linux/arch/mips/netlogic/common/smp.c
Hillf Danton b3ea581834 MIPS: Netlogic: Mark Netlogic chips as SMT capable
Netlogic XLR chip has multiple cores. Each core includes four integrated
hardware threads, and they share L1 data and instruction caches.

If the chip is marked to be SMT capable, scheduler then could do more, say,
idle load balancing.

Changes are now confined only to the code of XLR, and hardware is probed
to get core ID for correct setup.

[jayachandranc: simplified and adapted for new merged XLR/XLP code]

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Jayachandran C <jayachandranc@netlogicmicro.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/2972/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2011-12-07 22:04:57 +00:00

271 lines
6.9 KiB
C

/*
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
* reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the NetLogic
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/irq.h>
#include <asm/mmu_context.h>
#include <asm/netlogic/interrupt.h>
#include <asm/netlogic/mips-extns.h>
#include <asm/netlogic/haldefs.h>
#include <asm/netlogic/common.h>
#if defined(CONFIG_CPU_XLP)
#include <asm/netlogic/xlp-hal/iomap.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/pic.h>
#elif defined(CONFIG_CPU_XLR)
#include <asm/netlogic/xlr/iomap.h>
#include <asm/netlogic/xlr/pic.h>
#include <asm/netlogic/xlr/xlr.h>
#else
#error "Unknown CPU"
#endif
void nlm_send_ipi_single(int logical_cpu, unsigned int action)
{
int cpu = cpu_logical_map(logical_cpu);
if (action & SMP_CALL_FUNCTION)
nlm_pic_send_ipi(nlm_pic_base, cpu, IRQ_IPI_SMP_FUNCTION, 0);
if (action & SMP_RESCHEDULE_YOURSELF)
nlm_pic_send_ipi(nlm_pic_base, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
}
void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
{
int cpu;
for_each_cpu(cpu, mask) {
nlm_send_ipi_single(cpu, action);
}
}
/* IRQ_IPI_SMP_FUNCTION Handler */
void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc)
{
write_c0_eirr(1ull << irq);
smp_call_function_interrupt();
}
/* IRQ_IPI_SMP_RESCHEDULE handler */
void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
{
write_c0_eirr(1ull << irq);
scheduler_ipi();
}
/*
* Called before going into mips code, early cpu init
*/
void nlm_early_init_secondary(int cpu)
{
change_c0_config(CONF_CM_CMASK, 0x3);
write_c0_ebase((uint32_t)nlm_common_ebase);
#ifdef CONFIG_CPU_XLP
if (hard_smp_processor_id() % 4 == 0)
xlp_mmu_init();
#endif
}
/*
* Code to run on secondary just after probing the CPU
*/
static void __cpuinit nlm_init_secondary(void)
{
current_cpu_data.core = hard_smp_processor_id() / 4;
nlm_smp_irq_init();
}
void nlm_prepare_cpus(unsigned int max_cpus)
{
/* declare we are SMT capable */
smp_num_siblings = nlm_threads_per_core;
}
void nlm_smp_finish(void)
{
#ifdef notyet
nlm_common_msgring_cpu_init();
#endif
local_irq_enable();
}
void nlm_cpus_done(void)
{
}
/*
* Boot all other cpus in the system, initialize them, and bring them into
* the boot function
*/
int nlm_cpu_ready[NR_CPUS];
unsigned long nlm_next_gp;
unsigned long nlm_next_sp;
cpumask_t phys_cpu_present_map;
void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
{
unsigned long gp = (unsigned long)task_thread_info(idle);
unsigned long sp = (unsigned long)__KSTK_TOS(idle);
int cpu = cpu_logical_map(logical_cpu);
nlm_next_sp = sp;
nlm_next_gp = gp;
/* barrier */
__sync();
nlm_pic_send_ipi(nlm_pic_base, cpu, 1, 1);
}
void __init nlm_smp_setup(void)
{
unsigned int boot_cpu;
int num_cpus, i;
boot_cpu = hard_smp_processor_id();
cpus_clear(phys_cpu_present_map);
cpu_set(boot_cpu, phys_cpu_present_map);
__cpu_number_map[boot_cpu] = 0;
__cpu_logical_map[0] = boot_cpu;
cpu_set(0, cpu_possible_map);
num_cpus = 1;
for (i = 0; i < NR_CPUS; i++) {
/*
* nlm_cpu_ready array is not set for the boot_cpu,
* it is only set for ASPs (see smpboot.S)
*/
if (nlm_cpu_ready[i]) {
cpu_set(i, phys_cpu_present_map);
__cpu_number_map[i] = num_cpus;
__cpu_logical_map[num_cpus] = i;
cpu_set(num_cpus, cpu_possible_map);
++num_cpus;
}
}
pr_info("Phys CPU present map: %lx, possible map %lx\n",
(unsigned long)phys_cpu_present_map.bits[0],
(unsigned long)cpu_possible_map.bits[0]);
pr_info("Detected %i Slave CPU(s)\n", num_cpus);
nlm_set_nmi_handler(nlm_boot_secondary_cpus);
}
static int nlm_parse_cpumask(u32 cpu_mask)
{
uint32_t core0_thr_mask, core_thr_mask;
int threadmode, i;
core0_thr_mask = cpu_mask & 0xf;
switch (core0_thr_mask) {
case 1:
nlm_threads_per_core = 1;
threadmode = 0;
break;
case 3:
nlm_threads_per_core = 2;
threadmode = 2;
break;
case 0xf:
nlm_threads_per_core = 4;
threadmode = 3;
break;
default:
goto unsupp;
}
/* Verify other cores CPU masks */
nlm_coremask = 1;
nlm_cpumask = core0_thr_mask;
for (i = 1; i < 8; i++) {
core_thr_mask = (cpu_mask >> (i * 4)) & 0xf;
if (core_thr_mask) {
if (core_thr_mask != core0_thr_mask)
goto unsupp;
nlm_coremask |= 1 << i;
nlm_cpumask |= core0_thr_mask << (4 * i);
}
}
return threadmode;
unsupp:
panic("Unsupported CPU mask %x\n", cpu_mask);
return 0;
}
int __cpuinit nlm_wakeup_secondary_cpus(u32 wakeup_mask)
{
unsigned long reset_vec;
char *reset_data;
int threadmode;
/* Update reset entry point with CPU init code */
reset_vec = CKSEG1ADDR(RESET_VEC_PHYS);
memcpy((void *)reset_vec, (void *)nlm_reset_entry,
(nlm_reset_entry_end - nlm_reset_entry));
/* verify the mask and setup core config variables */
threadmode = nlm_parse_cpumask(wakeup_mask);
/* Setup CPU init parameters */
reset_data = (char *)CKSEG1ADDR(RESET_DATA_PHYS);
*(int *)(reset_data + BOOT_THREAD_MODE) = threadmode;
#ifdef CONFIG_CPU_XLP
xlp_wakeup_secondary_cpus();
#else
xlr_wakeup_secondary_cpus();
#endif
return 0;
}
struct plat_smp_ops nlm_smp_ops = {
.send_ipi_single = nlm_send_ipi_single,
.send_ipi_mask = nlm_send_ipi_mask,
.init_secondary = nlm_init_secondary,
.smp_finish = nlm_smp_finish,
.cpus_done = nlm_cpus_done,
.boot_secondary = nlm_boot_secondary,
.smp_setup = nlm_smp_setup,
.prepare_cpus = nlm_prepare_cpus,
};