\n", __FUNCTION__))
|
|
#define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__))
|
|
#else
|
|
#define DBFENTER do {} while (0)
|
|
#define DBFEXIT do {} while (0)
|
|
#endif
|
|
|
|
#define usb_pipeslow(pipe) (((pipe) >> 26) & 1)
|
|
|
|
/*-------------------------------------------------------------------
|
|
Virtual Root Hub
|
|
-------------------------------------------------------------------*/
|
|
|
|
static __u8 root_hub_dev_des[] =
|
|
{
|
|
0x12, /* __u8 bLength; */
|
|
0x01, /* __u8 bDescriptorType; Device */
|
|
0x00, /* __le16 bcdUSB; v1.0 */
|
|
0x01,
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x00, /* __u8 bDeviceProtocol; */
|
|
0x08, /* __u8 bMaxPacketSize0; 8 Bytes */
|
|
0x00, /* __le16 idVendor; */
|
|
0x00,
|
|
0x00, /* __le16 idProduct; */
|
|
0x00,
|
|
0x00, /* __le16 bcdDevice; */
|
|
0x00,
|
|
0x00, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* Configuration descriptor */
|
|
static __u8 root_hub_config_des[] =
|
|
{
|
|
0x09, /* __u8 bLength; */
|
|
0x02, /* __u8 bDescriptorType; Configuration */
|
|
0x19, /* __le16 wTotalLength; */
|
|
0x00,
|
|
0x01, /* __u8 bNumInterfaces; */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0x40, /* __u8 bmAttributes; Bit 7: Bus-powered */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
0x04, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* endpoint */
|
|
0x07, /* __u8 ep_bLength; */
|
|
0x05, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
0x08, /* __le16 ep_wMaxPacketSize; 8 Bytes */
|
|
0x00,
|
|
0xff /* __u8 ep_bInterval; 255 ms */
|
|
};
|
|
|
|
static __u8 root_hub_hub_des[] =
|
|
{
|
|
0x09, /* __u8 bLength; */
|
|
0x29, /* __u8 bDescriptorType; Hub-descriptor */
|
|
0x02, /* __u8 bNbrPorts; */
|
|
0x00, /* __u16 wHubCharacteristics; */
|
|
0x00,
|
|
0x01, /* __u8 bPwrOn2pwrGood; 2ms */
|
|
0x00, /* __u8 bHubContrCurrent; 0 mA */
|
|
0x00, /* __u8 DeviceRemovable; *** 7 Ports max *** */
|
|
0xff /* __u8 PortPwrCtrlMask; *** 7 ports max *** */
|
|
};
|
|
|
|
static DEFINE_TIMER(bulk_start_timer, NULL, 0, 0);
|
|
static DEFINE_TIMER(bulk_eot_timer, NULL, 0, 0);
|
|
|
|
/* We want the start timer to expire before the eot timer, because the former might start
|
|
traffic, thus making it unnecessary for the latter to time out. */
|
|
#define BULK_START_TIMER_INTERVAL (HZ/10) /* 100 ms */
|
|
#define BULK_EOT_TIMER_INTERVAL (HZ/10+2) /* 120 ms */
|
|
|
|
#define OK(x) len = (x); dbg_rh("OK(%d): line: %d", x, __LINE__); break
|
|
#define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \
|
|
{panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);}
|
|
|
|
#define SLAB_FLAG (in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL)
|
|
#define KMALLOC_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL)
|
|
|
|
/* Most helpful debugging aid */
|
|
#define assert(expr) ((void) ((expr) ? 0 : (err("assert failed at line %d",__LINE__))))
|
|
|
|
/* Alternative assert define which stops after a failed assert. */
|
|
/*
|
|
#define assert(expr) \
|
|
{ \
|
|
if (!(expr)) { \
|
|
err("assert failed at line %d",__LINE__); \
|
|
while (1); \
|
|
} \
|
|
}
|
|
*/
|
|
|
|
|
|
/* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it dynamically?
|
|
To adjust it dynamically we would have to get an interrupt when we reach the end
|
|
of the rx descriptor list, or when we get close to the end, and then allocate more
|
|
descriptors. */
|
|
|
|
#define NBR_OF_RX_DESC 512
|
|
#define RX_DESC_BUF_SIZE 1024
|
|
#define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE)
|
|
|
|
/* The number of epids is, among other things, used for pre-allocating
|
|
ctrl, bulk and isoc EP descriptors (one for each epid).
|
|
Assumed to be > 1 when initiating the DMA lists. */
|
|
#define NBR_OF_EPIDS 32
|
|
|
|
/* Support interrupt traffic intervals up to 128 ms. */
|
|
#define MAX_INTR_INTERVAL 128
|
|
|
|
/* If periodic traffic (intr or isoc) is to be used, then one entry in the EP table
|
|
must be "invalid". By this we mean that we shouldn't care about epid attentions
|
|
for this epid, or at least handle them differently from epid attentions for "valid"
|
|
epids. This define determines which one to use (don't change it). */
|
|
#define INVALID_EPID 31
|
|
/* A special epid for the bulk dummys. */
|
|
#define DUMMY_EPID 30
|
|
|
|
/* This is just a software cache for the valid entries in R_USB_EPT_DATA. */
|
|
static __u32 epid_usage_bitmask;
|
|
|
|
/* A bitfield to keep information on in/out traffic is needed to uniquely identify
|
|
an endpoint on a device, since the most significant bit which indicates traffic
|
|
direction is lacking in the ep_id field (ETRAX epids can handle both in and
|
|
out traffic on endpoints that are otherwise identical). The USB framework, however,
|
|
relies on them to be handled separately. For example, bulk IN and OUT urbs cannot
|
|
be queued in the same list, since they would block each other. */
|
|
static __u32 epid_out_traffic;
|
|
|
|
/* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line.
|
|
Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be cache aligned. */
|
|
static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32)));
|
|
static volatile USB_IN_Desc_t RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4)));
|
|
|
|
/* Pointers into RxDescList. */
|
|
static volatile USB_IN_Desc_t *myNextRxDesc;
|
|
static volatile USB_IN_Desc_t *myLastRxDesc;
|
|
static volatile USB_IN_Desc_t *myPrevRxDesc;
|
|
|
|
/* EP descriptors must be 32-bit aligned. */
|
|
static volatile USB_EP_Desc_t TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
static volatile USB_EP_Desc_t TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
/* After each enabled bulk EP (IN or OUT) we put two disabled EP descriptors with the eol flag set,
|
|
causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which
|
|
gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the
|
|
EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors
|
|
in each frame. */
|
|
static volatile USB_EP_Desc_t TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4)));
|
|
|
|
static volatile USB_EP_Desc_t TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
static volatile USB_SB_Desc_t TxIsocSB_zout __attribute__ ((aligned (4)));
|
|
|
|
static volatile USB_EP_Desc_t TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4)));
|
|
static volatile USB_SB_Desc_t TxIntrSB_zout __attribute__ ((aligned (4)));
|
|
|
|
/* A zout transfer makes a memory access at the address of its buf pointer, which means that setting
|
|
this buf pointer to 0 will cause an access to the flash. In addition to this, setting sw_len to 0
|
|
results in a 16/32 bytes (depending on DMA burst size) transfer. Instead, we set it to 1, and point
|
|
it to this buffer. */
|
|
static int zout_buffer[4] __attribute__ ((aligned (4)));
|
|
|
|
/* Cache for allocating new EP and SB descriptors. */
|
|
static kmem_cache_t *usb_desc_cache;
|
|
|
|
/* Cache for the registers allocated in the top half. */
|
|
static kmem_cache_t *top_half_reg_cache;
|
|
|
|
/* Cache for the data allocated in the isoc descr top half. */
|
|
static kmem_cache_t *isoc_compl_cache;
|
|
|
|
static struct usb_bus *etrax_usb_bus;
|
|
|
|
/* This is a circular (double-linked) list of the active urbs for each epid.
|
|
The head is never removed, and new urbs are linked onto the list as
|
|
urb_entry_t elements. Don't reference urb_list directly; use the wrapper
|
|
functions instead. Note that working with these lists might require spinlock
|
|
protection. */
|
|
static struct list_head urb_list[NBR_OF_EPIDS];
|
|
|
|
/* Read about the need and usage of this lock in submit_ctrl_urb. */
|
|
static spinlock_t urb_list_lock;
|
|
|
|
/* Used when unlinking asynchronously. */
|
|
static struct list_head urb_unlink_list;
|
|
|
|
/* for returning string descriptors in UTF-16LE */
|
|
static int ascii2utf (char *ascii, __u8 *utf, int utfmax)
|
|
{
|
|
int retval;
|
|
|
|
for (retval = 0; *ascii && utfmax > 1; utfmax -= 2, retval += 2) {
|
|
*utf++ = *ascii++ & 0x7f;
|
|
*utf++ = 0;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int usb_root_hub_string (int id, int serial, char *type, __u8 *data, int len)
|
|
{
|
|
char buf [30];
|
|
|
|
// assert (len > (2 * (sizeof (buf) + 1)));
|
|
// assert (strlen (type) <= 8);
|
|
|
|
// language ids
|
|
if (id == 0) {
|
|
*data++ = 4; *data++ = 3; /* 4 bytes data */
|
|
*data++ = 0; *data++ = 0; /* some language id */
|
|
return 4;
|
|
|
|
// serial number
|
|
} else if (id == 1) {
|
|
sprintf (buf, "%x", serial);
|
|
|
|
// product description
|
|
} else if (id == 2) {
|
|
sprintf (buf, "USB %s Root Hub", type);
|
|
|
|
// id 3 == vendor description
|
|
|
|
// unsupported IDs --> "stall"
|
|
} else
|
|
return 0;
|
|
|
|
data [0] = 2 + ascii2utf (buf, data + 2, len - 2);
|
|
data [1] = 3;
|
|
return data [0];
|
|
}
|
|
|
|
/* Wrappers around the list functions (include/linux/list.h). */
|
|
|
|
static inline int urb_list_empty(int epid)
|
|
{
|
|
return list_empty(&urb_list[epid]);
|
|
}
|
|
|
|
/* Returns first urb for this epid, or NULL if list is empty. */
|
|
static inline struct urb *urb_list_first(int epid)
|
|
{
|
|
struct urb *first_urb = 0;
|
|
|
|
if (!urb_list_empty(epid)) {
|
|
/* Get the first urb (i.e. head->next). */
|
|
urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list);
|
|
first_urb = urb_entry->urb;
|
|
}
|
|
return first_urb;
|
|
}
|
|
|
|
/* Adds an urb_entry last in the list for this epid. */
|
|
static inline void urb_list_add(struct urb *urb, int epid)
|
|
{
|
|
urb_entry_t *urb_entry = (urb_entry_t *)kmalloc(sizeof(urb_entry_t), KMALLOC_FLAG);
|
|
assert(urb_entry);
|
|
|
|
urb_entry->urb = urb;
|
|
list_add_tail(&urb_entry->list, &urb_list[epid]);
|
|
}
|
|
|
|
/* Search through the list for an element that contains this urb. (The list
|
|
is expected to be short and the one we are about to delete will often be
|
|
the first in the list.) */
|
|
static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid)
|
|
{
|
|
struct list_head *entry;
|
|
struct list_head *tmp;
|
|
urb_entry_t *urb_entry;
|
|
|
|
list_for_each_safe(entry, tmp, &urb_list[epid]) {
|
|
urb_entry = list_entry(entry, urb_entry_t, list);
|
|
assert(urb_entry);
|
|
assert(urb_entry->urb);
|
|
|
|
if (urb_entry->urb == urb) {
|
|
return urb_entry;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Delete an urb from the list. */
|
|
static inline void urb_list_del(struct urb *urb, int epid)
|
|
{
|
|
urb_entry_t *urb_entry = __urb_list_entry(urb, epid);
|
|
assert(urb_entry);
|
|
|
|
/* Delete entry and free. */
|
|
list_del(&urb_entry->list);
|
|
kfree(urb_entry);
|
|
}
|
|
|
|
/* Move an urb to the end of the list. */
|
|
static inline void urb_list_move_last(struct urb *urb, int epid)
|
|
{
|
|
urb_entry_t *urb_entry = __urb_list_entry(urb, epid);
|
|
assert(urb_entry);
|
|
|
|
list_del(&urb_entry->list);
|
|
list_add_tail(&urb_entry->list, &urb_list[epid]);
|
|
}
|
|
|
|
/* Get the next urb in the list. */
|
|
static inline struct urb *urb_list_next(struct urb *urb, int epid)
|
|
{
|
|
urb_entry_t *urb_entry = __urb_list_entry(urb, epid);
|
|
|
|
assert(urb_entry);
|
|
|
|
if (urb_entry->list.next != &urb_list[epid]) {
|
|
struct list_head *elem = urb_entry->list.next;
|
|
urb_entry = list_entry(elem, urb_entry_t, list);
|
|
return urb_entry->urb;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* For debug purposes only. */
|
|
static inline void urb_list_dump(int epid)
|
|
{
|
|
struct list_head *entry;
|
|
struct list_head *tmp;
|
|
urb_entry_t *urb_entry;
|
|
int i = 0;
|
|
|
|
info("Dumping urb list for epid %d", epid);
|
|
|
|
list_for_each_safe(entry, tmp, &urb_list[epid]) {
|
|
urb_entry = list_entry(entry, urb_entry_t, list);
|
|
info(" entry %d, urb = 0x%lx", i, (unsigned long)urb_entry->urb);
|
|
}
|
|
}
|
|
|
|
static void init_rx_buffers(void);
|
|
static int etrax_rh_unlink_urb(struct urb *urb);
|
|
static void etrax_rh_send_irq(struct urb *urb);
|
|
static void etrax_rh_init_int_timer(struct urb *urb);
|
|
static void etrax_rh_int_timer_do(unsigned long ptr);
|
|
|
|
static int etrax_usb_setup_epid(struct urb *urb);
|
|
static int etrax_usb_lookup_epid(struct urb *urb);
|
|
static int etrax_usb_allocate_epid(void);
|
|
static void etrax_usb_free_epid(int epid);
|
|
|
|
static int etrax_remove_from_sb_list(struct urb *urb);
|
|
|
|
static void* etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size,
|
|
unsigned mem_flags, dma_addr_t *dma);
|
|
static void etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma);
|
|
|
|
static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid);
|
|
static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid);
|
|
static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid);
|
|
static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid);
|
|
|
|
static int etrax_usb_submit_bulk_urb(struct urb *urb);
|
|
static int etrax_usb_submit_ctrl_urb(struct urb *urb);
|
|
static int etrax_usb_submit_intr_urb(struct urb *urb);
|
|
static int etrax_usb_submit_isoc_urb(struct urb *urb);
|
|
|
|
static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags);
|
|
static int etrax_usb_unlink_urb(struct urb *urb, int status);
|
|
static int etrax_usb_get_frame_number(struct usb_device *usb_dev);
|
|
|
|
static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs);
|
|
static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs);
|
|
static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs);
|
|
static void etrax_usb_hc_interrupt_bottom_half(void *data);
|
|
|
|
static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data);
|
|
|
|
|
|
/* The following is a list of interrupt handlers for the host controller interrupts we use.
|
|
They are called from etrax_usb_hc_interrupt_bottom_half. */
|
|
static void etrax_usb_hc_isoc_eof_interrupt(void);
|
|
static void etrax_usb_hc_bulk_eot_interrupt(int timer_induced);
|
|
static void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg);
|
|
static void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg);
|
|
static void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg);
|
|
|
|
static int etrax_rh_submit_urb (struct urb *urb);
|
|
|
|
/* Forward declaration needed because they are used in the rx interrupt routine. */
|
|
static void etrax_usb_complete_urb(struct urb *urb, int status);
|
|
static void etrax_usb_complete_bulk_urb(struct urb *urb, int status);
|
|
static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status);
|
|
static void etrax_usb_complete_intr_urb(struct urb *urb, int status);
|
|
static void etrax_usb_complete_isoc_urb(struct urb *urb, int status);
|
|
|
|
static int etrax_usb_hc_init(void);
|
|
static void etrax_usb_hc_cleanup(void);
|
|
|
|
static struct usb_operations etrax_usb_device_operations =
|
|
{
|
|
.get_frame_number = etrax_usb_get_frame_number,
|
|
.submit_urb = etrax_usb_submit_urb,
|
|
.unlink_urb = etrax_usb_unlink_urb,
|
|
.buffer_alloc = etrax_usb_buffer_alloc,
|
|
.buffer_free = etrax_usb_buffer_free
|
|
};
|
|
|
|
/* Note that these functions are always available in their "__" variants, for use in
|
|
error situations. The "__" missing variants are controlled by the USB_DEBUG_DESC/
|
|
USB_DEBUG_URB macros. */
|
|
static void __dump_urb(struct urb* purb)
|
|
{
|
|
printk("\nurb :0x%08lx\n", (unsigned long)purb);
|
|
printk("dev :0x%08lx\n", (unsigned long)purb->dev);
|
|
printk("pipe :0x%08x\n", purb->pipe);
|
|
printk("status :%d\n", purb->status);
|
|
printk("transfer_flags :0x%08x\n", purb->transfer_flags);
|
|
printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer);
|
|
printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length);
|
|
printk("actual_length :%d\n", purb->actual_length);
|
|
printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet);
|
|
printk("start_frame :%d\n", purb->start_frame);
|
|
printk("number_of_packets :%d\n", purb->number_of_packets);
|
|
printk("interval :%d\n", purb->interval);
|
|
printk("error_count :%d\n", purb->error_count);
|
|
printk("context :0x%08lx\n", (unsigned long)purb->context);
|
|
printk("complete :0x%08lx\n\n", (unsigned long)purb->complete);
|
|
}
|
|
|
|
static void __dump_in_desc(volatile USB_IN_Desc_t *in)
|
|
{
|
|
printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in);
|
|
printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len);
|
|
printk(" command : 0x%04x\n", in->command);
|
|
printk(" next : 0x%08lx\n", in->next);
|
|
printk(" buf : 0x%08lx\n", in->buf);
|
|
printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len);
|
|
printk(" status : 0x%04x\n\n", in->status);
|
|
}
|
|
|
|
static void __dump_sb_desc(volatile USB_SB_Desc_t *sb)
|
|
{
|
|
char tt = (sb->command & 0x30) >> 4;
|
|
char *tt_string;
|
|
|
|
switch (tt) {
|
|
case 0:
|
|
tt_string = "zout";
|
|
break;
|
|
case 1:
|
|
tt_string = "in";
|
|
break;
|
|
case 2:
|
|
tt_string = "out";
|
|
break;
|
|
case 3:
|
|
tt_string = "setup";
|
|
break;
|
|
default:
|
|
tt_string = "unknown (weird)";
|
|
}
|
|
|
|
printk("\n USB_SB_Desc at 0x%08lx\n", (unsigned long)sb);
|
|
printk(" command : 0x%04x\n", sb->command);
|
|
printk(" rem : %d\n", (sb->command & 0x3f00) >> 8);
|
|
printk(" full : %d\n", (sb->command & 0x40) >> 6);
|
|
printk(" tt : %d (%s)\n", tt, tt_string);
|
|
printk(" intr : %d\n", (sb->command & 0x8) >> 3);
|
|
printk(" eot : %d\n", (sb->command & 0x2) >> 1);
|
|
printk(" eol : %d\n", sb->command & 0x1);
|
|
printk(" sw_len : 0x%04x (%d)\n", sb->sw_len, sb->sw_len);
|
|
printk(" next : 0x%08lx\n", sb->next);
|
|
printk(" buf : 0x%08lx\n\n", sb->buf);
|
|
}
|
|
|
|
|
|
static void __dump_ep_desc(volatile USB_EP_Desc_t *ep)
|
|
{
|
|
printk("\nUSB_EP_Desc at 0x%08lx\n", (unsigned long)ep);
|
|
printk(" command : 0x%04x\n", ep->command);
|
|
printk(" ep_id : %d\n", (ep->command & 0x1f00) >> 8);
|
|
printk(" enable : %d\n", (ep->command & 0x10) >> 4);
|
|
printk(" intr : %d\n", (ep->command & 0x8) >> 3);
|
|
printk(" eof : %d\n", (ep->command & 0x2) >> 1);
|
|
printk(" eol : %d\n", ep->command & 0x1);
|
|
printk(" hw_len : 0x%04x (%d)\n", ep->hw_len, ep->hw_len);
|
|
printk(" next : 0x%08lx\n", ep->next);
|
|
printk(" sub : 0x%08lx\n\n", ep->sub);
|
|
}
|
|
|
|
static inline void __dump_ep_list(int pipe_type)
|
|
{
|
|
volatile USB_EP_Desc_t *ep;
|
|
volatile USB_EP_Desc_t *first_ep;
|
|
volatile USB_SB_Desc_t *sb;
|
|
|
|
switch (pipe_type)
|
|
{
|
|
case PIPE_BULK:
|
|
first_ep = &TxBulkEPList[0];
|
|
break;
|
|
case PIPE_CONTROL:
|
|
first_ep = &TxCtrlEPList[0];
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
first_ep = &TxIntrEPList[0];
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
first_ep = &TxIsocEPList[0];
|
|
break;
|
|
default:
|
|
warn("Cannot dump unknown traffic type");
|
|
return;
|
|
}
|
|
ep = first_ep;
|
|
|
|
printk("\n\nDumping EP list...\n\n");
|
|
|
|
do {
|
|
__dump_ep_desc(ep);
|
|
/* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */
|
|
sb = ep->sub ? phys_to_virt(ep->sub) : 0;
|
|
while (sb) {
|
|
__dump_sb_desc(sb);
|
|
sb = sb->next ? phys_to_virt(sb->next) : 0;
|
|
}
|
|
ep = (volatile USB_EP_Desc_t *)(phys_to_virt(ep->next));
|
|
|
|
} while (ep != first_ep);
|
|
}
|
|
|
|
static inline void __dump_ept_data(int epid)
|
|
{
|
|
unsigned long flags;
|
|
__u32 r_usb_ept_data;
|
|
|
|
if (epid < 0 || epid > 31) {
|
|
printk("Cannot dump ept data for invalid epid %d\n", epid);
|
|
return;
|
|
}
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
restore_flags(flags);
|
|
|
|
printk("\nR_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid);
|
|
if (r_usb_ept_data == 0) {
|
|
/* No need for more detailed printing. */
|
|
return;
|
|
}
|
|
printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31);
|
|
printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30);
|
|
printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28);
|
|
printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27);
|
|
printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26);
|
|
printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24);
|
|
printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22);
|
|
printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21);
|
|
printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19);
|
|
printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11);
|
|
printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7);
|
|
printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f));
|
|
}
|
|
|
|
static inline void __dump_ept_data_list(void)
|
|
{
|
|
int i;
|
|
|
|
printk("Dumping the whole R_USB_EPT_DATA list\n");
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
__dump_ept_data(i);
|
|
}
|
|
}
|
|
#ifdef USB_DEBUG_DESC
|
|
#define dump_in_desc(...) __dump_in_desc(...)
|
|
#define dump_sb_desc(...) __dump_sb_desc(...)
|
|
#define dump_ep_desc(...) __dump_ep_desc(...)
|
|
#else
|
|
#define dump_in_desc(...) do {} while (0)
|
|
#define dump_sb_desc(...) do {} while (0)
|
|
#define dump_ep_desc(...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef USB_DEBUG_URB
|
|
#define dump_urb(x) __dump_urb(x)
|
|
#else
|
|
#define dump_urb(x) do {} while (0)
|
|
#endif
|
|
|
|
static void init_rx_buffers(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) {
|
|
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
|
|
RxDescList[i].command = 0;
|
|
RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]);
|
|
RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE));
|
|
RxDescList[i].hw_len = 0;
|
|
RxDescList[i].status = 0;
|
|
|
|
/* DMA IN cache bug. (struct etrax_dma_descr has the same layout as USB_IN_Desc
|
|
for the relevant fields.) */
|
|
prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]);
|
|
|
|
}
|
|
|
|
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
|
|
RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes);
|
|
RxDescList[i].next = virt_to_phys(&RxDescList[0]);
|
|
RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE));
|
|
RxDescList[i].hw_len = 0;
|
|
RxDescList[i].status = 0;
|
|
|
|
myNextRxDesc = &RxDescList[0];
|
|
myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
|
|
myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
|
|
|
|
*R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc);
|
|
*R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void init_tx_bulk_ep(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
CHECK_ALIGN(&TxBulkEPList[i]);
|
|
TxBulkEPList[i].hw_len = 0;
|
|
TxBulkEPList[i].command = IO_FIELD(USB_EP_command, epid, i);
|
|
TxBulkEPList[i].sub = 0;
|
|
TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[i + 1]);
|
|
|
|
/* Initiate two EPs, disabled and with the eol flag set. No need for any
|
|
preserved epid. */
|
|
|
|
/* The first one has the intr flag set so we get an interrupt when the DMA
|
|
channel is about to become disabled. */
|
|
CHECK_ALIGN(&TxBulkDummyEPList[i][0]);
|
|
TxBulkDummyEPList[i][0].hw_len = 0;
|
|
TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_STATE(USB_EP_command, intr, yes));
|
|
TxBulkDummyEPList[i][0].sub = 0;
|
|
TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]);
|
|
|
|
/* The second one. */
|
|
CHECK_ALIGN(&TxBulkDummyEPList[i][1]);
|
|
TxBulkDummyEPList[i][1].hw_len = 0;
|
|
TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) |
|
|
IO_STATE(USB_EP_command, eol, yes));
|
|
TxBulkDummyEPList[i][1].sub = 0;
|
|
/* The last dummy's next pointer is the same as the current EP's next pointer. */
|
|
TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]);
|
|
}
|
|
|
|
/* Configure the last one. */
|
|
CHECK_ALIGN(&TxBulkEPList[i]);
|
|
TxBulkEPList[i].hw_len = 0;
|
|
TxBulkEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, i));
|
|
TxBulkEPList[i].sub = 0;
|
|
TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[0]);
|
|
|
|
/* No need configuring dummy EPs for the last one as it will never be used for
|
|
bulk traffic (i == INVALD_EPID at this point). */
|
|
|
|
/* Set up to start on the last EP so we will enable it when inserting traffic
|
|
for the first time (imitating the situation where the DMA has stopped
|
|
because there was no more traffic). */
|
|
*R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]);
|
|
/* No point in starting the bulk channel yet.
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void init_tx_ctrl_ep(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
CHECK_ALIGN(&TxCtrlEPList[i]);
|
|
TxCtrlEPList[i].hw_len = 0;
|
|
TxCtrlEPList[i].command = IO_FIELD(USB_EP_command, epid, i);
|
|
TxCtrlEPList[i].sub = 0;
|
|
TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[i + 1]);
|
|
}
|
|
|
|
CHECK_ALIGN(&TxCtrlEPList[i]);
|
|
TxCtrlEPList[i].hw_len = 0;
|
|
TxCtrlEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, i));
|
|
|
|
TxCtrlEPList[i].sub = 0;
|
|
TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[0]);
|
|
|
|
*R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[0]);
|
|
*R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
static void init_tx_intr_ep(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
/* Read comment at zout_buffer declaration for an explanation to this. */
|
|
TxIntrSB_zout.sw_len = 1;
|
|
TxIntrSB_zout.next = 0;
|
|
TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]);
|
|
TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) {
|
|
CHECK_ALIGN(&TxIntrEPList[i]);
|
|
TxIntrEPList[i].hw_len = 0;
|
|
TxIntrEPList[i].command =
|
|
(IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout);
|
|
TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]);
|
|
}
|
|
|
|
CHECK_ALIGN(&TxIntrEPList[i]);
|
|
TxIntrEPList[i].hw_len = 0;
|
|
TxIntrEPList[i].command =
|
|
(IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout);
|
|
TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]);
|
|
|
|
*R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]);
|
|
*R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start);
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void init_tx_isoc_ep(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
/* Read comment at zout_buffer declaration for an explanation to this. */
|
|
TxIsocSB_zout.sw_len = 1;
|
|
TxIsocSB_zout.next = 0;
|
|
TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]);
|
|
TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
/* The last isochronous EP descriptor is a dummy. */
|
|
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
CHECK_ALIGN(&TxIsocEPList[i]);
|
|
TxIsocEPList[i].hw_len = 0;
|
|
TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i);
|
|
TxIsocEPList[i].sub = 0;
|
|
TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]);
|
|
}
|
|
|
|
CHECK_ALIGN(&TxIsocEPList[i]);
|
|
TxIsocEPList[i].hw_len = 0;
|
|
|
|
/* Must enable the last EP descr to get eof interrupt. */
|
|
TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout);
|
|
TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]);
|
|
|
|
*R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]);
|
|
*R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_unlink_intr_urb(struct urb *urb)
|
|
{
|
|
volatile USB_EP_Desc_t *first_ep; /* First EP in the list. */
|
|
volatile USB_EP_Desc_t *curr_ep; /* Current EP, the iterator. */
|
|
volatile USB_EP_Desc_t *next_ep; /* The EP after current. */
|
|
volatile USB_EP_Desc_t *unlink_ep; /* The one we should remove from the list. */
|
|
|
|
int epid;
|
|
|
|
/* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the List". */
|
|
|
|
DBFENTER;
|
|
|
|
epid = ((etrax_urb_priv_t *)urb->hcpriv)->epid;
|
|
|
|
first_ep = &TxIntrEPList[0];
|
|
curr_ep = first_ep;
|
|
|
|
|
|
/* Note that this loop removes all EP descriptors with this epid. This assumes
|
|
that all EP descriptors belong to the one and only urb for this epid. */
|
|
|
|
do {
|
|
next_ep = (USB_EP_Desc_t *)phys_to_virt(curr_ep->next);
|
|
|
|
if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) {
|
|
|
|
dbg_intr("Found EP to unlink for epid %d", epid);
|
|
|
|
/* This is the one we should unlink. */
|
|
unlink_ep = next_ep;
|
|
|
|
/* Actually unlink the EP from the DMA list. */
|
|
curr_ep->next = unlink_ep->next;
|
|
|
|
/* Wait until the DMA is no longer at this descriptor. */
|
|
while (*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep));
|
|
|
|
/* Now we are free to remove it and its SB descriptor.
|
|
Note that it is assumed here that there is only one sb in the
|
|
sb list for this ep. */
|
|
kmem_cache_free(usb_desc_cache, phys_to_virt(unlink_ep->sub));
|
|
kmem_cache_free(usb_desc_cache, (USB_EP_Desc_t *)unlink_ep);
|
|
}
|
|
|
|
curr_ep = phys_to_virt(curr_ep->next);
|
|
|
|
} while (curr_ep != first_ep);
|
|
urb->hcpriv = NULL;
|
|
}
|
|
|
|
void etrax_usb_do_intr_recover(int epid)
|
|
{
|
|
USB_EP_Desc_t *first_ep, *tmp_ep;
|
|
|
|
DBFENTER;
|
|
|
|
first_ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB2_EP);
|
|
tmp_ep = first_ep;
|
|
|
|
/* What this does is simply to walk the list of interrupt
|
|
ep descriptors and enable those that are disabled. */
|
|
|
|
do {
|
|
if (IO_EXTRACT(USB_EP_command, epid, tmp_ep->command) == epid &&
|
|
!(tmp_ep->command & IO_MASK(USB_EP_command, enable))) {
|
|
tmp_ep->command |= IO_STATE(USB_EP_command, enable, yes);
|
|
}
|
|
|
|
tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next);
|
|
|
|
} while (tmp_ep != first_ep);
|
|
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int etrax_rh_unlink_urb (struct urb *urb)
|
|
{
|
|
etrax_hc_t *hc;
|
|
|
|
DBFENTER;
|
|
|
|
hc = urb->dev->bus->hcpriv;
|
|
|
|
if (hc->rh.urb == urb) {
|
|
hc->rh.send = 0;
|
|
del_timer(&hc->rh.rh_int_timer);
|
|
}
|
|
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
static void etrax_rh_send_irq(struct urb *urb)
|
|
{
|
|
__u16 data = 0;
|
|
etrax_hc_t *hc = urb->dev->bus->hcpriv;
|
|
DBFENTER;
|
|
|
|
/*
|
|
dbg_rh("R_USB_FM_NUMBER : 0x%08X", *R_USB_FM_NUMBER);
|
|
dbg_rh("R_USB_FM_REMAINING: 0x%08X", *R_USB_FM_REMAINING);
|
|
*/
|
|
|
|
data |= (hc->rh.wPortChange_1) ? (1 << 1) : 0;
|
|
data |= (hc->rh.wPortChange_2) ? (1 << 2) : 0;
|
|
|
|
*((__u16 *)urb->transfer_buffer) = cpu_to_le16(data);
|
|
/* FIXME: Why is actual_length set to 1 when data is 2 bytes?
|
|
Since only 1 byte is used, why not declare data as __u8? */
|
|
urb->actual_length = 1;
|
|
urb->status = 0;
|
|
|
|
if (hc->rh.send && urb->complete) {
|
|
dbg_rh("wPortChange_1: 0x%04X", hc->rh.wPortChange_1);
|
|
dbg_rh("wPortChange_2: 0x%04X", hc->rh.wPortChange_2);
|
|
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_rh_init_int_timer(struct urb *urb)
|
|
{
|
|
etrax_hc_t *hc;
|
|
|
|
DBFENTER;
|
|
|
|
hc = urb->dev->bus->hcpriv;
|
|
hc->rh.interval = urb->interval;
|
|
init_timer(&hc->rh.rh_int_timer);
|
|
hc->rh.rh_int_timer.function = etrax_rh_int_timer_do;
|
|
hc->rh.rh_int_timer.data = (unsigned long)urb;
|
|
/* FIXME: Is the jiffies resolution enough? All intervals < 10 ms will be mapped
|
|
to 0, and the rest to the nearest lower 10 ms. */
|
|
hc->rh.rh_int_timer.expires = jiffies + ((HZ * hc->rh.interval) / 1000);
|
|
add_timer(&hc->rh.rh_int_timer);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_rh_int_timer_do(unsigned long ptr)
|
|
{
|
|
struct urb *urb;
|
|
etrax_hc_t *hc;
|
|
|
|
DBFENTER;
|
|
|
|
urb = (struct urb*)ptr;
|
|
hc = urb->dev->bus->hcpriv;
|
|
|
|
if (hc->rh.send) {
|
|
etrax_rh_send_irq(urb);
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int etrax_usb_setup_epid(struct urb *urb)
|
|
{
|
|
int epid;
|
|
char devnum, endpoint, out_traffic, slow;
|
|
int maxlen;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
epid = etrax_usb_lookup_epid(urb);
|
|
if ((epid != -1)){
|
|
/* An epid that fits this urb has been found. */
|
|
DBFEXIT;
|
|
return epid;
|
|
}
|
|
|
|
/* We must find and initiate a new epid for this urb. */
|
|
epid = etrax_usb_allocate_epid();
|
|
|
|
if (epid == -1) {
|
|
/* Failed to allocate a new epid. */
|
|
DBFEXIT;
|
|
return epid;
|
|
}
|
|
|
|
/* We now have a new epid to use. Initiate it. */
|
|
set_bit(epid, (void *)&epid_usage_bitmask);
|
|
|
|
devnum = usb_pipedevice(urb->pipe);
|
|
endpoint = usb_pipeendpoint(urb->pipe);
|
|
slow = usb_pipeslow(urb->pipe);
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
/* We want both IN and OUT control traffic to be put on the same EP/SB list. */
|
|
out_traffic = 1;
|
|
} else {
|
|
out_traffic = usb_pipeout(urb->pipe);
|
|
}
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
*R_USB_EPT_DATA_ISO = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) |
|
|
/* FIXME: Change any to the actual port? */
|
|
IO_STATE(R_USB_EPT_DATA_ISO, port, any) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum);
|
|
} else {
|
|
*R_USB_EPT_DATA = IO_STATE(R_USB_EPT_DATA, valid, yes) |
|
|
IO_FIELD(R_USB_EPT_DATA, low_speed, slow) |
|
|
/* FIXME: Change any to the actual port? */
|
|
IO_STATE(R_USB_EPT_DATA, port, any) |
|
|
IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) |
|
|
IO_FIELD(R_USB_EPT_DATA, ep, endpoint) |
|
|
IO_FIELD(R_USB_EPT_DATA, dev, devnum);
|
|
}
|
|
|
|
restore_flags(flags);
|
|
|
|
if (out_traffic) {
|
|
set_bit(epid, (void *)&epid_out_traffic);
|
|
} else {
|
|
clear_bit(epid, (void *)&epid_out_traffic);
|
|
}
|
|
|
|
dbg_epid("Setting up epid %d with devnum %d, endpoint %d and max_len %d (%s)",
|
|
epid, devnum, endpoint, maxlen, out_traffic ? "OUT" : "IN");
|
|
|
|
DBFEXIT;
|
|
return epid;
|
|
}
|
|
|
|
static void etrax_usb_free_epid(int epid)
|
|
{
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
if (!test_bit(epid, (void *)&epid_usage_bitmask)) {
|
|
warn("Trying to free unused epid %d", epid);
|
|
DBFEXIT;
|
|
return;
|
|
}
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
while (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold));
|
|
/* This will, among other things, set the valid field to 0. */
|
|
*R_USB_EPT_DATA = 0;
|
|
restore_flags(flags);
|
|
|
|
clear_bit(epid, (void *)&epid_usage_bitmask);
|
|
|
|
|
|
dbg_epid("Freed epid %d", epid);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int etrax_usb_lookup_epid(struct urb *urb)
|
|
{
|
|
int i;
|
|
__u32 data;
|
|
char devnum, endpoint, slow, out_traffic;
|
|
int maxlen;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
devnum = usb_pipedevice(urb->pipe);
|
|
endpoint = usb_pipeendpoint(urb->pipe);
|
|
slow = usb_pipeslow(urb->pipe);
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
/* We want both IN and OUT control traffic to be put on the same EP/SB list. */
|
|
out_traffic = 1;
|
|
} else {
|
|
out_traffic = usb_pipeout(urb->pipe);
|
|
}
|
|
|
|
/* Step through att epids. */
|
|
for (i = 0; i < NBR_OF_EPIDS; i++) {
|
|
if (test_bit(i, (void *)&epid_usage_bitmask) &&
|
|
test_bit(i, (void *)&epid_out_traffic) == out_traffic) {
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, i);
|
|
nop();
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
data = *R_USB_EPT_DATA_ISO;
|
|
restore_flags(flags);
|
|
|
|
if ((IO_MASK(R_USB_EPT_DATA_ISO, valid) & data) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, data) == devnum) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, data) == endpoint) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, data) == maxlen)) {
|
|
dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)",
|
|
i, devnum, endpoint, out_traffic ? "OUT" : "IN");
|
|
DBFEXIT;
|
|
return i;
|
|
}
|
|
} else {
|
|
data = *R_USB_EPT_DATA;
|
|
restore_flags(flags);
|
|
|
|
if ((IO_MASK(R_USB_EPT_DATA, valid) & data) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, dev, data) == devnum) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, ep, data) == endpoint) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, low_speed, data) == slow) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, max_len, data) == maxlen)) {
|
|
dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)",
|
|
i, devnum, endpoint, out_traffic ? "OUT" : "IN");
|
|
DBFEXIT;
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
static int etrax_usb_allocate_epid(void)
|
|
{
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
for (i = 0; i < NBR_OF_EPIDS; i++) {
|
|
if (!test_bit(i, (void *)&epid_usage_bitmask)) {
|
|
dbg_epid("Found free epid %d", i);
|
|
DBFEXIT;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
dbg_epid("Found no free epids");
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags)
|
|
{
|
|
etrax_hc_t *hc;
|
|
int ret = -EINVAL;
|
|
|
|
DBFENTER;
|
|
|
|
if (!urb->dev || !urb->dev->bus) {
|
|
return -ENODEV;
|
|
}
|
|
if (usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)) <= 0) {
|
|
info("Submit urb to pipe with maxpacketlen 0, pipe 0x%X\n", urb->pipe);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
if (urb->timeout) {
|
|
/* FIXME. */
|
|
warn("urb->timeout specified, ignoring.");
|
|
}
|
|
|
|
hc = (etrax_hc_t*)urb->dev->bus->hcpriv;
|
|
|
|
if (usb_pipedevice(urb->pipe) == hc->rh.devnum) {
|
|
/* This request is for the Virtual Root Hub. */
|
|
ret = etrax_rh_submit_urb(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_BULK) {
|
|
|
|
ret = etrax_usb_submit_bulk_urb(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
|
|
ret = etrax_usb_submit_ctrl_urb(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
|
|
int bustime;
|
|
|
|
if (urb->bandwidth == 0) {
|
|
bustime = usb_check_bandwidth(urb->dev, urb);
|
|
if (bustime < 0) {
|
|
ret = bustime;
|
|
} else {
|
|
ret = etrax_usb_submit_intr_urb(urb);
|
|
if (ret == 0)
|
|
usb_claim_bandwidth(urb->dev, urb, bustime, 0);
|
|
}
|
|
} else {
|
|
/* Bandwidth already set. */
|
|
ret = etrax_usb_submit_intr_urb(urb);
|
|
}
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
int bustime;
|
|
|
|
if (urb->bandwidth == 0) {
|
|
bustime = usb_check_bandwidth(urb->dev, urb);
|
|
if (bustime < 0) {
|
|
ret = bustime;
|
|
} else {
|
|
ret = etrax_usb_submit_isoc_urb(urb);
|
|
if (ret == 0)
|
|
usb_claim_bandwidth(urb->dev, urb, bustime, 0);
|
|
}
|
|
} else {
|
|
/* Bandwidth already set. */
|
|
ret = etrax_usb_submit_isoc_urb(urb);
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
if (ret != 0)
|
|
printk("Submit URB error %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int etrax_usb_unlink_urb(struct urb *urb, int status)
|
|
{
|
|
etrax_hc_t *hc;
|
|
etrax_urb_priv_t *urb_priv;
|
|
int epid;
|
|
unsigned int flags;
|
|
|
|
DBFENTER;
|
|
|
|
if (!urb) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Disable interrupts here since a descriptor interrupt for the isoc epid
|
|
will modify the sb list. This could possibly be done more granular, but
|
|
unlink_urb should not be used frequently anyway.
|
|
*/
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
if (!urb->dev || !urb->dev->bus) {
|
|
restore_flags(flags);
|
|
return -ENODEV;
|
|
}
|
|
if (!urb->hcpriv) {
|
|
/* This happens if a device driver calls unlink on an urb that
|
|
was never submitted (lazy driver) or if the urb was completed
|
|
while unlink was being called. */
|
|
restore_flags(flags);
|
|
return 0;
|
|
}
|
|
if (urb->transfer_flags & URB_ASYNC_UNLINK) {
|
|
/* FIXME. */
|
|
/* If URB_ASYNC_UNLINK is set:
|
|
unlink
|
|
move to a separate urb list
|
|
call complete at next sof with ECONNRESET
|
|
|
|
If not:
|
|
wait 1 ms
|
|
unlink
|
|
call complete with ENOENT
|
|
*/
|
|
warn("URB_ASYNC_UNLINK set, ignoring.");
|
|
}
|
|
|
|
/* One might think that urb->status = -EINPROGRESS would be a requirement for unlinking,
|
|
but that doesn't work for interrupt and isochronous traffic since they are completed
|
|
repeatedly, and urb->status is set then. That may in itself be a bug though. */
|
|
|
|
hc = urb->dev->bus->hcpriv;
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
epid = urb_priv->epid;
|
|
|
|
/* Set the urb status (synchronous unlink). */
|
|
urb->status = -ENOENT;
|
|
urb_priv->urb_state = UNLINK;
|
|
|
|
if (usb_pipedevice(urb->pipe) == hc->rh.devnum) {
|
|
int ret;
|
|
ret = etrax_rh_unlink_urb(urb);
|
|
DBFEXIT;
|
|
restore_flags(flags);
|
|
return ret;
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_BULK) {
|
|
|
|
dbg_bulk("Unlink of bulk urb (0x%lx)", (unsigned long)urb);
|
|
|
|
if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it and wait. */
|
|
TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Ah, the luxury of busy-wait. */
|
|
while (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[epid]));
|
|
}
|
|
/* Kicking dummy list out of the party. */
|
|
TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
|
|
dbg_ctrl("Unlink of ctrl urb (0x%lx)", (unsigned long)urb);
|
|
|
|
if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it and wait. */
|
|
TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Ah, the luxury of busy-wait. */
|
|
while (*R_DMA_CH8_SUB1_EP == virt_to_phys(&TxCtrlEPList[epid]));
|
|
}
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
|
|
|
|
dbg_intr("Unlink of intr urb (0x%lx)", (unsigned long)urb);
|
|
|
|
/* Separate function because it's a tad more complicated. */
|
|
etrax_usb_unlink_intr_urb(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
|
|
dbg_isoc("Unlink of isoc urb (0x%lx)", (unsigned long)urb);
|
|
|
|
if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it and wait. */
|
|
TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Ah, the luxury of busy-wait. */
|
|
while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid]));
|
|
}
|
|
}
|
|
|
|
/* Note that we need to remove the urb from the urb list *before* removing its SB
|
|
descriptors. (This means that the isoc eof handler might get a null urb when we
|
|
are unlinking the last urb.) */
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_BULK) {
|
|
|
|
urb_list_del(urb, epid);
|
|
TxBulkEPList[epid].sub = 0;
|
|
etrax_remove_from_sb_list(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
|
|
urb_list_del(urb, epid);
|
|
TxCtrlEPList[epid].sub = 0;
|
|
etrax_remove_from_sb_list(urb);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
|
|
|
|
urb_list_del(urb, epid);
|
|
/* Sanity check (should never happen). */
|
|
assert(urb_list_empty(epid));
|
|
|
|
/* Release allocated bandwidth. */
|
|
usb_release_bandwidth(urb->dev, urb, 0);
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
|
|
if (usb_pipeout(urb->pipe)) {
|
|
|
|
USB_SB_Desc_t *iter_sb, *prev_sb, *next_sb;
|
|
|
|
if (__urb_list_entry(urb, epid)) {
|
|
|
|
urb_list_del(urb, epid);
|
|
iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0;
|
|
prev_sb = 0;
|
|
while (iter_sb && (iter_sb != urb_priv->first_sb)) {
|
|
prev_sb = iter_sb;
|
|
iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
}
|
|
|
|
if (iter_sb == 0) {
|
|
/* Unlink of the URB currently being transmitted. */
|
|
prev_sb = 0;
|
|
iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0;
|
|
}
|
|
|
|
while (iter_sb && (iter_sb != urb_priv->last_sb)) {
|
|
iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
}
|
|
if (iter_sb) {
|
|
next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
} else {
|
|
/* This should only happen if the DMA has completed
|
|
processing the SB list for this EP while interrupts
|
|
are disabled. */
|
|
dbg_isoc("Isoc urb not found, already sent?");
|
|
next_sb = 0;
|
|
}
|
|
if (prev_sb) {
|
|
prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0;
|
|
} else {
|
|
TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0;
|
|
}
|
|
|
|
etrax_remove_from_sb_list(urb);
|
|
if (urb_list_empty(epid)) {
|
|
TxIsocEPList[epid].sub = 0;
|
|
dbg_isoc("Last isoc out urb epid %d", epid);
|
|
} else if (next_sb || prev_sb) {
|
|
dbg_isoc("Re-enable isoc out epid %d", epid);
|
|
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
} else {
|
|
TxIsocEPList[epid].sub = 0;
|
|
dbg_isoc("URB list non-empty and no SB list, EP disabled");
|
|
}
|
|
} else {
|
|
dbg_isoc("Urb 0x%p not found, completed already?", urb);
|
|
}
|
|
} else {
|
|
|
|
urb_list_del(urb, epid);
|
|
|
|
/* For in traffic there is only one SB descriptor for each EP even
|
|
though there may be several urbs (all urbs point at the same SB). */
|
|
if (urb_list_empty(epid)) {
|
|
/* No more urbs, remove the SB. */
|
|
TxIsocEPList[epid].sub = 0;
|
|
etrax_remove_from_sb_list(urb);
|
|
} else {
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
}
|
|
}
|
|
/* Release allocated bandwidth. */
|
|
usb_release_bandwidth(urb->dev, urb, 1);
|
|
}
|
|
/* Free the epid if urb list is empty. */
|
|
if (urb_list_empty(epid)) {
|
|
etrax_usb_free_epid(epid);
|
|
}
|
|
restore_flags(flags);
|
|
|
|
/* Must be done before calling completion handler. */
|
|
kfree(urb_priv);
|
|
urb->hcpriv = 0;
|
|
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
static int etrax_usb_get_frame_number(struct usb_device *usb_dev)
|
|
{
|
|
DBFENTER;
|
|
DBFEXIT;
|
|
return (*R_USB_FM_NUMBER & 0x7ff);
|
|
}
|
|
|
|
static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs)
|
|
{
|
|
DBFENTER;
|
|
|
|
/* This interrupt handler could be used when unlinking EP descriptors. */
|
|
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) {
|
|
USB_EP_Desc_t *ep;
|
|
|
|
//dbg_bulk("dma8_sub0_descr (BULK) intr.");
|
|
|
|
/* It should be safe clearing the interrupt here, since we don't expect to get a new
|
|
one until we restart the bulk channel. */
|
|
*R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do);
|
|
|
|
/* Wait while the DMA is running (though we don't expect it to be). */
|
|
while (*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd));
|
|
|
|
/* Advance the DMA to the next EP descriptor. */
|
|
ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP);
|
|
|
|
//dbg_bulk("descr intr: DMA is at 0x%lx", (unsigned long)ep);
|
|
|
|
/* ep->next is already a physical address; no need for a virt_to_phys. */
|
|
*R_DMA_CH8_SUB0_EP = ep->next;
|
|
|
|
/* Start the DMA bulk channel again. */
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start);
|
|
}
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) {
|
|
struct urb *urb;
|
|
int epid;
|
|
etrax_urb_priv_t *urb_priv;
|
|
unsigned long int flags;
|
|
|
|
dbg_ctrl("dma8_sub1_descr (CTRL) intr.");
|
|
*R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do);
|
|
|
|
/* The complete callback gets called so we cli. */
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
if ((TxCtrlEPList[epid].sub == 0) ||
|
|
(epid == DUMMY_EPID) ||
|
|
(epid == INVALID_EPID)) {
|
|
/* Nothing here to see. */
|
|
continue;
|
|
}
|
|
|
|
/* Get the first urb (if any). */
|
|
urb = urb_list_first(epid);
|
|
|
|
if (urb) {
|
|
|
|
/* Sanity check. */
|
|
assert(usb_pipetype(urb->pipe) == PIPE_CONTROL);
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
if (urb_priv->urb_state == WAITING_FOR_DESCR_INTR) {
|
|
assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)));
|
|
|
|
etrax_usb_complete_urb(urb, 0);
|
|
}
|
|
}
|
|
}
|
|
restore_flags(flags);
|
|
}
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) {
|
|
dbg_intr("dma8_sub2_descr (INTR) intr.");
|
|
*R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do);
|
|
}
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) {
|
|
struct urb *urb;
|
|
int epid;
|
|
int epid_done;
|
|
etrax_urb_priv_t *urb_priv;
|
|
USB_SB_Desc_t *sb_desc;
|
|
|
|
usb_isoc_complete_data_t *comp_data = NULL;
|
|
|
|
/* One or more isoc out transfers are done. */
|
|
dbg_isoc("dma8_sub3_descr (ISOC) intr.");
|
|
|
|
/* For each isoc out EP search for the first sb_desc with the intr flag
|
|
set. This descriptor must be the last packet from an URB. Then
|
|
traverse the URB list for the EP until the URB with urb_priv->last_sb
|
|
matching the intr-marked sb_desc is found. All URBs before this have
|
|
been sent.
|
|
*/
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
/* Skip past epids with no SB lists, epids used for in traffic,
|
|
and special (dummy, invalid) epids. */
|
|
if ((TxIsocEPList[epid].sub == 0) ||
|
|
(test_bit(epid, (void *)&epid_out_traffic) == 0) ||
|
|
(epid == DUMMY_EPID) ||
|
|
(epid == INVALID_EPID)) {
|
|
/* Nothing here to see. */
|
|
continue;
|
|
}
|
|
sb_desc = phys_to_virt(TxIsocEPList[epid].sub);
|
|
|
|
/* Find the last descriptor of the currently active URB for this ep.
|
|
This is the first descriptor in the sub list marked for a descriptor
|
|
interrupt. */
|
|
while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) {
|
|
sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0;
|
|
}
|
|
assert(sb_desc);
|
|
|
|
dbg_isoc("Check epid %d, sub 0x%p, SB 0x%p",
|
|
epid,
|
|
phys_to_virt(TxIsocEPList[epid].sub),
|
|
sb_desc);
|
|
|
|
epid_done = 0;
|
|
|
|
/* Get the first urb (if any). */
|
|
urb = urb_list_first(epid);
|
|
assert(urb);
|
|
|
|
while (urb && !epid_done) {
|
|
|
|
/* Sanity check. */
|
|
assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS);
|
|
|
|
if (!usb_pipeout(urb->pipe)) {
|
|
/* descr interrupts are generated only for out pipes. */
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
if (sb_desc != urb_priv->last_sb) {
|
|
|
|
/* This urb has been sent. */
|
|
dbg_isoc("out URB 0x%p sent", urb);
|
|
|
|
urb_priv->urb_state = TRANSFER_DONE;
|
|
|
|
} else if ((sb_desc == urb_priv->last_sb) &&
|
|
!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) {
|
|
|
|
assert((sb_desc->command & IO_MASK(USB_SB_command, eol)) == IO_STATE(USB_SB_command, eol, yes));
|
|
assert(sb_desc->next == 0);
|
|
|
|
dbg_isoc("out URB 0x%p last in list, epid disabled", urb);
|
|
TxIsocEPList[epid].sub = 0;
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
urb_priv->urb_state = TRANSFER_DONE;
|
|
|
|
epid_done = 1;
|
|
|
|
} else {
|
|
epid_done = 1;
|
|
}
|
|
if (!epid_done) {
|
|
urb = urb_list_next(urb, epid);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
*R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do);
|
|
|
|
comp_data = (usb_isoc_complete_data_t*)kmem_cache_alloc(isoc_compl_cache, SLAB_ATOMIC);
|
|
assert(comp_data != NULL);
|
|
|
|
INIT_WORK(&comp_data->usb_bh, etrax_usb_isoc_descr_interrupt_bottom_half, comp_data);
|
|
schedule_work(&comp_data->usb_bh);
|
|
}
|
|
|
|
DBFEXIT;
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data)
|
|
{
|
|
usb_isoc_complete_data_t *comp_data = (usb_isoc_complete_data_t*)data;
|
|
|
|
struct urb *urb;
|
|
int epid;
|
|
int epid_done;
|
|
etrax_urb_priv_t *urb_priv;
|
|
|
|
DBFENTER;
|
|
|
|
dbg_isoc("dma8_sub3_descr (ISOC) bottom half.");
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
unsigned long flags;
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
epid_done = 0;
|
|
|
|
/* The descriptor interrupt handler has marked all transmitted isoch. out
|
|
URBs with TRANSFER_DONE. Now we traverse all epids and for all that
|
|
have isoch. out traffic traverse its URB list and complete the
|
|
transmitted URB.
|
|
*/
|
|
|
|
while (!epid_done) {
|
|
|
|
/* Get the first urb (if any). */
|
|
urb = urb_list_first(epid);
|
|
if (urb == 0) {
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) {
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
if (!usb_pipeout(urb->pipe)) {
|
|
/* descr interrupts are generated only for out pipes. */
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
dbg_isoc("Check epid %d, SB 0x%p", epid, (char*)TxIsocEPList[epid].sub);
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
if (urb_priv->urb_state == TRANSFER_DONE) {
|
|
int i;
|
|
struct usb_iso_packet_descriptor *packet;
|
|
|
|
/* This urb has been sent. */
|
|
dbg_isoc("Completing isoc out URB 0x%p", urb);
|
|
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
packet = &urb->iso_frame_desc[i];
|
|
packet->status = 0;
|
|
packet->actual_length = packet->length;
|
|
}
|
|
|
|
etrax_usb_complete_isoc_urb(urb, 0);
|
|
|
|
if (urb_list_empty(epid)) {
|
|
etrax_usb_free_epid(epid);
|
|
epid_done = 1;
|
|
}
|
|
} else {
|
|
epid_done = 1;
|
|
}
|
|
}
|
|
restore_flags(flags);
|
|
|
|
}
|
|
kmem_cache_free(isoc_compl_cache, comp_data);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs)
|
|
{
|
|
struct urb *urb;
|
|
etrax_urb_priv_t *urb_priv;
|
|
int epid = 0;
|
|
unsigned long flags;
|
|
|
|
/* Isoc diagnostics. */
|
|
static int curr_fm = 0;
|
|
static int prev_fm = 0;
|
|
|
|
DBFENTER;
|
|
|
|
/* Clear this interrupt. */
|
|
*R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do);
|
|
|
|
/* Note that this while loop assumes that all packets span only
|
|
one rx descriptor. */
|
|
|
|
/* The reason we cli here is that we call the driver's callback functions. */
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
while (myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) {
|
|
|
|
epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status);
|
|
urb = urb_list_first(epid);
|
|
|
|
//printk("eop for epid %d, first urb 0x%lx\n", epid, (unsigned long)urb);
|
|
|
|
if (!urb) {
|
|
err("No urb for epid %d in rx interrupt", epid);
|
|
__dump_ept_data(epid);
|
|
goto skip_out;
|
|
}
|
|
|
|
/* Note that we cannot indescriminately assert(usb_pipein(urb->pipe)) since
|
|
ctrl pipes are not. */
|
|
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) {
|
|
__u32 r_usb_ept_data;
|
|
int no_error = 0;
|
|
|
|
assert(test_bit(epid, (void *)&epid_usage_bitmask));
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
r_usb_ept_data = *R_USB_EPT_DATA_ISO;
|
|
|
|
if ((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) &&
|
|
(myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) {
|
|
/* Not an error, just a failure to receive an expected iso
|
|
in packet in this frame. This is not documented
|
|
in the designers reference.
|
|
*/
|
|
no_error++;
|
|
} else {
|
|
warn("R_USB_EPT_DATA_ISO for epid %d = 0x%x", epid, r_usb_ept_data);
|
|
}
|
|
} else {
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
warn("R_USB_EPT_DATA for epid %d = 0x%x", epid, r_usb_ept_data);
|
|
}
|
|
|
|
if (!no_error){
|
|
warn("error in rx desc->status, epid %d, first urb = 0x%lx",
|
|
epid, (unsigned long)urb);
|
|
__dump_in_desc(myNextRxDesc);
|
|
|
|
warn("R_USB_STATUS = 0x%x", *R_USB_STATUS);
|
|
|
|
/* Check that ept was disabled when error occurred. */
|
|
switch (usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
break;
|
|
case PIPE_CONTROL:
|
|
assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
assert(!(TxIntrEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
assert(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
break;
|
|
default:
|
|
warn("etrax_usb_rx_interrupt: bad pipetype %d in urb 0x%p",
|
|
usb_pipetype(urb->pipe),
|
|
urb);
|
|
}
|
|
etrax_usb_complete_urb(urb, -EPROTO);
|
|
goto skip_out;
|
|
}
|
|
}
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
if ((usb_pipetype(urb->pipe) == PIPE_BULK) ||
|
|
(usb_pipetype(urb->pipe) == PIPE_CONTROL) ||
|
|
(usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) {
|
|
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) {
|
|
/* We get nodata for empty data transactions, and the rx descriptor's
|
|
hw_len field is not valid in that case. No data to copy in other
|
|
words. */
|
|
} else {
|
|
/* Make sure the data fits in the buffer. */
|
|
assert(urb_priv->rx_offset + myNextRxDesc->hw_len
|
|
<= urb->transfer_buffer_length);
|
|
|
|
memcpy(urb->transfer_buffer + urb_priv->rx_offset,
|
|
phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len);
|
|
urb_priv->rx_offset += myNextRxDesc->hw_len;
|
|
}
|
|
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) {
|
|
if ((usb_pipetype(urb->pipe) == PIPE_CONTROL) &&
|
|
((TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)) ==
|
|
IO_STATE(USB_EP_command, enable, yes))) {
|
|
/* The EP is still enabled, so the OUT packet used to ack
|
|
the in data is probably not processed yet. If the EP
|
|
sub pointer has not moved beyond urb_priv->last_sb mark
|
|
it for a descriptor interrupt and complete the urb in
|
|
the descriptor interrupt handler.
|
|
*/
|
|
USB_SB_Desc_t *sub = TxCtrlEPList[urb_priv->epid].sub ? phys_to_virt(TxCtrlEPList[urb_priv->epid].sub) : 0;
|
|
|
|
while ((sub != NULL) && (sub != urb_priv->last_sb)) {
|
|
sub = sub->next ? phys_to_virt(sub->next) : 0;
|
|
}
|
|
if (sub != NULL) {
|
|
/* The urb has not been fully processed. */
|
|
urb_priv->urb_state = WAITING_FOR_DESCR_INTR;
|
|
} else {
|
|
warn("(CTRL) epid enabled and urb (0x%p) processed, ep->sub=0x%p", urb, (char*)TxCtrlEPList[urb_priv->epid].sub);
|
|
etrax_usb_complete_urb(urb, 0);
|
|
}
|
|
} else {
|
|
etrax_usb_complete_urb(urb, 0);
|
|
}
|
|
}
|
|
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
|
|
struct usb_iso_packet_descriptor *packet;
|
|
|
|
if (urb_priv->urb_state == UNLINK) {
|
|
info("Ignoring rx data for urb being unlinked.");
|
|
goto skip_out;
|
|
} else if (urb_priv->urb_state == NOT_STARTED) {
|
|
info("What? Got rx data for urb that isn't started?");
|
|
goto skip_out;
|
|
}
|
|
|
|
packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter];
|
|
packet->status = 0;
|
|
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) {
|
|
/* We get nodata for empty data transactions, and the rx descriptor's
|
|
hw_len field is not valid in that case. We copy 0 bytes however to
|
|
stay in synch. */
|
|
packet->actual_length = 0;
|
|
} else {
|
|
packet->actual_length = myNextRxDesc->hw_len;
|
|
/* Make sure the data fits in the buffer. */
|
|
assert(packet->actual_length <= packet->length);
|
|
memcpy(urb->transfer_buffer + packet->offset,
|
|
phys_to_virt(myNextRxDesc->buf), packet->actual_length);
|
|
}
|
|
|
|
/* Increment the packet counter. */
|
|
urb_priv->isoc_packet_counter++;
|
|
|
|
/* Note that we don't care about the eot field in the rx descriptor's status.
|
|
It will always be set for isoc traffic. */
|
|
if (urb->number_of_packets == urb_priv->isoc_packet_counter) {
|
|
|
|
/* Out-of-synch diagnostics. */
|
|
curr_fm = (*R_USB_FM_NUMBER & 0x7ff);
|
|
if (((prev_fm + urb_priv->isoc_packet_counter) % (0x7ff + 1)) != curr_fm) {
|
|
/* This test is wrong, if there is more than one isoc
|
|
in endpoint active it will always calculate wrong
|
|
since prev_fm is shared by all endpoints.
|
|
|
|
FIXME Make this check per URB using urb->start_frame.
|
|
*/
|
|
dbg_isoc("Out of synch? Previous frame = %d, current frame = %d",
|
|
prev_fm, curr_fm);
|
|
|
|
}
|
|
prev_fm = curr_fm;
|
|
|
|
/* Complete the urb with status OK. */
|
|
etrax_usb_complete_isoc_urb(urb, 0);
|
|
}
|
|
}
|
|
|
|
skip_out:
|
|
|
|
/* DMA IN cache bug. Flush the DMA IN buffer from the cache. (struct etrax_dma_descr
|
|
has the same layout as USB_IN_Desc for the relevant fields.) */
|
|
prepare_rx_descriptor((struct etrax_dma_descr*)myNextRxDesc);
|
|
|
|
myPrevRxDesc = myNextRxDesc;
|
|
myPrevRxDesc->command |= IO_MASK(USB_IN_command, eol);
|
|
myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol);
|
|
myLastRxDesc = myPrevRxDesc;
|
|
|
|
myNextRxDesc->status = 0;
|
|
myNextRxDesc = phys_to_virt(myNextRxDesc->next);
|
|
}
|
|
|
|
restore_flags(flags);
|
|
|
|
DBFEXIT;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/* This function will unlink the SB descriptors associated with this urb. */
|
|
static int etrax_remove_from_sb_list(struct urb *urb)
|
|
{
|
|
USB_SB_Desc_t *next_sb, *first_sb, *last_sb;
|
|
etrax_urb_priv_t *urb_priv;
|
|
int i = 0;
|
|
|
|
DBFENTER;
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
/* Just a sanity check. Since we don't fiddle with the DMA list the EP descriptor
|
|
doesn't really need to be disabled, it's just that we expect it to be. */
|
|
if (usb_pipetype(urb->pipe) == PIPE_BULK) {
|
|
assert(!(TxBulkEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)));
|
|
} else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)));
|
|
}
|
|
|
|
first_sb = urb_priv->first_sb;
|
|
last_sb = urb_priv->last_sb;
|
|
|
|
assert(first_sb);
|
|
assert(last_sb);
|
|
|
|
while (first_sb != last_sb) {
|
|
next_sb = (USB_SB_Desc_t *)phys_to_virt(first_sb->next);
|
|
kmem_cache_free(usb_desc_cache, first_sb);
|
|
first_sb = next_sb;
|
|
i++;
|
|
}
|
|
kmem_cache_free(usb_desc_cache, last_sb);
|
|
i++;
|
|
dbg_sb("%d SB descriptors freed", i);
|
|
/* Compare i with urb->number_of_packets for Isoc traffic.
|
|
Should be same when calling unlink_urb */
|
|
|
|
DBFEXIT;
|
|
|
|
return i;
|
|
}
|
|
|
|
static int etrax_usb_submit_bulk_urb(struct urb *urb)
|
|
{
|
|
int epid;
|
|
int empty;
|
|
unsigned long flags;
|
|
etrax_urb_priv_t *urb_priv;
|
|
|
|
DBFENTER;
|
|
|
|
/* Epid allocation, empty check and list add must be protected.
|
|
Read about this in etrax_usb_submit_ctrl_urb. */
|
|
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
epid = etrax_usb_setup_epid(urb);
|
|
if (epid == -1) {
|
|
DBFEXIT;
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
empty = urb_list_empty(epid);
|
|
urb_list_add(urb, epid);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
|
|
dbg_bulk("Adding bulk %s urb 0x%lx to %s list, epid %d",
|
|
usb_pipein(urb->pipe) ? "IN" : "OUT", (unsigned long)urb, empty ? "empty" : "", epid);
|
|
|
|
/* Mark the urb as being in progress. */
|
|
urb->status = -EINPROGRESS;
|
|
|
|
/* Setup the hcpriv data. */
|
|
urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG);
|
|
assert(urb_priv != NULL);
|
|
/* This sets rx_offset to 0. */
|
|
memset(urb_priv, 0, sizeof(etrax_urb_priv_t));
|
|
urb_priv->urb_state = NOT_STARTED;
|
|
urb->hcpriv = urb_priv;
|
|
|
|
if (empty) {
|
|
etrax_usb_add_to_bulk_sb_list(urb, epid);
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid)
|
|
{
|
|
USB_SB_Desc_t *sb_desc;
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
unsigned long flags;
|
|
char maxlen;
|
|
|
|
DBFENTER;
|
|
|
|
dbg_bulk("etrax_usb_add_to_bulk_sb_list, urb 0x%lx", (unsigned long)urb);
|
|
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
|
|
sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(sb_desc != NULL);
|
|
memset(sb_desc, 0, sizeof(USB_SB_Desc_t));
|
|
|
|
|
|
if (usb_pipeout(urb->pipe)) {
|
|
|
|
dbg_bulk("Grabbing bulk OUT, urb 0x%lx, epid %d", (unsigned long)urb, epid);
|
|
|
|
/* This is probably a sanity check of the bulk transaction length
|
|
not being larger than 64 kB. */
|
|
if (urb->transfer_buffer_length > 0xffff) {
|
|
panic("urb->transfer_buffer_length > 0xffff");
|
|
}
|
|
|
|
sb_desc->sw_len = urb->transfer_buffer_length;
|
|
|
|
/* The rem field is don't care if it's not a full-length transfer, so setting
|
|
it shouldn't hurt. Also, rem isn't used for OUT traffic. */
|
|
sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, out) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
/* The full field is set to yes, even if we don't actually check that this is
|
|
a full-length transfer (i.e., that transfer_buffer_length % maxlen = 0).
|
|
Setting full prevents the USB controller from sending an empty packet in
|
|
that case. However, if URB_ZERO_PACKET was set we want that. */
|
|
if (!(urb->transfer_flags & URB_ZERO_PACKET)) {
|
|
sb_desc->command |= IO_STATE(USB_SB_command, full, yes);
|
|
}
|
|
|
|
sb_desc->buf = virt_to_phys(urb->transfer_buffer);
|
|
sb_desc->next = 0;
|
|
|
|
} else if (usb_pipein(urb->pipe)) {
|
|
|
|
dbg_bulk("Grabbing bulk IN, urb 0x%lx, epid %d", (unsigned long)urb, epid);
|
|
|
|
sb_desc->sw_len = urb->transfer_buffer_length ?
|
|
(urb->transfer_buffer_length - 1) / maxlen + 1 : 0;
|
|
|
|
/* The rem field is don't care if it's not a full-length transfer, so setting
|
|
it shouldn't hurt. */
|
|
sb_desc->command =
|
|
(IO_FIELD(USB_SB_command, rem,
|
|
urb->transfer_buffer_length % maxlen) |
|
|
IO_STATE(USB_SB_command, tt, in) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
sb_desc->buf = 0;
|
|
sb_desc->next = 0;
|
|
}
|
|
|
|
urb_priv->first_sb = sb_desc;
|
|
urb_priv->last_sb = sb_desc;
|
|
urb_priv->epid = epid;
|
|
|
|
urb->hcpriv = urb_priv;
|
|
|
|
/* Reset toggle bits and reset error count. */
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
|
|
/* FIXME: Is this a special case since the hold field is checked,
|
|
or should we check hold in a lot of other cases as well? */
|
|
if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) {
|
|
panic("Hold was set in %s", __FUNCTION__);
|
|
}
|
|
|
|
/* Reset error counters (regardless of which direction this traffic is). */
|
|
*R_USB_EPT_DATA &=
|
|
~(IO_MASK(R_USB_EPT_DATA, error_count_in) |
|
|
IO_MASK(R_USB_EPT_DATA, error_count_out));
|
|
|
|
/* Software must preset the toggle bits. */
|
|
if (usb_pipeout(urb->pipe)) {
|
|
char toggle =
|
|
usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe));
|
|
*R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out);
|
|
*R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle);
|
|
} else {
|
|
char toggle =
|
|
usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe));
|
|
*R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in);
|
|
*R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle);
|
|
}
|
|
|
|
/* Assert that the EP descriptor is disabled. */
|
|
assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
|
|
/* The reason we set the EP's sub pointer directly instead of
|
|
walking the SB list and linking it last in the list is that we only
|
|
have one active urb at a time (the rest are queued). */
|
|
|
|
/* Note that we cannot have interrupts running when we have set the SB descriptor
|
|
but the EP is not yet enabled. If a bulk eot happens for another EP, we will
|
|
find this EP disabled and with a SB != 0, which will make us think that it's done. */
|
|
TxBulkEPList[epid].sub = virt_to_phys(sb_desc);
|
|
TxBulkEPList[epid].hw_len = 0;
|
|
/* Note that we don't have to fill in the ep_id field since this
|
|
was done when we allocated the EP descriptors in init_tx_bulk_ep. */
|
|
|
|
/* Check if the dummy list is already with us (if several urbs were queued). */
|
|
if (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0])) {
|
|
|
|
dbg_bulk("Inviting dummy list to the party for urb 0x%lx, epid %d",
|
|
(unsigned long)urb, epid);
|
|
|
|
/* The last EP in the dummy list already has its next pointer set to
|
|
TxBulkEPList[epid].next. */
|
|
|
|
/* We don't need to check if the DMA is at this EP or not before changing the
|
|
next pointer, since we will do it in one 32-bit write (EP descriptors are
|
|
32-bit aligned). */
|
|
TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]);
|
|
}
|
|
/* Enable the EP descr. */
|
|
dbg_bulk("Enabling bulk EP for urb 0x%lx, epid %d", (unsigned long)urb, epid);
|
|
TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
/* Everything is set up, safe to enable interrupts again. */
|
|
restore_flags(flags);
|
|
|
|
/* If the DMA bulk channel isn't running, we need to restart it if it
|
|
has stopped at the last EP descriptor (DMA stopped because there was
|
|
no more traffic) or if it has stopped at a dummy EP with the intr flag
|
|
set (DMA stopped because we were too slow in inserting new traffic). */
|
|
if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) {
|
|
|
|
USB_EP_Desc_t *ep;
|
|
ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP);
|
|
dbg_bulk("DMA channel not running in add");
|
|
dbg_bulk("DMA is at 0x%lx", (unsigned long)ep);
|
|
|
|
if (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[NBR_OF_EPIDS - 1]) ||
|
|
(ep->command & 0x8) >> 3) {
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start);
|
|
/* Update/restart the bulk start timer since we just started the channel. */
|
|
mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL);
|
|
/* Update/restart the bulk eot timer since we just inserted traffic. */
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_complete_bulk_urb(struct urb *urb, int status)
|
|
{
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
int epid = urb_priv->epid;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
if (status)
|
|
warn("Completing bulk urb with status %d.", status);
|
|
|
|
dbg_bulk("Completing bulk urb 0x%lx for epid %d", (unsigned long)urb, epid);
|
|
|
|
/* Update the urb list. */
|
|
urb_list_del(urb, epid);
|
|
|
|
/* For an IN pipe, we always set the actual length, regardless of whether there was
|
|
an error or not (which means the device driver can use the data if it wants to). */
|
|
if (usb_pipein(urb->pipe)) {
|
|
urb->actual_length = urb_priv->rx_offset;
|
|
} else {
|
|
/* Set actual_length for OUT urbs also; the USB mass storage driver seems
|
|
to want that. We wouldn't know of any partial writes if there was an error. */
|
|
if (status == 0) {
|
|
urb->actual_length = urb->transfer_buffer_length;
|
|
} else {
|
|
urb->actual_length = 0;
|
|
}
|
|
}
|
|
|
|
/* FIXME: Is there something of the things below we shouldn't do if there was an error?
|
|
Like, maybe we shouldn't toggle the toggle bits, or maybe we shouldn't insert more traffic. */
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
|
|
/* We need to fiddle with the toggle bits because the hardware doesn't do it for us. */
|
|
if (usb_pipeout(urb->pipe)) {
|
|
char toggle =
|
|
IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA);
|
|
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe), toggle);
|
|
} else {
|
|
char toggle =
|
|
IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA);
|
|
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe), toggle);
|
|
}
|
|
restore_flags(flags);
|
|
|
|
/* Remember to free the SBs. */
|
|
etrax_remove_from_sb_list(urb);
|
|
kfree(urb_priv);
|
|
urb->hcpriv = 0;
|
|
|
|
/* If there are any more urb's in the list we'd better start sending */
|
|
if (!urb_list_empty(epid)) {
|
|
|
|
struct urb *new_urb;
|
|
|
|
/* Get the first urb. */
|
|
new_urb = urb_list_first(epid);
|
|
assert(new_urb);
|
|
|
|
dbg_bulk("More bulk for epid %d", epid);
|
|
|
|
etrax_usb_add_to_bulk_sb_list(new_urb, epid);
|
|
}
|
|
|
|
urb->status = status;
|
|
|
|
/* We let any non-zero status from the layer above have precedence. */
|
|
if (status == 0) {
|
|
/* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length)
|
|
is to be treated as an error. */
|
|
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
|
|
if (usb_pipein(urb->pipe) &&
|
|
(urb->actual_length !=
|
|
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) {
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
if (urb_list_empty(epid)) {
|
|
/* This means that this EP is now free, deconfigure it. */
|
|
etrax_usb_free_epid(epid);
|
|
|
|
/* No more traffic; time to clean up.
|
|
Must set sub pointer to 0, since we look at the sub pointer when handling
|
|
the bulk eot interrupt. */
|
|
|
|
dbg_bulk("No bulk for epid %d", epid);
|
|
|
|
TxBulkEPList[epid].sub = 0;
|
|
|
|
/* Unlink the dummy list. */
|
|
|
|
dbg_bulk("Kicking dummy list out of party for urb 0x%lx, epid %d",
|
|
(unsigned long)urb, epid);
|
|
|
|
/* No need to wait for the DMA before changing the next pointer.
|
|
The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use
|
|
the last one (INVALID_EPID) for actual traffic. */
|
|
TxBulkEPList[epid].next =
|
|
virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]);
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int etrax_usb_submit_ctrl_urb(struct urb *urb)
|
|
{
|
|
int epid;
|
|
int empty;
|
|
unsigned long flags;
|
|
etrax_urb_priv_t *urb_priv;
|
|
|
|
DBFENTER;
|
|
|
|
/* FIXME: Return -ENXIO if there is already a queued urb for this endpoint? */
|
|
|
|
/* Epid allocation, empty check and list add must be protected.
|
|
|
|
Epid allocation because if we find an existing epid for this endpoint an urb might be
|
|
completed (emptying the list) before we add the new urb to the list, causing the epid
|
|
to be de-allocated. We would then start the transfer with an invalid epid -> epid attn.
|
|
|
|
Empty check and add because otherwise we might conclude that the list is not empty,
|
|
after which it becomes empty before we add the new urb to the list, causing us not to
|
|
insert the new traffic into the SB list. */
|
|
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
epid = etrax_usb_setup_epid(urb);
|
|
if (epid == -1) {
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
DBFEXIT;
|
|
return -ENOMEM;
|
|
}
|
|
empty = urb_list_empty(epid);
|
|
urb_list_add(urb, epid);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
|
|
dbg_ctrl("Adding ctrl urb 0x%lx to %s list, epid %d",
|
|
(unsigned long)urb, empty ? "empty" : "", epid);
|
|
|
|
/* Mark the urb as being in progress. */
|
|
urb->status = -EINPROGRESS;
|
|
|
|
/* Setup the hcpriv data. */
|
|
urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG);
|
|
assert(urb_priv != NULL);
|
|
/* This sets rx_offset to 0. */
|
|
memset(urb_priv, 0, sizeof(etrax_urb_priv_t));
|
|
urb_priv->urb_state = NOT_STARTED;
|
|
urb->hcpriv = urb_priv;
|
|
|
|
if (empty) {
|
|
etrax_usb_add_to_ctrl_sb_list(urb, epid);
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid)
|
|
{
|
|
USB_SB_Desc_t *sb_desc_setup;
|
|
USB_SB_Desc_t *sb_desc_data;
|
|
USB_SB_Desc_t *sb_desc_status;
|
|
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
|
|
unsigned long flags;
|
|
char maxlen;
|
|
|
|
DBFENTER;
|
|
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
|
|
sb_desc_setup = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(sb_desc_setup != NULL);
|
|
sb_desc_status = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(sb_desc_status != NULL);
|
|
|
|
/* Initialize the mandatory setup SB descriptor (used only in control transfers) */
|
|
sb_desc_setup->sw_len = 8;
|
|
sb_desc_setup->command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, setup) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes));
|
|
|
|
sb_desc_setup->buf = virt_to_phys(urb->setup_packet);
|
|
|
|
if (usb_pipeout(urb->pipe)) {
|
|
dbg_ctrl("Transfer for epid %d is OUT", epid);
|
|
|
|
/* If this Control OUT transfer has an optional data stage we add an OUT token
|
|
before the mandatory IN (status) token, hence the reordered SB list */
|
|
|
|
sb_desc_setup->next = virt_to_phys(sb_desc_status);
|
|
if (urb->transfer_buffer) {
|
|
|
|
dbg_ctrl("This OUT transfer has an extra data stage");
|
|
|
|
sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(sb_desc_data != NULL);
|
|
|
|
sb_desc_setup->next = virt_to_phys(sb_desc_data);
|
|
|
|
sb_desc_data->sw_len = urb->transfer_buffer_length;
|
|
sb_desc_data->command = (IO_STATE(USB_SB_command, tt, out) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes));
|
|
sb_desc_data->buf = virt_to_phys(urb->transfer_buffer);
|
|
sb_desc_data->next = virt_to_phys(sb_desc_status);
|
|
}
|
|
|
|
sb_desc_status->sw_len = 1;
|
|
sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, in) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, intr, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
sb_desc_status->buf = 0;
|
|
sb_desc_status->next = 0;
|
|
|
|
} else if (usb_pipein(urb->pipe)) {
|
|
|
|
dbg_ctrl("Transfer for epid %d is IN", epid);
|
|
dbg_ctrl("transfer_buffer_length = %d", urb->transfer_buffer_length);
|
|
dbg_ctrl("rem is calculated to %d", urb->transfer_buffer_length % maxlen);
|
|
|
|
sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(sb_desc_data != NULL);
|
|
|
|
sb_desc_setup->next = virt_to_phys(sb_desc_data);
|
|
|
|
sb_desc_data->sw_len = urb->transfer_buffer_length ?
|
|
(urb->transfer_buffer_length - 1) / maxlen + 1 : 0;
|
|
dbg_ctrl("sw_len got %d", sb_desc_data->sw_len);
|
|
|
|
sb_desc_data->command =
|
|
(IO_FIELD(USB_SB_command, rem,
|
|
urb->transfer_buffer_length % maxlen) |
|
|
IO_STATE(USB_SB_command, tt, in) |
|
|
IO_STATE(USB_SB_command, eot, yes));
|
|
|
|
sb_desc_data->buf = 0;
|
|
sb_desc_data->next = virt_to_phys(sb_desc_status);
|
|
|
|
/* Read comment at zout_buffer declaration for an explanation to this. */
|
|
sb_desc_status->sw_len = 1;
|
|
sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, intr, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
sb_desc_status->buf = virt_to_phys(&zout_buffer[0]);
|
|
sb_desc_status->next = 0;
|
|
}
|
|
|
|
urb_priv->first_sb = sb_desc_setup;
|
|
urb_priv->last_sb = sb_desc_status;
|
|
urb_priv->epid = epid;
|
|
|
|
urb_priv->urb_state = STARTED;
|
|
|
|
/* Reset toggle bits and reset error count, remember to di and ei */
|
|
/* Warning: it is possible that this locking doesn't work with bottom-halves */
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) {
|
|
panic("Hold was set in %s", __FUNCTION__);
|
|
}
|
|
|
|
|
|
/* FIXME: Compare with etrax_usb_add_to_bulk_sb_list where the toggle bits
|
|
are set to a specific value. Why the difference? Read "Transfer and Toggle Bits
|
|
in Designer's Reference, p. 8 - 11. */
|
|
*R_USB_EPT_DATA &=
|
|
~(IO_MASK(R_USB_EPT_DATA, error_count_in) |
|
|
IO_MASK(R_USB_EPT_DATA, error_count_out) |
|
|
IO_MASK(R_USB_EPT_DATA, t_in) |
|
|
IO_MASK(R_USB_EPT_DATA, t_out));
|
|
|
|
/* Since we use the rx interrupt to complete ctrl urbs, we can enable interrupts now
|
|
(i.e. we don't check the sub pointer on an eot interrupt like we do for bulk traffic). */
|
|
restore_flags(flags);
|
|
|
|
/* Assert that the EP descriptor is disabled. */
|
|
assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
|
|
/* Set up and enable the EP descriptor. */
|
|
TxCtrlEPList[epid].sub = virt_to_phys(sb_desc_setup);
|
|
TxCtrlEPList[epid].hw_len = 0;
|
|
TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
/* We start the DMA sub channel without checking if it's running or not, because:
|
|
1) If it's already running, issuing the start command is a nop.
|
|
2) We avoid a test-and-set race condition. */
|
|
*R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status)
|
|
{
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
int epid = urb_priv->epid;
|
|
|
|
DBFENTER;
|
|
|
|
if (status)
|
|
warn("Completing ctrl urb with status %d.", status);
|
|
|
|
dbg_ctrl("Completing ctrl epid %d, urb 0x%lx", epid, (unsigned long)urb);
|
|
|
|
/* Remove this urb from the list. */
|
|
urb_list_del(urb, epid);
|
|
|
|
/* For an IN pipe, we always set the actual length, regardless of whether there was
|
|
an error or not (which means the device driver can use the data if it wants to). */
|
|
if (usb_pipein(urb->pipe)) {
|
|
urb->actual_length = urb_priv->rx_offset;
|
|
}
|
|
|
|
/* FIXME: Is there something of the things below we shouldn't do if there was an error?
|
|
Like, maybe we shouldn't insert more traffic. */
|
|
|
|
/* Remember to free the SBs. */
|
|
etrax_remove_from_sb_list(urb);
|
|
kfree(urb_priv);
|
|
urb->hcpriv = 0;
|
|
|
|
/* If there are any more urbs in the list we'd better start sending. */
|
|
if (!urb_list_empty(epid)) {
|
|
struct urb *new_urb;
|
|
|
|
/* Get the first urb. */
|
|
new_urb = urb_list_first(epid);
|
|
assert(new_urb);
|
|
|
|
dbg_ctrl("More ctrl for epid %d, first urb = 0x%lx", epid, (unsigned long)new_urb);
|
|
|
|
etrax_usb_add_to_ctrl_sb_list(new_urb, epid);
|
|
}
|
|
|
|
urb->status = status;
|
|
|
|
/* We let any non-zero status from the layer above have precedence. */
|
|
if (status == 0) {
|
|
/* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length)
|
|
is to be treated as an error. */
|
|
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
|
|
if (usb_pipein(urb->pipe) &&
|
|
(urb->actual_length !=
|
|
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) {
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
if (urb_list_empty(epid)) {
|
|
/* No more traffic. Time to clean up. */
|
|
etrax_usb_free_epid(epid);
|
|
/* Must set sub pointer to 0. */
|
|
dbg_ctrl("No ctrl for epid %d", epid);
|
|
TxCtrlEPList[epid].sub = 0;
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int etrax_usb_submit_intr_urb(struct urb *urb)
|
|
{
|
|
|
|
int epid;
|
|
|
|
DBFENTER;
|
|
|
|
if (usb_pipeout(urb->pipe)) {
|
|
/* Unsupported transfer type.
|
|
We don't support interrupt out traffic. (If we do, we can't support
|
|
intervals for neither in or out traffic, but are forced to schedule all
|
|
interrupt traffic in one frame.) */
|
|
return -EINVAL;
|
|
}
|
|
|
|
epid = etrax_usb_setup_epid(urb);
|
|
if (epid == -1) {
|
|
DBFEXIT;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!urb_list_empty(epid)) {
|
|
/* There is already a queued urb for this endpoint. */
|
|
etrax_usb_free_epid(epid);
|
|
return -ENXIO;
|
|
}
|
|
|
|
urb->status = -EINPROGRESS;
|
|
|
|
dbg_intr("Add intr urb 0x%lx, to list, epid %d", (unsigned long)urb, epid);
|
|
|
|
urb_list_add(urb, epid);
|
|
etrax_usb_add_to_intr_sb_list(urb, epid);
|
|
|
|
return 0;
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid)
|
|
{
|
|
|
|
volatile USB_EP_Desc_t *tmp_ep;
|
|
volatile USB_EP_Desc_t *first_ep;
|
|
|
|
char maxlen;
|
|
int interval;
|
|
int i;
|
|
|
|
etrax_urb_priv_t *urb_priv;
|
|
|
|
DBFENTER;
|
|
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
interval = urb->interval;
|
|
|
|
urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG);
|
|
assert(urb_priv != NULL);
|
|
memset(urb_priv, 0, sizeof(etrax_urb_priv_t));
|
|
urb->hcpriv = urb_priv;
|
|
|
|
first_ep = &TxIntrEPList[0];
|
|
|
|
/* Round of the interval to 2^n, it is obvious that this code favours
|
|
smaller numbers, but that is actually a good thing */
|
|
/* FIXME: The "rounding error" for larger intervals will be quite
|
|
large. For in traffic this shouldn't be a problem since it will only
|
|
mean that we "poll" more often. */
|
|
for (i = 0; interval; i++) {
|
|
interval = interval >> 1;
|
|
}
|
|
interval = 1 << (i - 1);
|
|
|
|
dbg_intr("Interval rounded to %d", interval);
|
|
|
|
tmp_ep = first_ep;
|
|
i = 0;
|
|
do {
|
|
if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) {
|
|
if ((i % interval) == 0) {
|
|
/* Insert the traffic ep after tmp_ep */
|
|
USB_EP_Desc_t *ep_desc;
|
|
USB_SB_Desc_t *sb_desc;
|
|
|
|
dbg_intr("Inserting EP for epid %d", epid);
|
|
|
|
ep_desc = (USB_EP_Desc_t *)
|
|
kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
sb_desc = (USB_SB_Desc_t *)
|
|
kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
|
|
assert(ep_desc != NULL);
|
|
CHECK_ALIGN(ep_desc);
|
|
assert(sb_desc != NULL);
|
|
|
|
ep_desc->sub = virt_to_phys(sb_desc);
|
|
ep_desc->hw_len = 0;
|
|
ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) |
|
|
IO_STATE(USB_EP_command, enable, yes));
|
|
|
|
|
|
/* Round upwards the number of packets of size maxlen
|
|
that this SB descriptor should receive. */
|
|
sb_desc->sw_len = urb->transfer_buffer_length ?
|
|
(urb->transfer_buffer_length - 1) / maxlen + 1 : 0;
|
|
sb_desc->next = 0;
|
|
sb_desc->buf = 0;
|
|
sb_desc->command =
|
|
(IO_FIELD(USB_SB_command, rem, urb->transfer_buffer_length % maxlen) |
|
|
IO_STATE(USB_SB_command, tt, in) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
ep_desc->next = tmp_ep->next;
|
|
tmp_ep->next = virt_to_phys(ep_desc);
|
|
}
|
|
i++;
|
|
}
|
|
tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next);
|
|
} while (tmp_ep != first_ep);
|
|
|
|
|
|
/* Note that first_sb/last_sb doesn't apply to interrupt traffic. */
|
|
urb_priv->epid = epid;
|
|
|
|
/* We start the DMA sub channel without checking if it's running or not, because:
|
|
1) If it's already running, issuing the start command is a nop.
|
|
2) We avoid a test-and-set race condition. */
|
|
*R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
|
|
static void etrax_usb_complete_intr_urb(struct urb *urb, int status)
|
|
{
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
int epid = urb_priv->epid;
|
|
|
|
DBFENTER;
|
|
|
|
if (status)
|
|
warn("Completing intr urb with status %d.", status);
|
|
|
|
dbg_intr("Completing intr epid %d, urb 0x%lx", epid, (unsigned long)urb);
|
|
|
|
urb->status = status;
|
|
urb->actual_length = urb_priv->rx_offset;
|
|
|
|
dbg_intr("interrupt urb->actual_length = %d", urb->actual_length);
|
|
|
|
/* We let any non-zero status from the layer above have precedence. */
|
|
if (status == 0) {
|
|
/* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length)
|
|
is to be treated as an error. */
|
|
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
|
|
if (urb->actual_length !=
|
|
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) {
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The driver will resubmit the URB so we need to remove it first */
|
|
etrax_usb_unlink_urb(urb, 0);
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
static int etrax_usb_submit_isoc_urb(struct urb *urb)
|
|
{
|
|
int epid;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
dbg_isoc("Submitting isoc urb = 0x%lx", (unsigned long)urb);
|
|
|
|
/* Epid allocation, empty check and list add must be protected.
|
|
Read about this in etrax_usb_submit_ctrl_urb. */
|
|
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
/* Is there an active epid for this urb ? */
|
|
epid = etrax_usb_setup_epid(urb);
|
|
if (epid == -1) {
|
|
DBFEXIT;
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Ok, now we got valid endpoint, lets insert some traffic */
|
|
|
|
urb->status = -EINPROGRESS;
|
|
|
|
/* Find the last urb in the URB_List and add this urb after that one.
|
|
Also add the traffic, that is do an etrax_usb_add_to_isoc_sb_list. This
|
|
is important to make this in "real time" since isochronous traffic is
|
|
time sensitive. */
|
|
|
|
dbg_isoc("Adding isoc urb to (possibly empty) list");
|
|
urb_list_add(urb, epid);
|
|
etrax_usb_add_to_isoc_sb_list(urb, epid);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etrax_usb_check_error_isoc_ep(const int epid)
|
|
{
|
|
unsigned long int flags;
|
|
int error_code;
|
|
__u32 r_usb_ept_data;
|
|
|
|
/* We can't read R_USB_EPID_ATTN here since it would clear the iso_eof,
|
|
bulk_eot and epid_attn interrupts. So we just check the status of
|
|
the epid without testing if for it in R_USB_EPID_ATTN. */
|
|
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
/* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO
|
|
registers, they are located at the same address and are of the same size.
|
|
In other words, this read should be ok for isoc also. */
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
restore_flags(flags);
|
|
|
|
error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data);
|
|
|
|
if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) {
|
|
warn("Hold was set for epid %d.", epid);
|
|
return;
|
|
}
|
|
|
|
if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, no_error)) {
|
|
|
|
/* This indicates that the SB list of the ept was completed before
|
|
new data was appended to it. This is not an error, but indicates
|
|
large system or USB load and could possibly cause trouble for
|
|
very timing sensitive USB device drivers so we log it.
|
|
*/
|
|
info("Isoc. epid %d disabled with no error", epid);
|
|
return;
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, stall)) {
|
|
/* Not really a protocol error, just says that the endpoint gave
|
|
a stall response. Note that error_code cannot be stall for isoc. */
|
|
panic("Isoc traffic cannot stall");
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, bus_error)) {
|
|
/* Two devices responded to a transaction request. Must be resolved
|
|
by software. FIXME: Reset ports? */
|
|
panic("Bus error for epid %d."
|
|
" Two devices responded to transaction request",
|
|
epid);
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) {
|
|
/* DMA overrun or underrun. */
|
|
warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid);
|
|
|
|
/* It seems that error_code = buffer_error in
|
|
R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS
|
|
are the same error. */
|
|
}
|
|
}
|
|
|
|
|
|
static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid)
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
etrax_urb_priv_t *urb_priv;
|
|
USB_SB_Desc_t *prev_sb_desc, *next_sb_desc, *temp_sb_desc;
|
|
|
|
DBFENTER;
|
|
|
|
prev_sb_desc = next_sb_desc = temp_sb_desc = NULL;
|
|
|
|
urb_priv = kmalloc(sizeof(etrax_urb_priv_t), GFP_ATOMIC);
|
|
assert(urb_priv != NULL);
|
|
memset(urb_priv, 0, sizeof(etrax_urb_priv_t));
|
|
|
|
urb->hcpriv = urb_priv;
|
|
urb_priv->epid = epid;
|
|
|
|
if (usb_pipeout(urb->pipe)) {
|
|
|
|
if (urb->number_of_packets == 0) panic("etrax_usb_add_to_isoc_sb_list 0 packets\n");
|
|
|
|
dbg_isoc("Transfer for epid %d is OUT", epid);
|
|
dbg_isoc("%d packets in URB", urb->number_of_packets);
|
|
|
|
/* Create one SB descriptor for each packet and link them together. */
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
if (!urb->iso_frame_desc[i].length)
|
|
continue;
|
|
|
|
next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC);
|
|
assert(next_sb_desc != NULL);
|
|
|
|
if (urb->iso_frame_desc[i].length > 0) {
|
|
|
|
next_sb_desc->command = (IO_STATE(USB_SB_command, tt, out) |
|
|
IO_STATE(USB_SB_command, eot, yes));
|
|
|
|
next_sb_desc->sw_len = urb->iso_frame_desc[i].length;
|
|
next_sb_desc->buf = virt_to_phys((char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset);
|
|
|
|
/* Check if full length transfer. */
|
|
if (urb->iso_frame_desc[i].length ==
|
|
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) {
|
|
next_sb_desc->command |= IO_STATE(USB_SB_command, full, yes);
|
|
}
|
|
} else {
|
|
dbg_isoc("zero len packet");
|
|
next_sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, full, yes));
|
|
|
|
next_sb_desc->sw_len = 1;
|
|
next_sb_desc->buf = virt_to_phys(&zout_buffer[0]);
|
|
}
|
|
|
|
/* First SB descriptor that belongs to this urb */
|
|
if (i == 0)
|
|
urb_priv->first_sb = next_sb_desc;
|
|
else
|
|
prev_sb_desc->next = virt_to_phys(next_sb_desc);
|
|
|
|
prev_sb_desc = next_sb_desc;
|
|
}
|
|
|
|
next_sb_desc->command |= (IO_STATE(USB_SB_command, intr, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
next_sb_desc->next = 0;
|
|
urb_priv->last_sb = next_sb_desc;
|
|
|
|
} else if (usb_pipein(urb->pipe)) {
|
|
|
|
dbg_isoc("Transfer for epid %d is IN", epid);
|
|
dbg_isoc("transfer_buffer_length = %d", urb->transfer_buffer_length);
|
|
dbg_isoc("rem is calculated to %d", urb->iso_frame_desc[urb->number_of_packets - 1].length);
|
|
|
|
/* Note that in descriptors for periodic traffic are not consumed. This means that
|
|
the USB controller never propagates in the SB list. In other words, if there already
|
|
is an SB descriptor in the list for this EP we don't have to do anything. */
|
|
if (TxIsocEPList[epid].sub == 0) {
|
|
dbg_isoc("Isoc traffic not already running, allocating SB");
|
|
|
|
next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC);
|
|
assert(next_sb_desc != NULL);
|
|
|
|
next_sb_desc->command = (IO_STATE(USB_SB_command, tt, in) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
next_sb_desc->next = 0;
|
|
next_sb_desc->sw_len = 1; /* Actual number of packets is not relevant
|
|
for periodic in traffic as long as it is more
|
|
than zero. Set to 1 always. */
|
|
next_sb_desc->buf = 0;
|
|
|
|
/* The rem field is don't care for isoc traffic, so we don't set it. */
|
|
|
|
/* Only one SB descriptor that belongs to this urb. */
|
|
urb_priv->first_sb = next_sb_desc;
|
|
urb_priv->last_sb = next_sb_desc;
|
|
|
|
} else {
|
|
|
|
dbg_isoc("Isoc traffic already running, just setting first/last_sb");
|
|
|
|
/* Each EP for isoc in will have only one SB descriptor, setup when submitting the
|
|
already active urb. Note that even though we may have several first_sb/last_sb
|
|
pointing at the same SB descriptor, they are freed only once (when the list has
|
|
become empty). */
|
|
urb_priv->first_sb = phys_to_virt(TxIsocEPList[epid].sub);
|
|
urb_priv->last_sb = phys_to_virt(TxIsocEPList[epid].sub);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
/* Find the spot to insert this urb and add it. */
|
|
if (TxIsocEPList[epid].sub == 0) {
|
|
/* First SB descriptor inserted in this list (in or out). */
|
|
dbg_isoc("Inserting SB desc first in list");
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
|
|
} else {
|
|
/* Isochronous traffic is already running, insert new traffic last (only out). */
|
|
dbg_isoc("Inserting SB desc last in list");
|
|
temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub);
|
|
while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) !=
|
|
IO_STATE(USB_SB_command, eol, yes)) {
|
|
assert(temp_sb_desc->next);
|
|
temp_sb_desc = phys_to_virt(temp_sb_desc->next);
|
|
}
|
|
dbg_isoc("Appending list on desc 0x%p", temp_sb_desc);
|
|
|
|
/* Next pointer must be set before eol is removed. */
|
|
temp_sb_desc->next = virt_to_phys(urb_priv->first_sb);
|
|
/* Clear the previous end of list flag since there is a new in the
|
|
added SB descriptor list. */
|
|
temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol);
|
|
|
|
if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) {
|
|
/* 8.8.5 in Designer's Reference says we should check for and correct
|
|
any errors in the EP here. That should not be necessary if epid_attn
|
|
is handled correctly, so we assume all is ok. */
|
|
dbg_isoc("EP disabled");
|
|
etrax_usb_check_error_isoc_ep(epid);
|
|
|
|
/* The SB list was exhausted. */
|
|
if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) {
|
|
/* The new sublist did not get processed before the EP was
|
|
disabled. Setup the EP again. */
|
|
dbg_isoc("Set EP sub to new list");
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (urb->transfer_flags & URB_ISO_ASAP) {
|
|
/* The isoc transfer should be started as soon as possible. The start_frame
|
|
field is a return value if URB_ISO_ASAP was set. Comparing R_USB_FM_NUMBER
|
|
with a USB Chief trace shows that the first isoc IN token is sent 2 frames
|
|
later. I'm not sure how this affects usage of the start_frame field by the
|
|
device driver, or how it affects things when USB_ISO_ASAP is not set, so
|
|
therefore there's no compensation for the 2 frame "lag" here. */
|
|
urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff);
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
urb_priv->urb_state = STARTED;
|
|
dbg_isoc("URB_ISO_ASAP set, urb->start_frame set to %d", urb->start_frame);
|
|
} else {
|
|
/* Not started yet. */
|
|
urb_priv->urb_state = NOT_STARTED;
|
|
dbg_isoc("urb_priv->urb_state set to NOT_STARTED");
|
|
}
|
|
|
|
/* We start the DMA sub channel without checking if it's running or not, because:
|
|
1) If it's already running, issuing the start command is a nop.
|
|
2) We avoid a test-and-set race condition. */
|
|
*R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_complete_isoc_urb(struct urb *urb, int status)
|
|
{
|
|
etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
int epid = urb_priv->epid;
|
|
int auto_resubmit = 0;
|
|
|
|
DBFENTER;
|
|
dbg_isoc("complete urb 0x%p, status %d", urb, status);
|
|
|
|
if (status)
|
|
warn("Completing isoc urb with status %d.", status);
|
|
|
|
if (usb_pipein(urb->pipe)) {
|
|
int i;
|
|
|
|
/* Make that all isoc packets have status and length set before
|
|
completing the urb. */
|
|
for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++) {
|
|
urb->iso_frame_desc[i].actual_length = 0;
|
|
urb->iso_frame_desc[i].status = -EPROTO;
|
|
}
|
|
|
|
urb_list_del(urb, epid);
|
|
|
|
if (!list_empty(&urb_list[epid])) {
|
|
((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED;
|
|
} else {
|
|
unsigned long int flags;
|
|
if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it and wait. */
|
|
TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Ah, the luxury of busy-wait. */
|
|
while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid]));
|
|
}
|
|
|
|
etrax_remove_from_sb_list(urb);
|
|
TxIsocEPList[epid].sub = 0;
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
etrax_usb_free_epid(epid);
|
|
restore_flags(flags);
|
|
}
|
|
|
|
urb->hcpriv = 0;
|
|
kfree(urb_priv);
|
|
|
|
/* Release allocated bandwidth. */
|
|
usb_release_bandwidth(urb->dev, urb, 0);
|
|
} else if (usb_pipeout(urb->pipe)) {
|
|
int freed_descr;
|
|
|
|
dbg_isoc("Isoc out urb complete 0x%p", urb);
|
|
|
|
/* Update the urb list. */
|
|
urb_list_del(urb, epid);
|
|
|
|
freed_descr = etrax_remove_from_sb_list(urb);
|
|
dbg_isoc("freed %d descriptors of %d packets", freed_descr, urb->number_of_packets);
|
|
assert(freed_descr == urb->number_of_packets);
|
|
urb->hcpriv = 0;
|
|
kfree(urb_priv);
|
|
|
|
/* Release allocated bandwidth. */
|
|
usb_release_bandwidth(urb->dev, urb, 0);
|
|
}
|
|
|
|
urb->status = status;
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
|
|
if (auto_resubmit) {
|
|
/* Check that urb was not unlinked by the complete callback. */
|
|
if (__urb_list_entry(urb, epid)) {
|
|
/* Move this one down the list. */
|
|
urb_list_move_last(urb, epid);
|
|
|
|
/* Mark the now first urb as started (may already be). */
|
|
((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED;
|
|
|
|
/* Must set this to 0 since this urb is still active after
|
|
completion. */
|
|
urb_priv->isoc_packet_counter = 0;
|
|
} else {
|
|
warn("(ISOC) automatic resubmit urb 0x%p removed by complete.", urb);
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void etrax_usb_complete_urb(struct urb *urb, int status)
|
|
{
|
|
switch (usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
etrax_usb_complete_bulk_urb(urb, status);
|
|
break;
|
|
case PIPE_CONTROL:
|
|
etrax_usb_complete_ctrl_urb(urb, status);
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
etrax_usb_complete_intr_urb(urb, status);
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
etrax_usb_complete_isoc_urb(urb, status);
|
|
break;
|
|
default:
|
|
err("Unknown pipetype");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs)
|
|
{
|
|
usb_interrupt_registers_t *reg;
|
|
unsigned long flags;
|
|
__u32 irq_mask;
|
|
__u8 status;
|
|
__u32 epid_attn;
|
|
__u16 port_status_1;
|
|
__u16 port_status_2;
|
|
__u32 fm_number;
|
|
|
|
DBFENTER;
|
|
|
|
/* Read critical registers into local variables, do kmalloc afterwards. */
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
irq_mask = *R_USB_IRQ_MASK_READ;
|
|
/* Reading R_USB_STATUS clears the ctl_status interrupt. Note that R_USB_STATUS
|
|
must be read before R_USB_EPID_ATTN since reading the latter clears the
|
|
ourun and perror fields of R_USB_STATUS. */
|
|
status = *R_USB_STATUS;
|
|
|
|
/* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn interrupts. */
|
|
epid_attn = *R_USB_EPID_ATTN;
|
|
|
|
/* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the
|
|
port_status interrupt. */
|
|
port_status_1 = *R_USB_RH_PORT_STATUS_1;
|
|
port_status_2 = *R_USB_RH_PORT_STATUS_2;
|
|
|
|
/* Reading R_USB_FM_NUMBER clears the sof interrupt. */
|
|
/* Note: the lower 11 bits contain the actual frame number, sent with each sof. */
|
|
fm_number = *R_USB_FM_NUMBER;
|
|
|
|
restore_flags(flags);
|
|
|
|
reg = (usb_interrupt_registers_t *)kmem_cache_alloc(top_half_reg_cache, SLAB_ATOMIC);
|
|
|
|
assert(reg != NULL);
|
|
|
|
reg->hc = (etrax_hc_t *)vhc;
|
|
|
|
/* Now put register values into kmalloc'd area. */
|
|
reg->r_usb_irq_mask_read = irq_mask;
|
|
reg->r_usb_status = status;
|
|
reg->r_usb_epid_attn = epid_attn;
|
|
reg->r_usb_rh_port_status_1 = port_status_1;
|
|
reg->r_usb_rh_port_status_2 = port_status_2;
|
|
reg->r_usb_fm_number = fm_number;
|
|
|
|
INIT_WORK(®->usb_bh, etrax_usb_hc_interrupt_bottom_half, reg);
|
|
schedule_work(®->usb_bh);
|
|
|
|
DBFEXIT;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void etrax_usb_hc_interrupt_bottom_half(void *data)
|
|
{
|
|
usb_interrupt_registers_t *reg = (usb_interrupt_registers_t *)data;
|
|
__u32 irq_mask = reg->r_usb_irq_mask_read;
|
|
|
|
DBFENTER;
|
|
|
|
/* Interrupts are handled in order of priority. */
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) {
|
|
etrax_usb_hc_epid_attn_interrupt(reg);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) {
|
|
etrax_usb_hc_port_status_interrupt(reg);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) {
|
|
etrax_usb_hc_ctl_status_interrupt(reg);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) {
|
|
etrax_usb_hc_isoc_eof_interrupt();
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) {
|
|
/* Update/restart the bulk start timer since obviously the channel is running. */
|
|
mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL);
|
|
/* Update/restart the bulk eot timer since we just received an bulk eot interrupt. */
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
|
|
etrax_usb_hc_bulk_eot_interrupt(0);
|
|
}
|
|
|
|
kmem_cache_free(top_half_reg_cache, reg);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
void etrax_usb_hc_isoc_eof_interrupt(void)
|
|
{
|
|
struct urb *urb;
|
|
etrax_urb_priv_t *urb_priv;
|
|
int epid;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
/* Do not check the invalid epid (it has a valid sub pointer). */
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
|
|
/* Do not check the invalid epid (it has a valid sub pointer). */
|
|
if ((epid == DUMMY_EPID) || (epid == INVALID_EPID))
|
|
continue;
|
|
|
|
/* Disable interrupts to block the isoc out descriptor interrupt handler
|
|
from being called while the isoc EPID list is being checked.
|
|
*/
|
|
save_flags(flags);
|
|
cli();
|
|
|
|
if (TxIsocEPList[epid].sub == 0) {
|
|
/* Nothing here to see. */
|
|
restore_flags(flags);
|
|
continue;
|
|
}
|
|
|
|
/* Get the first urb (if any). */
|
|
urb = urb_list_first(epid);
|
|
if (urb == 0) {
|
|
warn("Ignoring NULL urb");
|
|
restore_flags(flags);
|
|
continue;
|
|
}
|
|
if (usb_pipein(urb->pipe)) {
|
|
|
|
/* Sanity check. */
|
|
assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS);
|
|
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
if (urb_priv->urb_state == NOT_STARTED) {
|
|
|
|
/* If ASAP is not set and urb->start_frame is the current frame,
|
|
start the transfer. */
|
|
if (!(urb->transfer_flags & URB_ISO_ASAP) &&
|
|
(urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) {
|
|
|
|
dbg_isoc("Enabling isoc IN EP descr for epid %d", epid);
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
/* This urb is now active. */
|
|
urb_priv->urb_state = STARTED;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
restore_flags(flags);
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
}
|
|
|
|
void etrax_usb_hc_bulk_eot_interrupt(int timer_induced)
|
|
{
|
|
int epid;
|
|
|
|
/* The technique is to run one urb at a time, wait for the eot interrupt at which
|
|
point the EP descriptor has been disabled. */
|
|
|
|
DBFENTER;
|
|
dbg_bulk("bulk eot%s", timer_induced ? ", called by timer" : "");
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
|
|
if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) &&
|
|
(TxBulkEPList[epid].sub != 0)) {
|
|
|
|
struct urb *urb;
|
|
etrax_urb_priv_t *urb_priv;
|
|
unsigned long flags;
|
|
__u32 r_usb_ept_data;
|
|
|
|
/* Found a disabled EP descriptor which has a non-null sub pointer.
|
|
Verify that this ctrl EP descriptor got disabled no errors.
|
|
FIXME: Necessary to check error_code? */
|
|
dbg_bulk("for epid %d?", epid);
|
|
|
|
/* Get the first urb. */
|
|
urb = urb_list_first(epid);
|
|
|
|
/* FIXME: Could this happen for valid reasons? Why did it disappear? Because of
|
|
wrong unlinking? */
|
|
if (!urb) {
|
|
warn("NULL urb for epid %d", epid);
|
|
continue;
|
|
}
|
|
|
|
assert(urb);
|
|
urb_priv = (etrax_urb_priv_t *)urb->hcpriv;
|
|
assert(urb_priv);
|
|
|
|
/* Sanity checks. */
|
|
assert(usb_pipetype(urb->pipe) == PIPE_BULK);
|
|
if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) {
|
|
err("bulk endpoint got disabled before reaching last sb");
|
|
}
|
|
|
|
/* For bulk IN traffic, there seems to be a race condition between
|
|
between the bulk eot and eop interrupts, or rather an uncertainty regarding
|
|
the order in which they happen. Normally we expect the eop interrupt from
|
|
DMA channel 9 to happen before the eot interrupt.
|
|
|
|
Therefore, we complete the bulk IN urb in the rx interrupt handler instead. */
|
|
|
|
if (usb_pipein(urb->pipe)) {
|
|
dbg_bulk("in urb, continuing");
|
|
continue;
|
|
}
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
restore_flags(flags);
|
|
|
|
if (IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data) ==
|
|
IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
/* This means that the endpoint has no error, is disabled
|
|
and had inserted traffic, i.e. transfer successfully completed. */
|
|
etrax_usb_complete_bulk_urb(urb, 0);
|
|
} else {
|
|
/* Shouldn't happen. We expect errors to be caught by epid attention. */
|
|
err("Found disabled bulk EP desc, error_code != no_error");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Normally, we should find (at least) one disabled EP descriptor with a valid sub pointer.
|
|
However, because of the uncertainty in the deliverance of the eop/eot interrupts, we may
|
|
not. Also, we might find two disabled EPs when handling an eot interrupt, and then find
|
|
none the next time. */
|
|
|
|
DBFEXIT;
|
|
|
|
}
|
|
|
|
void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg)
|
|
{
|
|
/* This function handles the epid attention interrupt. There are a variety of reasons
|
|
for this interrupt to happen (Designer's Reference, p. 8 - 22 for the details):
|
|
|
|
invalid ep_id - Invalid epid in an EP (EP disabled).
|
|
stall - Not strictly an error condition (EP disabled).
|
|
3rd error - Three successive transaction errors (EP disabled).
|
|
buffer ourun - Buffer overrun or underrun (EP disabled).
|
|
past eof1 - Intr or isoc transaction proceeds past EOF1.
|
|
near eof - Intr or isoc transaction would not fit inside the frame.
|
|
zout transfer - If zout transfer for a bulk endpoint (EP disabled).
|
|
setup transfer - If setup transfer for a non-ctrl endpoint (EP disabled). */
|
|
|
|
int epid;
|
|
|
|
|
|
DBFENTER;
|
|
|
|
assert(reg != NULL);
|
|
|
|
/* Note that we loop through all epids. We still want to catch errors for
|
|
the invalid one, even though we might handle them differently. */
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
|
|
if (test_bit(epid, (void *)®->r_usb_epid_attn)) {
|
|
|
|
struct urb *urb;
|
|
__u32 r_usb_ept_data;
|
|
unsigned long flags;
|
|
int error_code;
|
|
|
|
save_flags(flags);
|
|
cli();
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
/* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO
|
|
registers, they are located at the same address and are of the same size.
|
|
In other words, this read should be ok for isoc also. */
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
restore_flags(flags);
|
|
|
|
/* First some sanity checks. */
|
|
if (epid == INVALID_EPID) {
|
|
/* FIXME: What if it became disabled? Could seriously hurt interrupt
|
|
traffic. (Use do_intr_recover.) */
|
|
warn("Got epid_attn for INVALID_EPID (%d).", epid);
|
|
err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data);
|
|
err("R_USB_STATUS = 0x%x", reg->r_usb_status);
|
|
continue;
|
|
} else if (epid == DUMMY_EPID) {
|
|
/* We definitely don't care about these ones. Besides, they are
|
|
always disabled, so any possible disabling caused by the
|
|
epid attention interrupt is irrelevant. */
|
|
warn("Got epid_attn for DUMMY_EPID (%d).", epid);
|
|
continue;
|
|
}
|
|
|
|
/* Get the first urb in the urb list for this epid. We blatantly assume
|
|
that only the first urb could have caused the epid attention.
|
|
(For bulk and ctrl, only one urb is active at any one time. For intr
|
|
and isoc we remove them once they are completed.) */
|
|
urb = urb_list_first(epid);
|
|
|
|
if (urb == NULL) {
|
|
err("Got epid_attn for epid %i with no urb.", epid);
|
|
err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data);
|
|
err("R_USB_STATUS = 0x%x", reg->r_usb_status);
|
|
continue;
|
|
}
|
|
|
|
switch (usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
warn("Got epid attn for bulk endpoint, epid %d", epid);
|
|
break;
|
|
case PIPE_CONTROL:
|
|
warn("Got epid attn for control endpoint, epid %d", epid);
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
warn("Got epid attn for interrupt endpoint, epid %d", epid);
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
warn("Got epid attn for isochronous endpoint, epid %d", epid);
|
|
break;
|
|
}
|
|
|
|
if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) {
|
|
if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) {
|
|
warn("Hold was set for epid %d.", epid);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Even though error_code occupies bits 22 - 23 in both R_USB_EPT_DATA and
|
|
R_USB_EPT_DATA_ISOC, we separate them here so we don't forget in other places. */
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data);
|
|
} else {
|
|
error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data);
|
|
}
|
|
|
|
/* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */
|
|
if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
|
|
/* Isoc traffic doesn't have error_count_in/error_count_out. */
|
|
if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, error_count_in, r_usb_ept_data) == 3 ||
|
|
IO_EXTRACT(R_USB_EPT_DATA, error_count_out, r_usb_ept_data) == 3)) {
|
|
/* 3rd error. */
|
|
warn("3rd error for epid %i", epid);
|
|
etrax_usb_complete_urb(urb, -EPROTO);
|
|
|
|
} else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) {
|
|
|
|
warn("Perror for epid %d", epid);
|
|
|
|
if (!(r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, valid))) {
|
|
/* invalid ep_id */
|
|
panic("Perror because of invalid epid."
|
|
" Deconfigured too early?");
|
|
} else {
|
|
/* past eof1, near eof, zout transfer, setup transfer */
|
|
|
|
/* Dump the urb and the relevant EP descriptor list. */
|
|
|
|
__dump_urb(urb);
|
|
__dump_ept_data(epid);
|
|
__dump_ep_list(usb_pipetype(urb->pipe));
|
|
|
|
panic("Something wrong with DMA descriptor contents."
|
|
" Too much traffic inserted?");
|
|
}
|
|
} else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) {
|
|
/* buffer ourun */
|
|
panic("Buffer overrun/underrun for epid %d. DMA too busy?", epid);
|
|
}
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, stall)) {
|
|
/* Not really a protocol error, just says that the endpoint gave
|
|
a stall response. Note that error_code cannot be stall for isoc. */
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
panic("Isoc traffic cannot stall");
|
|
}
|
|
|
|
warn("Stall for epid %d", epid);
|
|
etrax_usb_complete_urb(urb, -EPIPE);
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, bus_error)) {
|
|
/* Two devices responded to a transaction request. Must be resolved
|
|
by software. FIXME: Reset ports? */
|
|
panic("Bus error for epid %d."
|
|
" Two devices responded to transaction request",
|
|
epid);
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) {
|
|
/* DMA overrun or underrun. */
|
|
warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid);
|
|
|
|
/* It seems that error_code = buffer_error in
|
|
R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS
|
|
are the same error. */
|
|
etrax_usb_complete_urb(urb, -EPROTO);
|
|
}
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
}
|
|
|
|
void etrax_usb_bulk_start_timer_func(unsigned long dummy)
|
|
{
|
|
|
|
/* We might enable an EP descriptor behind the current DMA position when it's about
|
|
to decide that there are no more bulk traffic and it should stop the bulk channel.
|
|
Therefore we periodically check if the bulk channel is stopped and there is an
|
|
enabled bulk EP descriptor, in which case we start the bulk channel. */
|
|
dbg_bulk("bulk_start_timer timed out.");
|
|
|
|
if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) {
|
|
int epid;
|
|
|
|
dbg_bulk("Bulk DMA channel not running.");
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
dbg_bulk("Found enabled EP for epid %d, starting bulk channel.\n",
|
|
epid);
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start);
|
|
|
|
/* Restart the bulk eot timer since we just started the bulk channel. */
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
|
|
/* No need to search any further. */
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
dbg_bulk("Bulk DMA channel running.");
|
|
}
|
|
}
|
|
|
|
void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg)
|
|
{
|
|
etrax_hc_t *hc = reg->hc;
|
|
__u16 r_usb_rh_port_status_1 = reg->r_usb_rh_port_status_1;
|
|
__u16 r_usb_rh_port_status_2 = reg->r_usb_rh_port_status_2;
|
|
|
|
DBFENTER;
|
|
|
|
/* The Etrax RH does not include a wPortChange register, so this has to be handled in software
|
|
(by saving the old port status value for comparison when the port status interrupt happens).
|
|
See section 11.16.2.6.2 in the USB 1.1 spec for details. */
|
|
|
|
dbg_rh("hc->rh.prev_wPortStatus_1 = 0x%x", hc->rh.prev_wPortStatus_1);
|
|
dbg_rh("hc->rh.prev_wPortStatus_2 = 0x%x", hc->rh.prev_wPortStatus_2);
|
|
dbg_rh("r_usb_rh_port_status_1 = 0x%x", r_usb_rh_port_status_1);
|
|
dbg_rh("r_usb_rh_port_status_2 = 0x%x", r_usb_rh_port_status_2);
|
|
|
|
/* C_PORT_CONNECTION is set on any transition. */
|
|
hc->rh.wPortChange_1 |=
|
|
((r_usb_rh_port_status_1 & (1 << RH_PORT_CONNECTION)) !=
|
|
(hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_CONNECTION))) ?
|
|
(1 << RH_PORT_CONNECTION) : 0;
|
|
|
|
hc->rh.wPortChange_2 |=
|
|
((r_usb_rh_port_status_2 & (1 << RH_PORT_CONNECTION)) !=
|
|
(hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_CONNECTION))) ?
|
|
(1 << RH_PORT_CONNECTION) : 0;
|
|
|
|
/* C_PORT_ENABLE is _only_ set on a one to zero transition, i.e. when
|
|
the port is disabled, not when it's enabled. */
|
|
hc->rh.wPortChange_1 |=
|
|
((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_ENABLE))
|
|
&& !(r_usb_rh_port_status_1 & (1 << RH_PORT_ENABLE))) ?
|
|
(1 << RH_PORT_ENABLE) : 0;
|
|
|
|
hc->rh.wPortChange_2 |=
|
|
((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_ENABLE))
|
|
&& !(r_usb_rh_port_status_2 & (1 << RH_PORT_ENABLE))) ?
|
|
(1 << RH_PORT_ENABLE) : 0;
|
|
|
|
/* C_PORT_SUSPEND is set to one when the device has transitioned out
|
|
of the suspended state, i.e. when suspend goes from one to zero. */
|
|
hc->rh.wPortChange_1 |=
|
|
((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_SUSPEND))
|
|
&& !(r_usb_rh_port_status_1 & (1 << RH_PORT_SUSPEND))) ?
|
|
(1 << RH_PORT_SUSPEND) : 0;
|
|
|
|
hc->rh.wPortChange_2 |=
|
|
((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_SUSPEND))
|
|
&& !(r_usb_rh_port_status_2 & (1 << RH_PORT_SUSPEND))) ?
|
|
(1 << RH_PORT_SUSPEND) : 0;
|
|
|
|
|
|
/* C_PORT_RESET is set when reset processing on this port is complete. */
|
|
hc->rh.wPortChange_1 |=
|
|
((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_RESET))
|
|
&& !(r_usb_rh_port_status_1 & (1 << RH_PORT_RESET))) ?
|
|
(1 << RH_PORT_RESET) : 0;
|
|
|
|
hc->rh.wPortChange_2 |=
|
|
((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_RESET))
|
|
&& !(r_usb_rh_port_status_2 & (1 << RH_PORT_RESET))) ?
|
|
(1 << RH_PORT_RESET) : 0;
|
|
|
|
/* Save the new values for next port status change. */
|
|
hc->rh.prev_wPortStatus_1 = r_usb_rh_port_status_1;
|
|
hc->rh.prev_wPortStatus_2 = r_usb_rh_port_status_2;
|
|
|
|
dbg_rh("hc->rh.wPortChange_1 set to 0x%x", hc->rh.wPortChange_1);
|
|
dbg_rh("hc->rh.wPortChange_2 set to 0x%x", hc->rh.wPortChange_2);
|
|
|
|
DBFEXIT;
|
|
|
|
}
|
|
|
|
void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg)
|
|
{
|
|
DBFENTER;
|
|
|
|
/* FIXME: What should we do if we get ourun or perror? Dump the EP and SB
|
|
list for the corresponding epid? */
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) {
|
|
panic("USB controller got ourun.");
|
|
}
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) {
|
|
|
|
/* Before, etrax_usb_do_intr_recover was called on this epid if it was
|
|
an interrupt pipe. I don't see how re-enabling all EP descriptors
|
|
will help if there was a programming error. */
|
|
panic("USB controller got perror.");
|
|
}
|
|
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) {
|
|
/* We should never operate in device mode. */
|
|
panic("USB controller in device mode.");
|
|
}
|
|
|
|
/* These if-statements could probably be nested. */
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, host_mode)) {
|
|
info("USB controller in host mode.");
|
|
}
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, started)) {
|
|
info("USB controller started.");
|
|
}
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, running)) {
|
|
info("USB controller running.");
|
|
}
|
|
|
|
DBFEXIT;
|
|
|
|
}
|
|
|
|
|
|
static int etrax_rh_submit_urb(struct urb *urb)
|
|
{
|
|
struct usb_device *usb_dev = urb->dev;
|
|
etrax_hc_t *hc = usb_dev->bus->hcpriv;
|
|
unsigned int pipe = urb->pipe;
|
|
struct usb_ctrlrequest *cmd = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
void *data = urb->transfer_buffer;
|
|
int leni = urb->transfer_buffer_length;
|
|
int len = 0;
|
|
int stat = 0;
|
|
|
|
__u16 bmRType_bReq;
|
|
__u16 wValue;
|
|
__u16 wIndex;
|
|
__u16 wLength;
|
|
|
|
DBFENTER;
|
|
|
|
/* FIXME: What is this interrupt urb that is sent to the root hub? */
|
|
if (usb_pipetype (pipe) == PIPE_INTERRUPT) {
|
|
dbg_rh("Root-Hub submit IRQ: every %d ms", urb->interval);
|
|
hc->rh.urb = urb;
|
|
hc->rh.send = 1;
|
|
/* FIXME: We could probably remove this line since it's done
|
|
in etrax_rh_init_int_timer. (Don't remove it from
|
|
etrax_rh_init_int_timer though.) */
|
|
hc->rh.interval = urb->interval;
|
|
etrax_rh_init_int_timer(urb);
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bmRType_bReq = cmd->bRequestType | (cmd->bRequest << 8);
|
|
wValue = le16_to_cpu(cmd->wValue);
|
|
wIndex = le16_to_cpu(cmd->wIndex);
|
|
wLength = le16_to_cpu(cmd->wLength);
|
|
|
|
dbg_rh("bmRType_bReq : 0x%04x (%d)", bmRType_bReq, bmRType_bReq);
|
|
dbg_rh("wValue : 0x%04x (%d)", wValue, wValue);
|
|
dbg_rh("wIndex : 0x%04x (%d)", wIndex, wIndex);
|
|
dbg_rh("wLength : 0x%04x (%d)", wLength, wLength);
|
|
|
|
switch (bmRType_bReq) {
|
|
|
|
/* Request Destination:
|
|
without flags: Device,
|
|
RH_INTERFACE: interface,
|
|
RH_ENDPOINT: endpoint,
|
|
RH_CLASS means HUB here,
|
|
RH_OTHER | RH_CLASS almost ever means HUB_PORT here
|
|
*/
|
|
|
|
case RH_GET_STATUS:
|
|
*(__u16 *) data = cpu_to_le16 (1);
|
|
OK (2);
|
|
|
|
case RH_GET_STATUS | RH_INTERFACE:
|
|
*(__u16 *) data = cpu_to_le16 (0);
|
|
OK (2);
|
|
|
|
case RH_GET_STATUS | RH_ENDPOINT:
|
|
*(__u16 *) data = cpu_to_le16 (0);
|
|
OK (2);
|
|
|
|
case RH_GET_STATUS | RH_CLASS:
|
|
*(__u32 *) data = cpu_to_le32 (0);
|
|
OK (4); /* hub power ** */
|
|
|
|
case RH_GET_STATUS | RH_OTHER | RH_CLASS:
|
|
if (wIndex == 1) {
|
|
*((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_1);
|
|
*((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_1);
|
|
} else if (wIndex == 2) {
|
|
*((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_2);
|
|
*((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_2);
|
|
} else {
|
|
dbg_rh("RH_GET_STATUS whith invalid wIndex!");
|
|
OK(0);
|
|
}
|
|
|
|
OK(4);
|
|
|
|
case RH_CLEAR_FEATURE | RH_ENDPOINT:
|
|
switch (wValue) {
|
|
case (RH_ENDPOINT_STALL):
|
|
OK (0);
|
|
}
|
|
break;
|
|
|
|
case RH_CLEAR_FEATURE | RH_CLASS:
|
|
switch (wValue) {
|
|
case (RH_C_HUB_OVER_CURRENT):
|
|
OK (0); /* hub power over current ** */
|
|
}
|
|
break;
|
|
|
|
case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS:
|
|
switch (wValue) {
|
|
case (RH_PORT_ENABLE):
|
|
if (wIndex == 1) {
|
|
|
|
dbg_rh("trying to do disable port 1");
|
|
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes);
|
|
|
|
while (hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes));
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no);
|
|
dbg_rh("Port 1 is disabled");
|
|
|
|
} else if (wIndex == 2) {
|
|
|
|
dbg_rh("trying to do disable port 2");
|
|
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes);
|
|
|
|
while (hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes));
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no);
|
|
dbg_rh("Port 2 is disabled");
|
|
|
|
} else {
|
|
dbg_rh("RH_CLEAR_FEATURE->RH_PORT_ENABLE "
|
|
"with invalid wIndex == %d!", wIndex);
|
|
}
|
|
|
|
OK (0);
|
|
case (RH_PORT_SUSPEND):
|
|
/* Opposite to suspend should be resume, so we'll do a resume. */
|
|
/* FIXME: USB 1.1, 11.16.2.2 says:
|
|
"Clearing the PORT_SUSPEND feature causes a host-initiated resume
|
|
on the specified port. If the port is not in the Suspended state,
|
|
the hub should treat this request as a functional no-operation."
|
|
Shouldn't we check if the port is in a suspended state before
|
|
resuming? */
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
if (wIndex == 1) {
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port1) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, resume) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
} else if (wIndex == 2) {
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port2) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, resume) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
} else {
|
|
dbg_rh("RH_CLEAR_FEATURE->RH_PORT_SUSPEND "
|
|
"with invalid wIndex == %d!", wIndex);
|
|
}
|
|
|
|
OK (0);
|
|
case (RH_PORT_POWER):
|
|
OK (0); /* port power ** */
|
|
case (RH_C_PORT_CONNECTION):
|
|
if (wIndex == 1) {
|
|
hc->rh.wPortChange_1 &= ~(1 << RH_PORT_CONNECTION);
|
|
} else if (wIndex == 2) {
|
|
hc->rh.wPortChange_2 &= ~(1 << RH_PORT_CONNECTION);
|
|
} else {
|
|
dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_CONNECTION "
|
|
"with invalid wIndex == %d!", wIndex);
|
|
}
|
|
|
|
OK (0);
|
|
case (RH_C_PORT_ENABLE):
|
|
if (wIndex == 1) {
|
|
hc->rh.wPortChange_1 &= ~(1 << RH_PORT_ENABLE);
|
|
} else if (wIndex == 2) {
|
|
hc->rh.wPortChange_2 &= ~(1 << RH_PORT_ENABLE);
|
|
} else {
|
|
dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_ENABLE "
|
|
"with invalid wIndex == %d!", wIndex);
|
|
}
|
|
OK (0);
|
|
case (RH_C_PORT_SUSPEND):
|
|
/*** WR_RH_PORTSTAT(RH_PS_PSSC); */
|
|
OK (0);
|
|
case (RH_C_PORT_OVER_CURRENT):
|
|
OK (0); /* port power over current ** */
|
|
case (RH_C_PORT_RESET):
|
|
if (wIndex == 1) {
|
|
hc->rh.wPortChange_1 &= ~(1 << RH_PORT_RESET);
|
|
} else if (wIndex == 2) {
|
|
hc->rh.wPortChange_2 &= ~(1 << RH_PORT_RESET);
|
|
} else {
|
|
dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_RESET "
|
|
"with invalid index == %d!", wIndex);
|
|
}
|
|
|
|
OK (0);
|
|
|
|
}
|
|
break;
|
|
|
|
case RH_SET_FEATURE | RH_OTHER | RH_CLASS:
|
|
switch (wValue) {
|
|
case (RH_PORT_SUSPEND):
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
if (wIndex == 1) {
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port1) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, suspend) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
} else if (wIndex == 2) {
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port2) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, suspend) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
} else {
|
|
dbg_rh("RH_SET_FEATURE->RH_PORT_SUSPEND "
|
|
"with invalid wIndex == %d!", wIndex);
|
|
}
|
|
|
|
OK (0);
|
|
case (RH_PORT_RESET):
|
|
if (wIndex == 1) {
|
|
|
|
port_1_reset:
|
|
dbg_rh("Doing reset of port 1");
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port1) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
|
|
/* We must wait at least 10 ms for the device to recover.
|
|
15 ms should be enough. */
|
|
udelay(15000);
|
|
|
|
/* Wait for reset bit to go low (should be done by now). */
|
|
while (hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes));
|
|
|
|
/* If the port status is
|
|
1) connected and enabled then there is a device and everything is fine
|
|
2) neither connected nor enabled then there is no device, also fine
|
|
3) connected and not enabled then we try again
|
|
(Yes, there are other port status combinations besides these.) */
|
|
|
|
if ((hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) &&
|
|
(hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) {
|
|
dbg_rh("Connected device on port 1, but port not enabled?"
|
|
" Trying reset again.");
|
|
goto port_2_reset;
|
|
}
|
|
|
|
/* Diagnostic printouts. */
|
|
if ((hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, connected, no)) &&
|
|
(hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) {
|
|
dbg_rh("No connected device on port 1");
|
|
} else if ((hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) &&
|
|
(hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))) {
|
|
dbg_rh("Connected device on port 1, port 1 enabled");
|
|
}
|
|
|
|
} else if (wIndex == 2) {
|
|
|
|
port_2_reset:
|
|
dbg_rh("Doing reset of port 2");
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
/* Issue the reset command. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, port2) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
|
|
/* We must wait at least 10 ms for the device to recover.
|
|
15 ms should be enough. */
|
|
udelay(15000);
|
|
|
|
/* Wait for reset bit to go low (should be done by now). */
|
|
while (hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, reset, yes));
|
|
|
|
/* If the port status is
|
|
1) connected and enabled then there is a device and everything is fine
|
|
2) neither connected nor enabled then there is no device, also fine
|
|
3) connected and not enabled then we try again
|
|
(Yes, there are other port status combinations besides these.) */
|
|
|
|
if ((hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) &&
|
|
(hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) {
|
|
dbg_rh("Connected device on port 2, but port not enabled?"
|
|
" Trying reset again.");
|
|
goto port_2_reset;
|
|
}
|
|
|
|
/* Diagnostic printouts. */
|
|
if ((hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, connected, no)) &&
|
|
(hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) {
|
|
dbg_rh("No connected device on port 2");
|
|
} else if ((hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) &&
|
|
(hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes))) {
|
|
dbg_rh("Connected device on port 2, port 2 enabled");
|
|
}
|
|
|
|
} else {
|
|
dbg_rh("RH_SET_FEATURE->RH_PORT_RESET with invalid wIndex = %d", wIndex);
|
|
}
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
/* If all enabled ports were disabled the host controller goes down into
|
|
started mode, so we need to bring it back into the running state.
|
|
(This is safe even if it's already in the running state.) */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
|
|
dbg_rh("...Done");
|
|
OK(0);
|
|
|
|
case (RH_PORT_POWER):
|
|
OK (0); /* port power ** */
|
|
case (RH_PORT_ENABLE):
|
|
/* There is no port enable command in the host controller, so if the
|
|
port is already enabled, we do nothing. If not, we reset the port
|
|
(with an ugly goto). */
|
|
|
|
if (wIndex == 1) {
|
|
if (hc->rh.prev_wPortStatus_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no)) {
|
|
goto port_1_reset;
|
|
}
|
|
} else if (wIndex == 2) {
|
|
if (hc->rh.prev_wPortStatus_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no)) {
|
|
goto port_2_reset;
|
|
}
|
|
} else {
|
|
dbg_rh("RH_SET_FEATURE->RH_GET_STATUS with invalid wIndex = %d", wIndex);
|
|
}
|
|
OK (0);
|
|
}
|
|
break;
|
|
|
|
case RH_SET_ADDRESS:
|
|
hc->rh.devnum = wValue;
|
|
dbg_rh("RH address set to: %d", hc->rh.devnum);
|
|
OK (0);
|
|
|
|
case RH_GET_DESCRIPTOR:
|
|
switch ((wValue & 0xff00) >> 8) {
|
|
case (0x01): /* device descriptor */
|
|
len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_dev_des), wLength));
|
|
memcpy (data, root_hub_dev_des, len);
|
|
OK (len);
|
|
case (0x02): /* configuration descriptor */
|
|
len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_config_des), wLength));
|
|
memcpy (data, root_hub_config_des, len);
|
|
OK (len);
|
|
case (0x03): /* string descriptors */
|
|
len = usb_root_hub_string (wValue & 0xff,
|
|
0xff, "ETRAX 100LX",
|
|
data, wLength);
|
|
if (len > 0) {
|
|
OK(min(leni, len));
|
|
} else {
|
|
stat = -EPIPE;
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case RH_GET_DESCRIPTOR | RH_CLASS:
|
|
root_hub_hub_des[2] = hc->rh.numports;
|
|
len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_hub_des), wLength));
|
|
memcpy (data, root_hub_hub_des, len);
|
|
OK (len);
|
|
|
|
case RH_GET_CONFIGURATION:
|
|
*(__u8 *) data = 0x01;
|
|
OK (1);
|
|
|
|
case RH_SET_CONFIGURATION:
|
|
OK (0);
|
|
|
|
default:
|
|
stat = -EPIPE;
|
|
}
|
|
|
|
urb->actual_length = len;
|
|
urb->status = stat;
|
|
urb->dev = NULL;
|
|
if (urb->complete) {
|
|
urb->complete(urb, NULL);
|
|
}
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
etrax_usb_bulk_eot_timer_func(unsigned long dummy)
|
|
{
|
|
/* Because of a race condition in the top half, we might miss a bulk eot.
|
|
This timer "simulates" a bulk eot if we don't get one for a while, hopefully
|
|
correcting the situation. */
|
|
dbg_bulk("bulk_eot_timer timed out.");
|
|
etrax_usb_hc_bulk_eot_interrupt(1);
|
|
}
|
|
|
|
static void*
|
|
etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size,
|
|
unsigned mem_flags, dma_addr_t *dma)
|
|
{
|
|
return kmalloc(size, mem_flags);
|
|
}
|
|
|
|
static void
|
|
etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma)
|
|
{
|
|
kfree(addr);
|
|
}
|
|
|
|
|
|
static struct device fake_device;
|
|
|
|
static int __init etrax_usb_hc_init(void)
|
|
{
|
|
static etrax_hc_t *hc;
|
|
struct usb_bus *bus;
|
|
struct usb_device *usb_rh;
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
info("ETRAX 100LX USB-HCD %s (c) 2001-2003 Axis Communications AB\n", usb_hcd_version);
|
|
|
|
hc = kmalloc(sizeof(etrax_hc_t), GFP_KERNEL);
|
|
assert(hc != NULL);
|
|
|
|
/* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */
|
|
/* Note that we specify sizeof(USB_EP_Desc_t) as the size, but also allocate
|
|
SB descriptors from this cache. This is ok since sizeof(USB_EP_Desc_t) ==
|
|
sizeof(USB_SB_Desc_t). */
|
|
|
|
usb_desc_cache = kmem_cache_create("usb_desc_cache", sizeof(USB_EP_Desc_t), 0,
|
|
SLAB_HWCACHE_ALIGN, 0, 0);
|
|
assert(usb_desc_cache != NULL);
|
|
|
|
top_half_reg_cache = kmem_cache_create("top_half_reg_cache",
|
|
sizeof(usb_interrupt_registers_t),
|
|
0, SLAB_HWCACHE_ALIGN, 0, 0);
|
|
assert(top_half_reg_cache != NULL);
|
|
|
|
isoc_compl_cache = kmem_cache_create("isoc_compl_cache",
|
|
sizeof(usb_isoc_complete_data_t),
|
|
0, SLAB_HWCACHE_ALIGN, 0, 0);
|
|
assert(isoc_compl_cache != NULL);
|
|
|
|
etrax_usb_bus = bus = usb_alloc_bus(&etrax_usb_device_operations);
|
|
hc->bus = bus;
|
|
bus->bus_name="ETRAX 100LX";
|
|
bus->hcpriv = hc;
|
|
|
|
/* Initialize RH to the default address.
|
|
And make sure that we have no status change indication */
|
|
hc->rh.numports = 2; /* The RH has two ports */
|
|
hc->rh.devnum = 1;
|
|
hc->rh.wPortChange_1 = 0;
|
|
hc->rh.wPortChange_2 = 0;
|
|
|
|
/* Also initate the previous values to zero */
|
|
hc->rh.prev_wPortStatus_1 = 0;
|
|
hc->rh.prev_wPortStatus_2 = 0;
|
|
|
|
/* Initialize the intr-traffic flags */
|
|
/* FIXME: This isn't used. (Besides, the error field isn't initialized.) */
|
|
hc->intr.sleeping = 0;
|
|
hc->intr.wq = NULL;
|
|
|
|
epid_usage_bitmask = 0;
|
|
epid_out_traffic = 0;
|
|
|
|
/* Mark the invalid epid as being used. */
|
|
set_bit(INVALID_EPID, (void *)&epid_usage_bitmask);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, INVALID_EPID);
|
|
nop();
|
|
/* The valid bit should still be set ('invalid' is in our world; not the hardware's). */
|
|
*R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, yes) |
|
|
IO_FIELD(R_USB_EPT_DATA, max_len, 1));
|
|
|
|
/* Mark the dummy epid as being used. */
|
|
set_bit(DUMMY_EPID, (void *)&epid_usage_bitmask);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, DUMMY_EPID);
|
|
nop();
|
|
*R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, no) |
|
|
IO_FIELD(R_USB_EPT_DATA, max_len, 1));
|
|
|
|
/* Initialize the urb list by initiating a head for each list. */
|
|
for (i = 0; i < NBR_OF_EPIDS; i++) {
|
|
INIT_LIST_HEAD(&urb_list[i]);
|
|
}
|
|
spin_lock_init(&urb_list_lock);
|
|
|
|
INIT_LIST_HEAD(&urb_unlink_list);
|
|
|
|
|
|
/* Initiate the bulk start timer. */
|
|
init_timer(&bulk_start_timer);
|
|
bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL;
|
|
bulk_start_timer.function = etrax_usb_bulk_start_timer_func;
|
|
add_timer(&bulk_start_timer);
|
|
|
|
|
|
/* Initiate the bulk eot timer. */
|
|
init_timer(&bulk_eot_timer);
|
|
bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL;
|
|
bulk_eot_timer.function = etrax_usb_bulk_eot_timer_func;
|
|
add_timer(&bulk_eot_timer);
|
|
|
|
/* Set up the data structures for USB traffic. Note that this must be done before
|
|
any interrupt that relies on sane DMA list occurrs. */
|
|
init_rx_buffers();
|
|
init_tx_bulk_ep();
|
|
init_tx_ctrl_ep();
|
|
init_tx_intr_ep();
|
|
init_tx_isoc_ep();
|
|
|
|
device_initialize(&fake_device);
|
|
kobject_set_name(&fake_device.kobj, "etrax_usb");
|
|
kobject_add(&fake_device.kobj);
|
|
kobject_hotplug(&fake_device.kobj, KOBJ_ADD);
|
|
hc->bus->controller = &fake_device;
|
|
usb_register_bus(hc->bus);
|
|
|
|
*R_IRQ_MASK2_SET =
|
|
/* Note that these interrupts are not used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) |
|
|
/* Sub channel 1 (ctrl) descr. interrupts are used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) |
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) |
|
|
/* Sub channel 3 (isoc) descr. interrupts are used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set);
|
|
|
|
/* Note that the dma9_descr interrupt is not used. */
|
|
*R_IRQ_MASK2_SET =
|
|
IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) |
|
|
IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set);
|
|
|
|
/* FIXME: Enable iso_eof only when isoc traffic is running. */
|
|
*R_USB_IRQ_MASK_SET =
|
|
IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set);
|
|
|
|
|
|
if (request_irq(ETRAX_USB_HC_IRQ, etrax_usb_hc_interrupt_top_half, 0,
|
|
"ETRAX 100LX built-in USB (HC)", hc)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ);
|
|
etrax_usb_hc_cleanup();
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
if (request_irq(ETRAX_USB_RX_IRQ, etrax_usb_rx_interrupt, 0,
|
|
"ETRAX 100LX built-in USB (Rx)", hc)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ);
|
|
etrax_usb_hc_cleanup();
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
if (request_irq(ETRAX_USB_TX_IRQ, etrax_usb_tx_interrupt, 0,
|
|
"ETRAX 100LX built-in USB (Tx)", hc)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ);
|
|
etrax_usb_hc_cleanup();
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
/* R_USB_COMMAND:
|
|
USB commands in host mode. The fields in this register should all be
|
|
written to in one write. Do not read-modify-write one field at a time. A
|
|
write to this register will trigger events in the USB controller and an
|
|
incomplete command may lead to unpredictable results, and in worst case
|
|
even to a deadlock in the controller.
|
|
(Note however that the busy field is read-only, so no need to write to it.) */
|
|
|
|
/* Check the busy bit before writing to R_USB_COMMAND. */
|
|
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
/* Reset the USB interface. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, reset);
|
|
|
|
/* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to 0x2A30 (10800),
|
|
to guarantee that control traffic gets 10% of the bandwidth, and periodic transfer may
|
|
allocate the rest (90%). This doesn't work though. Read on for a lenghty explanation.
|
|
|
|
While there is a difference between rev. 2 and rev. 3 of the ETRAX 100LX regarding the NAK
|
|
behaviour, it doesn't solve this problem. What happens is that a control transfer will not
|
|
be interrupted in its data stage when PSTART happens (the point at which periodic traffic
|
|
is started). Thus, if PSTART is set to 10800 and its IN or OUT token is NAKed until just before
|
|
PSTART happens, it will continue the IN/OUT transfer as long as it's ACKed. After it's done,
|
|
there may be too little time left for an isochronous transfer, causing an epid attention
|
|
interrupt due to perror. The work-around for this is to let the control transfers run at the
|
|
end of the frame instead of at the beginning, and will be interrupted just fine if it doesn't
|
|
fit into the frame. However, since there will *always* be a control transfer at the beginning
|
|
of the frame, regardless of what we set PSTART to, that transfer might be a 64-byte transfer
|
|
which consumes up to 15% of the frame, leaving only 85% for periodic traffic. The solution to
|
|
this would be to 'dummy allocate' 5% of the frame with the usb_claim_bandwidth function to make
|
|
sure that the periodic transfers that are inserted will always fit in the frame.
|
|
|
|
The idea was suggested that a control transfer could be split up into several 8 byte transfers,
|
|
so that it would be interrupted by PSTART, but since this can't be done for an IN transfer this
|
|
hasn't been implemented.
|
|
|
|
The value 11960 is chosen to be just after the SOF token, with a couple of bit times extra
|
|
for possible bit stuffing. */
|
|
|
|
*R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960);
|
|
|
|
#ifdef CONFIG_ETRAX_USB_HOST_PORT1
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ETRAX_USB_HOST_PORT2
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no);
|
|
#endif
|
|
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
/* Configure the USB interface as a host controller. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config);
|
|
|
|
/* Note: Do not reset any ports here. Await the port status interrupts, to have a controlled
|
|
sequence of resetting the ports. If we reset both ports now, and there are devices
|
|
on both ports, we will get a bus error because both devices will answer the set address
|
|
request. */
|
|
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
/* Start processing of USB traffic. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
|
|
while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy));
|
|
|
|
usb_rh = usb_alloc_dev(NULL, hc->bus, 0);
|
|
hc->bus->root_hub = usb_rh;
|
|
usb_rh->state = USB_STATE_ADDRESS;
|
|
usb_rh->speed = USB_SPEED_FULL;
|
|
usb_rh->devnum = 1;
|
|
hc->bus->devnum_next = 2;
|
|
usb_rh->ep0.desc.wMaxPacketSize = __const_cpu_to_le16(64);
|
|
usb_get_device_descriptor(usb_rh, USB_DT_DEVICE_SIZE);
|
|
usb_new_device(usb_rh);
|
|
|
|
DBFEXIT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void etrax_usb_hc_cleanup(void)
|
|
{
|
|
DBFENTER;
|
|
|
|
free_irq(ETRAX_USB_HC_IRQ, NULL);
|
|
free_irq(ETRAX_USB_RX_IRQ, NULL);
|
|
free_irq(ETRAX_USB_TX_IRQ, NULL);
|
|
|
|
usb_deregister_bus(etrax_usb_bus);
|
|
|
|
/* FIXME: call kmem_cache_destroy here? */
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
module_init(etrax_usb_hc_init);
|
|
module_exit(etrax_usb_hc_cleanup);
|