mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-13 14:04:05 +08:00
143a6252e1
- Initial support for the ARMv9 Scalable Matrix Extension (SME). SME takes the approach used for vectors in SVE and extends this to provide architectural support for matrix operations. No KVM support yet, SME is disabled in guests. - Support for crashkernel reservations above ZONE_DMA via the 'crashkernel=X,high' command line option. - btrfs search_ioctl() fix for live-lock with sub-page faults. - arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring coherent I/O traffic, support for Arm's CMN-650 and CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup. - Kselftest updates for SME, BTI, MTE. - Automatic generation of the system register macros from a 'sysreg' file describing the register bitfields. - Update the type of the function argument holding the ESR_ELx register value to unsigned long to match the architecture register size (originally 32-bit but extended since ARMv8.0). - stacktrace cleanups. - ftrace cleanups. - Miscellaneous updates, most notably: arm64-specific huge_ptep_get(), avoid executable mappings in kexec/hibernate code, drop TLB flushing from get_clear_flush() (and rename it to get_clear_contig()), ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmKH19IACgkQa9axLQDI XvEFWg//bf0p6zjeNaOJmBbyVFsXsVyYiEaLUpFPUs3oB+81s2YZ+9i1rgMrNCft EIDQ9+/HgScKxJxnzWf68heMdcBDbk76VJtLALExbge6owFsjByQDyfb/b3v/bLd ezAcGzc6G5/FlI1IP7ct4Z9MnQry4v5AG8lMNAHjnf6GlBS/tYNAqpmj8HpQfgRQ ZbhfZ8Ayu3TRSLWL39NHVevpmxQm/bGcpP3Q9TtjUqg0r1FQ5sK/LCqOksueIAzT UOgUVYWSFwTpLEqbYitVqgERQp9LiLoK5RmNYCIEydfGM7+qmgoxofSq5e2hQtH2 SZM1XilzsZctRbBbhMit1qDBqMlr/XAy/R5FO0GauETVKTaBhgtj6mZGyeC9nU/+ RGDljaArbrOzRwMtSuXF+Fp6uVo5spyRn1m8UT/k19lUTdrV9z6EX5Fzuc4Mnhed oz4iokbl/n8pDObXKauQspPA46QpxUYhrAs10B/ELc3yyp/Qj3jOfzYHKDNFCUOq HC9mU+YiO9g2TbYgCrrFM6Dah2E8fU6/cR0ZPMeMgWK4tKa+6JMEINYEwak9e7M+ 8lZnvu3ntxiJLN+PrPkiPyG+XBh2sux1UfvNQ+nw4Oi9xaydeX7PCbQVWmzTFmHD q7UPQ8220e2JNCha9pULS8cxDLxiSksce06DQrGXwnHc1Ir7T04= =0DjE -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Initial support for the ARMv9 Scalable Matrix Extension (SME). SME takes the approach used for vectors in SVE and extends this to provide architectural support for matrix operations. No KVM support yet, SME is disabled in guests. - Support for crashkernel reservations above ZONE_DMA via the 'crashkernel=X,high' command line option. - btrfs search_ioctl() fix for live-lock with sub-page faults. - arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring coherent I/O traffic, support for Arm's CMN-650 and CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup. - Kselftest updates for SME, BTI, MTE. - Automatic generation of the system register macros from a 'sysreg' file describing the register bitfields. - Update the type of the function argument holding the ESR_ELx register value to unsigned long to match the architecture register size (originally 32-bit but extended since ARMv8.0). - stacktrace cleanups. - ftrace cleanups. - Miscellaneous updates, most notably: arm64-specific huge_ptep_get(), avoid executable mappings in kexec/hibernate code, drop TLB flushing from get_clear_flush() (and rename it to get_clear_contig()), ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits) arm64/sysreg: Generate definitions for FAR_ELx arm64/sysreg: Generate definitions for DACR32_EL2 arm64/sysreg: Generate definitions for CSSELR_EL1 arm64/sysreg: Generate definitions for CPACR_ELx arm64/sysreg: Generate definitions for CONTEXTIDR_ELx arm64/sysreg: Generate definitions for CLIDR_EL1 arm64/sve: Move sve_free() into SVE code section arm64: Kconfig.platforms: Add comments arm64: Kconfig: Fix indentation and add comments arm64: mm: avoid writable executable mappings in kexec/hibernate code arm64: lds: move special code sections out of kernel exec segment arm64/hugetlb: Implement arm64 specific huge_ptep_get() arm64/hugetlb: Use ptep_get() to get the pte value of a huge page arm64: kdump: Do not allocate crash low memory if not needed arm64/sve: Generate ZCR definitions arm64/sme: Generate defintions for SVCR arm64/sme: Generate SMPRI_EL1 definitions arm64/sme: Automatically generate SMPRIMAP_EL2 definitions arm64/sme: Automatically generate SMIDR_EL1 defines arm64/sme: Automatically generate defines for SMCR ...
580 lines
14 KiB
C
580 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
/*
|
|
* The asynchronous and asymmetric MTE modes have the same behavior for
|
|
* store operations. This flag is set when either of these modes is enabled.
|
|
*/
|
|
DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
|
|
EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
|
|
#endif
|
|
|
|
static void mte_sync_page_tags(struct page *page, pte_t old_pte,
|
|
bool check_swap, bool pte_is_tagged)
|
|
{
|
|
if (check_swap && is_swap_pte(old_pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(old_pte);
|
|
|
|
if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
|
|
return;
|
|
}
|
|
|
|
if (!pte_is_tagged)
|
|
return;
|
|
|
|
page_kasan_tag_reset(page);
|
|
/*
|
|
* We need smp_wmb() in between setting the flags and clearing the
|
|
* tags because if another thread reads page->flags and builds a
|
|
* tagged address out of it, there is an actual dependency to the
|
|
* memory access, but on the current thread we do not guarantee that
|
|
* the new page->flags are visible before the tags were updated.
|
|
*/
|
|
smp_wmb();
|
|
mte_clear_page_tags(page_address(page));
|
|
}
|
|
|
|
void mte_sync_tags(pte_t old_pte, pte_t pte)
|
|
{
|
|
struct page *page = pte_page(pte);
|
|
long i, nr_pages = compound_nr(page);
|
|
bool check_swap = nr_pages == 1;
|
|
bool pte_is_tagged = pte_tagged(pte);
|
|
|
|
/* Early out if there's nothing to do */
|
|
if (!check_swap && !pte_is_tagged)
|
|
return;
|
|
|
|
/* if PG_mte_tagged is set, tags have already been initialised */
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
|
|
mte_sync_page_tags(page, old_pte, check_swap,
|
|
pte_is_tagged);
|
|
}
|
|
|
|
/* ensure the tags are visible before the PTE is set */
|
|
smp_wmb();
|
|
}
|
|
|
|
int memcmp_pages(struct page *page1, struct page *page2)
|
|
{
|
|
char *addr1, *addr2;
|
|
int ret;
|
|
|
|
addr1 = page_address(page1);
|
|
addr2 = page_address(page2);
|
|
ret = memcmp(addr1, addr2, PAGE_SIZE);
|
|
|
|
if (!system_supports_mte() || ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If the page content is identical but at least one of the pages is
|
|
* tagged, return non-zero to avoid KSM merging. If only one of the
|
|
* pages is tagged, set_pte_at() may zero or change the tags of the
|
|
* other page via mte_sync_tags().
|
|
*/
|
|
if (test_bit(PG_mte_tagged, &page1->flags) ||
|
|
test_bit(PG_mte_tagged, &page2->flags))
|
|
return addr1 != addr2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
|
|
{
|
|
/* Enable MTE Sync Mode for EL1. */
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
|
|
SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
|
|
isb();
|
|
|
|
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
void mte_enable_kernel_sync(void)
|
|
{
|
|
/*
|
|
* Make sure we enter this function when no PE has set
|
|
* async mode previously.
|
|
*/
|
|
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
|
|
"MTE async mode enabled system wide!");
|
|
|
|
__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
|
|
}
|
|
|
|
void mte_enable_kernel_async(void)
|
|
{
|
|
__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
|
|
|
|
/*
|
|
* MTE async mode is set system wide by the first PE that
|
|
* executes this function.
|
|
*
|
|
* Note: If in future KASAN acquires a runtime switching
|
|
* mode in between sync and async, this strategy needs
|
|
* to be reviewed.
|
|
*/
|
|
if (!system_uses_mte_async_or_asymm_mode())
|
|
static_branch_enable(&mte_async_or_asymm_mode);
|
|
}
|
|
|
|
void mte_enable_kernel_asymm(void)
|
|
{
|
|
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
|
|
__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
|
|
|
|
/*
|
|
* MTE asymm mode behaves as async mode for store
|
|
* operations. The mode is set system wide by the
|
|
* first PE that executes this function.
|
|
*
|
|
* Note: If in future KASAN acquires a runtime switching
|
|
* mode in between sync and async, this strategy needs
|
|
* to be reviewed.
|
|
*/
|
|
if (!system_uses_mte_async_or_asymm_mode())
|
|
static_branch_enable(&mte_async_or_asymm_mode);
|
|
} else {
|
|
/*
|
|
* If the CPU does not support MTE asymmetric mode the
|
|
* kernel falls back on synchronous mode which is the
|
|
* default for kasan=on.
|
|
*/
|
|
mte_enable_kernel_sync();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN_HW_TAGS
|
|
void mte_check_tfsr_el1(void)
|
|
{
|
|
u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
|
|
|
|
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
|
|
/*
|
|
* Note: isb() is not required after this direct write
|
|
* because there is no indirect read subsequent to it
|
|
* (per ARM DDI 0487F.c table D13-1).
|
|
*/
|
|
write_sysreg_s(0, SYS_TFSR_EL1);
|
|
|
|
kasan_report_async();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is where we actually resolve the system and process MTE mode
|
|
* configuration into an actual value in SCTLR_EL1 that affects
|
|
* userspace.
|
|
*/
|
|
static void mte_update_sctlr_user(struct task_struct *task)
|
|
{
|
|
/*
|
|
* This must be called with preemption disabled and can only be called
|
|
* on the current or next task since the CPU must match where the thread
|
|
* is going to run. The caller is responsible for calling
|
|
* update_sctlr_el1() later in the same preemption disabled block.
|
|
*/
|
|
unsigned long sctlr = task->thread.sctlr_user;
|
|
unsigned long mte_ctrl = task->thread.mte_ctrl;
|
|
unsigned long pref, resolved_mte_tcf;
|
|
|
|
pref = __this_cpu_read(mte_tcf_preferred);
|
|
/*
|
|
* If there is no overlap between the system preferred and
|
|
* program requested values go with what was requested.
|
|
*/
|
|
resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
|
|
sctlr &= ~SCTLR_EL1_TCF0_MASK;
|
|
/*
|
|
* Pick an actual setting. The order in which we check for
|
|
* set bits and map into register values determines our
|
|
* default order.
|
|
*/
|
|
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
|
|
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
|
|
else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
|
|
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
|
|
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
|
|
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
|
|
task->thread.sctlr_user = sctlr;
|
|
}
|
|
|
|
static void mte_update_gcr_excl(struct task_struct *task)
|
|
{
|
|
/*
|
|
* SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
|
|
* mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
|
|
*/
|
|
if (kasan_hw_tags_enabled())
|
|
return;
|
|
|
|
write_sysreg_s(
|
|
((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
|
|
SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
|
|
SYS_GCR_EL1);
|
|
}
|
|
|
|
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
|
|
__le32 *updptr, int nr_inst)
|
|
{
|
|
BUG_ON(nr_inst != 1); /* Branch -> NOP */
|
|
|
|
if (kasan_hw_tags_enabled())
|
|
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
|
|
}
|
|
|
|
void mte_thread_init_user(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/* clear any pending asynchronous tag fault */
|
|
dsb(ish);
|
|
write_sysreg_s(0, SYS_TFSRE0_EL1);
|
|
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
|
|
/* disable tag checking and reset tag generation mask */
|
|
set_mte_ctrl(current, 0);
|
|
}
|
|
|
|
void mte_thread_switch(struct task_struct *next)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
mte_update_sctlr_user(next);
|
|
mte_update_gcr_excl(next);
|
|
|
|
/* TCO may not have been disabled on exception entry for the current task. */
|
|
mte_disable_tco_entry(next);
|
|
|
|
/*
|
|
* Check if an async tag exception occurred at EL1.
|
|
*
|
|
* Note: On the context switch path we rely on the dsb() present
|
|
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
|
|
* are synchronized before this point.
|
|
*/
|
|
isb();
|
|
mte_check_tfsr_el1();
|
|
}
|
|
|
|
void mte_suspend_enter(void)
|
|
{
|
|
if (!system_supports_mte())
|
|
return;
|
|
|
|
/*
|
|
* The barriers are required to guarantee that the indirect writes
|
|
* to TFSR_EL1 are synchronized before we report the state.
|
|
*/
|
|
dsb(nsh);
|
|
isb();
|
|
|
|
/* Report SYS_TFSR_EL1 before suspend entry */
|
|
mte_check_tfsr_el1();
|
|
}
|
|
|
|
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
|
|
SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
if (arg & PR_MTE_TCF_ASYNC)
|
|
mte_ctrl |= MTE_CTRL_TCF_ASYNC;
|
|
if (arg & PR_MTE_TCF_SYNC)
|
|
mte_ctrl |= MTE_CTRL_TCF_SYNC;
|
|
|
|
/*
|
|
* If the system supports it and both sync and async modes are
|
|
* specified then implicitly enable asymmetric mode.
|
|
* Userspace could see a mix of both sync and async anyway due
|
|
* to differing or changing defaults on CPUs.
|
|
*/
|
|
if (cpus_have_cap(ARM64_MTE_ASYMM) &&
|
|
(arg & PR_MTE_TCF_ASYNC) &&
|
|
(arg & PR_MTE_TCF_SYNC))
|
|
mte_ctrl |= MTE_CTRL_TCF_ASYMM;
|
|
|
|
task->thread.mte_ctrl = mte_ctrl;
|
|
if (task == current) {
|
|
preempt_disable();
|
|
mte_update_sctlr_user(task);
|
|
mte_update_gcr_excl(task);
|
|
update_sctlr_el1(task->thread.sctlr_user);
|
|
preempt_enable();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_mte_ctrl(struct task_struct *task)
|
|
{
|
|
unsigned long ret;
|
|
u64 mte_ctrl = task->thread.mte_ctrl;
|
|
u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
|
|
SYS_GCR_EL1_EXCL_MASK;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
ret = incl << PR_MTE_TAG_SHIFT;
|
|
if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
|
|
ret |= PR_MTE_TCF_ASYNC;
|
|
if (mte_ctrl & MTE_CTRL_TCF_SYNC)
|
|
ret |= PR_MTE_TCF_SYNC;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Access MTE tags in another process' address space as given in mm. Update
|
|
* the number of tags copied. Return 0 if any tags copied, error otherwise.
|
|
* Inspired by __access_remote_vm().
|
|
*/
|
|
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
void __user *buf = kiov->iov_base;
|
|
size_t len = kiov->iov_len;
|
|
int ret;
|
|
int write = gup_flags & FOLL_WRITE;
|
|
|
|
if (!access_ok(buf, len))
|
|
return -EFAULT;
|
|
|
|
if (mmap_read_lock_killable(mm))
|
|
return -EIO;
|
|
|
|
while (len) {
|
|
unsigned long tags, offset;
|
|
void *maddr;
|
|
struct page *page = NULL;
|
|
|
|
ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
|
|
&vma, NULL);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
/*
|
|
* Only copy tags if the page has been mapped as PROT_MTE
|
|
* (PG_mte_tagged set). Otherwise the tags are not valid and
|
|
* not accessible to user. Moreover, an mprotect(PROT_MTE)
|
|
* would cause the existing tags to be cleared if the page
|
|
* was never mapped with PROT_MTE.
|
|
*/
|
|
if (!(vma->vm_flags & VM_MTE)) {
|
|
ret = -EOPNOTSUPP;
|
|
put_page(page);
|
|
break;
|
|
}
|
|
WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
|
|
|
|
/* limit access to the end of the page */
|
|
offset = offset_in_page(addr);
|
|
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
|
|
|
|
maddr = page_address(page);
|
|
if (write) {
|
|
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
|
|
set_page_dirty_lock(page);
|
|
} else {
|
|
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
|
|
}
|
|
put_page(page);
|
|
|
|
/* error accessing the tracer's buffer */
|
|
if (!tags)
|
|
break;
|
|
|
|
len -= tags;
|
|
buf += tags;
|
|
addr += tags * MTE_GRANULE_SIZE;
|
|
}
|
|
mmap_read_unlock(mm);
|
|
|
|
/* return an error if no tags copied */
|
|
kiov->iov_len = buf - kiov->iov_base;
|
|
if (!kiov->iov_len) {
|
|
/* check for error accessing the tracee's address space */
|
|
if (ret <= 0)
|
|
return -EIO;
|
|
else
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
|
|
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
|
|
*/
|
|
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
|
|
struct iovec *kiov, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return -EPERM;
|
|
|
|
if (!tsk->ptrace || (current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mte_ptrace_copy_tags(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
int ret;
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = (void __user *)data;
|
|
unsigned int gup_flags = FOLL_FORCE;
|
|
|
|
if (!system_supports_mte())
|
|
return -EIO;
|
|
|
|
if (get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
if (request == PTRACE_POKEMTETAGS)
|
|
gup_flags |= FOLL_WRITE;
|
|
|
|
/* align addr to the MTE tag granule */
|
|
addr &= MTE_GRANULE_MASK;
|
|
|
|
ret = access_remote_tags(child, addr, &kiov, gup_flags);
|
|
if (!ret)
|
|
ret = put_user(kiov.iov_len, &uiov->iov_len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t mte_tcf_preferred_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
switch (per_cpu(mte_tcf_preferred, dev->id)) {
|
|
case MTE_CTRL_TCF_ASYNC:
|
|
return sysfs_emit(buf, "async\n");
|
|
case MTE_CTRL_TCF_SYNC:
|
|
return sysfs_emit(buf, "sync\n");
|
|
case MTE_CTRL_TCF_ASYMM:
|
|
return sysfs_emit(buf, "asymm\n");
|
|
default:
|
|
return sysfs_emit(buf, "???\n");
|
|
}
|
|
}
|
|
|
|
static ssize_t mte_tcf_preferred_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
u64 tcf;
|
|
|
|
if (sysfs_streq(buf, "async"))
|
|
tcf = MTE_CTRL_TCF_ASYNC;
|
|
else if (sysfs_streq(buf, "sync"))
|
|
tcf = MTE_CTRL_TCF_SYNC;
|
|
else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
|
|
tcf = MTE_CTRL_TCF_ASYMM;
|
|
else
|
|
return -EINVAL;
|
|
|
|
device_lock(dev);
|
|
per_cpu(mte_tcf_preferred, dev->id) = tcf;
|
|
device_unlock(dev);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(mte_tcf_preferred);
|
|
|
|
static int register_mte_tcf_preferred_sysctl(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
if (!system_supports_mte())
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
|
|
device_create_file(get_cpu_device(cpu),
|
|
&dev_attr_mte_tcf_preferred);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(register_mte_tcf_preferred_sysctl);
|
|
|
|
/*
|
|
* Return 0 on success, the number of bytes not probed otherwise.
|
|
*/
|
|
size_t mte_probe_user_range(const char __user *uaddr, size_t size)
|
|
{
|
|
const char __user *end = uaddr + size;
|
|
int err = 0;
|
|
char val;
|
|
|
|
__raw_get_user(val, uaddr, err);
|
|
if (err)
|
|
return size;
|
|
|
|
uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
|
|
while (uaddr < end) {
|
|
/*
|
|
* A read is sufficient for mte, the caller should have probed
|
|
* for the pte write permission if required.
|
|
*/
|
|
__raw_get_user(val, uaddr, err);
|
|
if (err)
|
|
return end - uaddr;
|
|
uaddr += MTE_GRANULE_SIZE;
|
|
}
|
|
(void)val;
|
|
|
|
return 0;
|
|
}
|