linux/tools/testing/selftests/net/tls.c
Jakub Kicinski a7384f3918 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Conflicts:

tools/testing/selftests/net/fcnal-test.sh
  d7a2fc1437 ("selftests: net: fcnal-test: check if FIPS mode is enabled")
  dd017c72dd ("selftests: fcnal: Test SO_DONTROUTE on TCP sockets.")
https://lore.kernel.org/all/5007b52c-dd16-dbf6-8d64-b9701bfa498b@tessares.net/
https://lore.kernel.org/all/20230619105427.4a0df9b3@canb.auug.org.au/

No adjacent changes.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-22 18:40:38 -07:00

2022 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/tls.h>
#include <linux/tcp.h>
#include <linux/socket.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/sendfile.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include "../kselftest_harness.h"
#define TLS_PAYLOAD_MAX_LEN 16384
#define SOL_TLS 282
static int fips_enabled;
struct tls_crypto_info_keys {
union {
struct tls12_crypto_info_aes_gcm_128 aes128;
struct tls12_crypto_info_chacha20_poly1305 chacha20;
struct tls12_crypto_info_sm4_gcm sm4gcm;
struct tls12_crypto_info_sm4_ccm sm4ccm;
struct tls12_crypto_info_aes_ccm_128 aesccm128;
struct tls12_crypto_info_aes_gcm_256 aesgcm256;
};
size_t len;
};
static void tls_crypto_info_init(uint16_t tls_version, uint16_t cipher_type,
struct tls_crypto_info_keys *tls12)
{
memset(tls12, 0, sizeof(*tls12));
switch (cipher_type) {
case TLS_CIPHER_CHACHA20_POLY1305:
tls12->len = sizeof(struct tls12_crypto_info_chacha20_poly1305);
tls12->chacha20.info.version = tls_version;
tls12->chacha20.info.cipher_type = cipher_type;
break;
case TLS_CIPHER_AES_GCM_128:
tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_128);
tls12->aes128.info.version = tls_version;
tls12->aes128.info.cipher_type = cipher_type;
break;
case TLS_CIPHER_SM4_GCM:
tls12->len = sizeof(struct tls12_crypto_info_sm4_gcm);
tls12->sm4gcm.info.version = tls_version;
tls12->sm4gcm.info.cipher_type = cipher_type;
break;
case TLS_CIPHER_SM4_CCM:
tls12->len = sizeof(struct tls12_crypto_info_sm4_ccm);
tls12->sm4ccm.info.version = tls_version;
tls12->sm4ccm.info.cipher_type = cipher_type;
break;
case TLS_CIPHER_AES_CCM_128:
tls12->len = sizeof(struct tls12_crypto_info_aes_ccm_128);
tls12->aesccm128.info.version = tls_version;
tls12->aesccm128.info.cipher_type = cipher_type;
break;
case TLS_CIPHER_AES_GCM_256:
tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_256);
tls12->aesgcm256.info.version = tls_version;
tls12->aesgcm256.info.cipher_type = cipher_type;
break;
default:
break;
}
}
static void memrnd(void *s, size_t n)
{
int *dword = s;
char *byte;
for (; n >= 4; n -= 4)
*dword++ = rand();
byte = (void *)dword;
while (n--)
*byte++ = rand();
}
static void ulp_sock_pair(struct __test_metadata *_metadata,
int *fd, int *cfd, bool *notls)
{
struct sockaddr_in addr;
socklen_t len;
int sfd, ret;
*notls = false;
len = sizeof(addr);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = 0;
*fd = socket(AF_INET, SOCK_STREAM, 0);
sfd = socket(AF_INET, SOCK_STREAM, 0);
ret = bind(sfd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
ret = listen(sfd, 10);
ASSERT_EQ(ret, 0);
ret = getsockname(sfd, &addr, &len);
ASSERT_EQ(ret, 0);
ret = connect(*fd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
*cfd = accept(sfd, &addr, &len);
ASSERT_GE(*cfd, 0);
close(sfd);
ret = setsockopt(*fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
if (ret != 0) {
ASSERT_EQ(errno, ENOENT);
*notls = true;
printf("Failure setting TCP_ULP, testing without tls\n");
return;
}
ret = setsockopt(*cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
ASSERT_EQ(ret, 0);
}
/* Produce a basic cmsg */
static int tls_send_cmsg(int fd, unsigned char record_type,
void *data, size_t len, int flags)
{
char cbuf[CMSG_SPACE(sizeof(char))];
int cmsg_len = sizeof(char);
struct cmsghdr *cmsg;
struct msghdr msg;
struct iovec vec;
vec.iov_base = data;
vec.iov_len = len;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_iov = &vec;
msg.msg_iovlen = 1;
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_TLS;
/* test sending non-record types. */
cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
cmsg->cmsg_len = CMSG_LEN(cmsg_len);
*CMSG_DATA(cmsg) = record_type;
msg.msg_controllen = cmsg->cmsg_len;
return sendmsg(fd, &msg, flags);
}
static int tls_recv_cmsg(struct __test_metadata *_metadata,
int fd, unsigned char record_type,
void *data, size_t len, int flags)
{
char cbuf[CMSG_SPACE(sizeof(char))];
struct cmsghdr *cmsg;
unsigned char ctype;
struct msghdr msg;
struct iovec vec;
int n;
vec.iov_base = data;
vec.iov_len = len;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_iov = &vec;
msg.msg_iovlen = 1;
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
n = recvmsg(fd, &msg, flags);
cmsg = CMSG_FIRSTHDR(&msg);
EXPECT_NE(cmsg, NULL);
EXPECT_EQ(cmsg->cmsg_level, SOL_TLS);
EXPECT_EQ(cmsg->cmsg_type, TLS_GET_RECORD_TYPE);
ctype = *((unsigned char *)CMSG_DATA(cmsg));
EXPECT_EQ(ctype, record_type);
return n;
}
FIXTURE(tls_basic)
{
int fd, cfd;
bool notls;
};
FIXTURE_SETUP(tls_basic)
{
ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls);
}
FIXTURE_TEARDOWN(tls_basic)
{
close(self->fd);
close(self->cfd);
}
/* Send some data through with ULP but no keys */
TEST_F(tls_basic, base_base)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10];
ASSERT_EQ(strlen(test_str) + 1, send_len);
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
};
FIXTURE(tls)
{
int fd, cfd;
bool notls;
};
FIXTURE_VARIANT(tls)
{
uint16_t tls_version;
uint16_t cipher_type;
bool nopad, fips_non_compliant;
};
FIXTURE_VARIANT_ADD(tls, 12_aes_gcm)
{
.tls_version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,
};
FIXTURE_VARIANT_ADD(tls, 13_aes_gcm)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,
};
FIXTURE_VARIANT_ADD(tls, 12_chacha)
{
.tls_version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_CHACHA20_POLY1305,
.fips_non_compliant = true,
};
FIXTURE_VARIANT_ADD(tls, 13_chacha)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_CHACHA20_POLY1305,
.fips_non_compliant = true,
};
FIXTURE_VARIANT_ADD(tls, 13_sm4_gcm)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_SM4_GCM,
.fips_non_compliant = true,
};
FIXTURE_VARIANT_ADD(tls, 13_sm4_ccm)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_SM4_CCM,
.fips_non_compliant = true,
};
FIXTURE_VARIANT_ADD(tls, 12_aes_ccm)
{
.tls_version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_CCM_128,
};
FIXTURE_VARIANT_ADD(tls, 13_aes_ccm)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_AES_CCM_128,
};
FIXTURE_VARIANT_ADD(tls, 12_aes_gcm_256)
{
.tls_version = TLS_1_2_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_256,
};
FIXTURE_VARIANT_ADD(tls, 13_aes_gcm_256)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_256,
};
FIXTURE_VARIANT_ADD(tls, 13_nopad)
{
.tls_version = TLS_1_3_VERSION,
.cipher_type = TLS_CIPHER_AES_GCM_128,
.nopad = true,
};
FIXTURE_SETUP(tls)
{
struct tls_crypto_info_keys tls12;
int one = 1;
int ret;
if (fips_enabled && variant->fips_non_compliant)
SKIP(return, "Unsupported cipher in FIPS mode");
tls_crypto_info_init(variant->tls_version, variant->cipher_type,
&tls12);
ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls);
if (self->notls)
return;
ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
ret = setsockopt(self->cfd, SOL_TLS, TLS_RX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
if (variant->nopad) {
ret = setsockopt(self->cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD,
(void *)&one, sizeof(one));
ASSERT_EQ(ret, 0);
}
}
FIXTURE_TEARDOWN(tls)
{
close(self->fd);
close(self->cfd);
}
TEST_F(tls, sendfile)
{
int filefd = open("/proc/self/exe", O_RDONLY);
struct stat st;
EXPECT_GE(filefd, 0);
fstat(filefd, &st);
EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0);
}
TEST_F(tls, send_then_sendfile)
{
int filefd = open("/proc/self/exe", O_RDONLY);
char const *test_str = "test_send";
int to_send = strlen(test_str) + 1;
char recv_buf[10];
struct stat st;
char *buf;
EXPECT_GE(filefd, 0);
fstat(filefd, &st);
buf = (char *)malloc(st.st_size);
EXPECT_EQ(send(self->fd, test_str, to_send, 0), to_send);
EXPECT_EQ(recv(self->cfd, recv_buf, to_send, MSG_WAITALL), to_send);
EXPECT_EQ(memcmp(test_str, recv_buf, to_send), 0);
EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0);
EXPECT_EQ(recv(self->cfd, buf, st.st_size, MSG_WAITALL), st.st_size);
}
static void chunked_sendfile(struct __test_metadata *_metadata,
struct _test_data_tls *self,
uint16_t chunk_size,
uint16_t extra_payload_size)
{
char buf[TLS_PAYLOAD_MAX_LEN];
uint16_t test_payload_size;
int size = 0;
int ret;
char filename[] = "/tmp/mytemp.XXXXXX";
int fd = mkstemp(filename);
off_t offset = 0;
unlink(filename);
ASSERT_GE(fd, 0);
EXPECT_GE(chunk_size, 1);
test_payload_size = chunk_size + extra_payload_size;
ASSERT_GE(TLS_PAYLOAD_MAX_LEN, test_payload_size);
memset(buf, 1, test_payload_size);
size = write(fd, buf, test_payload_size);
EXPECT_EQ(size, test_payload_size);
fsync(fd);
while (size > 0) {
ret = sendfile(self->fd, fd, &offset, chunk_size);
EXPECT_GE(ret, 0);
size -= ret;
}
EXPECT_EQ(recv(self->cfd, buf, test_payload_size, MSG_WAITALL),
test_payload_size);
close(fd);
}
TEST_F(tls, multi_chunk_sendfile)
{
chunked_sendfile(_metadata, self, 4096, 4096);
chunked_sendfile(_metadata, self, 4096, 0);
chunked_sendfile(_metadata, self, 4096, 1);
chunked_sendfile(_metadata, self, 4096, 2048);
chunked_sendfile(_metadata, self, 8192, 2048);
chunked_sendfile(_metadata, self, 4096, 8192);
chunked_sendfile(_metadata, self, 8192, 4096);
chunked_sendfile(_metadata, self, 12288, 1024);
chunked_sendfile(_metadata, self, 12288, 2000);
chunked_sendfile(_metadata, self, 15360, 100);
chunked_sendfile(_metadata, self, 15360, 300);
chunked_sendfile(_metadata, self, 1, 4096);
chunked_sendfile(_metadata, self, 2048, 4096);
chunked_sendfile(_metadata, self, 2048, 8192);
chunked_sendfile(_metadata, self, 4096, 8192);
chunked_sendfile(_metadata, self, 1024, 12288);
chunked_sendfile(_metadata, self, 2000, 12288);
chunked_sendfile(_metadata, self, 100, 15360);
chunked_sendfile(_metadata, self, 300, 15360);
}
TEST_F(tls, recv_max)
{
unsigned int send_len = TLS_PAYLOAD_MAX_LEN;
char recv_mem[TLS_PAYLOAD_MAX_LEN];
char buf[TLS_PAYLOAD_MAX_LEN];
memrnd(buf, sizeof(buf));
EXPECT_GE(send(self->fd, buf, send_len, 0), 0);
EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, recv_mem, send_len), 0);
}
TEST_F(tls, recv_small)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10];
send_len = strlen(test_str) + 1;
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
}
TEST_F(tls, msg_more)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10 * 2];
EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len);
EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1);
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_EQ(recv(self->cfd, buf, send_len * 2, MSG_WAITALL),
send_len * 2);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
}
TEST_F(tls, msg_more_unsent)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10];
EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len);
EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1);
}
TEST_F(tls, sendmsg_single)
{
struct msghdr msg;
char const *test_str = "test_sendmsg";
size_t send_len = 13;
struct iovec vec;
char buf[13];
vec.iov_base = (char *)test_str;
vec.iov_len = send_len;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_iov = &vec;
msg.msg_iovlen = 1;
EXPECT_EQ(sendmsg(self->fd, &msg, 0), send_len);
EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
}
#define MAX_FRAGS 64
#define SEND_LEN 13
TEST_F(tls, sendmsg_fragmented)
{
char const *test_str = "test_sendmsg";
char buf[SEND_LEN * MAX_FRAGS];
struct iovec vec[MAX_FRAGS];
struct msghdr msg;
int i, frags;
for (frags = 1; frags <= MAX_FRAGS; frags++) {
for (i = 0; i < frags; i++) {
vec[i].iov_base = (char *)test_str;
vec[i].iov_len = SEND_LEN;
}
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_iov = vec;
msg.msg_iovlen = frags;
EXPECT_EQ(sendmsg(self->fd, &msg, 0), SEND_LEN * frags);
EXPECT_EQ(recv(self->cfd, buf, SEND_LEN * frags, MSG_WAITALL),
SEND_LEN * frags);
for (i = 0; i < frags; i++)
EXPECT_EQ(memcmp(buf + SEND_LEN * i,
test_str, SEND_LEN), 0);
}
}
#undef MAX_FRAGS
#undef SEND_LEN
TEST_F(tls, sendmsg_large)
{
void *mem = malloc(16384);
size_t send_len = 16384;
size_t sends = 128;
struct msghdr msg;
size_t recvs = 0;
size_t sent = 0;
memset(&msg, 0, sizeof(struct msghdr));
while (sent++ < sends) {
struct iovec vec = { (void *)mem, send_len };
msg.msg_iov = &vec;
msg.msg_iovlen = 1;
EXPECT_EQ(sendmsg(self->cfd, &msg, 0), send_len);
}
while (recvs++ < sends) {
EXPECT_NE(recv(self->fd, mem, send_len, 0), -1);
}
free(mem);
}
TEST_F(tls, sendmsg_multiple)
{
char const *test_str = "test_sendmsg_multiple";
struct iovec vec[5];
char *test_strs[5];
struct msghdr msg;
int total_len = 0;
int len_cmp = 0;
int iov_len = 5;
char *buf;
int i;
memset(&msg, 0, sizeof(struct msghdr));
for (i = 0; i < iov_len; i++) {
test_strs[i] = (char *)malloc(strlen(test_str) + 1);
snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str);
vec[i].iov_base = (void *)test_strs[i];
vec[i].iov_len = strlen(test_strs[i]) + 1;
total_len += vec[i].iov_len;
}
msg.msg_iov = vec;
msg.msg_iovlen = iov_len;
EXPECT_EQ(sendmsg(self->cfd, &msg, 0), total_len);
buf = malloc(total_len);
EXPECT_NE(recv(self->fd, buf, total_len, 0), -1);
for (i = 0; i < iov_len; i++) {
EXPECT_EQ(memcmp(test_strs[i], buf + len_cmp,
strlen(test_strs[i])),
0);
len_cmp += strlen(buf + len_cmp) + 1;
}
for (i = 0; i < iov_len; i++)
free(test_strs[i]);
free(buf);
}
TEST_F(tls, sendmsg_multiple_stress)
{
char const *test_str = "abcdefghijklmno";
struct iovec vec[1024];
char *test_strs[1024];
int iov_len = 1024;
int total_len = 0;
char buf[1 << 14];
struct msghdr msg;
int len_cmp = 0;
int i;
memset(&msg, 0, sizeof(struct msghdr));
for (i = 0; i < iov_len; i++) {
test_strs[i] = (char *)malloc(strlen(test_str) + 1);
snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str);
vec[i].iov_base = (void *)test_strs[i];
vec[i].iov_len = strlen(test_strs[i]) + 1;
total_len += vec[i].iov_len;
}
msg.msg_iov = vec;
msg.msg_iovlen = iov_len;
EXPECT_EQ(sendmsg(self->fd, &msg, 0), total_len);
EXPECT_NE(recv(self->cfd, buf, total_len, 0), -1);
for (i = 0; i < iov_len; i++)
len_cmp += strlen(buf + len_cmp) + 1;
for (i = 0; i < iov_len; i++)
free(test_strs[i]);
}
TEST_F(tls, splice_from_pipe)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char mem_send[TLS_PAYLOAD_MAX_LEN];
char mem_recv[TLS_PAYLOAD_MAX_LEN];
int p[2];
ASSERT_GE(pipe(p), 0);
EXPECT_GE(write(p[1], mem_send, send_len), 0);
EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), 0);
EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, splice_from_pipe2)
{
int send_len = 16000;
char mem_send[16000];
char mem_recv[16000];
int p2[2];
int p[2];
memrnd(mem_send, sizeof(mem_send));
ASSERT_GE(pipe(p), 0);
ASSERT_GE(pipe(p2), 0);
EXPECT_EQ(write(p[1], mem_send, 8000), 8000);
EXPECT_EQ(splice(p[0], NULL, self->fd, NULL, 8000, 0), 8000);
EXPECT_EQ(write(p2[1], mem_send + 8000, 8000), 8000);
EXPECT_EQ(splice(p2[0], NULL, self->fd, NULL, 8000, 0), 8000);
EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, send_and_splice)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char mem_send[TLS_PAYLOAD_MAX_LEN];
char mem_recv[TLS_PAYLOAD_MAX_LEN];
char const *test_str = "test_read";
int send_len2 = 10;
char buf[10];
int p[2];
ASSERT_GE(pipe(p), 0);
EXPECT_EQ(send(self->fd, test_str, send_len2, 0), send_len2);
EXPECT_EQ(recv(self->cfd, buf, send_len2, MSG_WAITALL), send_len2);
EXPECT_EQ(memcmp(test_str, buf, send_len2), 0);
EXPECT_GE(write(p[1], mem_send, send_len), send_len);
EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), send_len);
EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, splice_to_pipe)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char mem_send[TLS_PAYLOAD_MAX_LEN];
char mem_recv[TLS_PAYLOAD_MAX_LEN];
int p[2];
memrnd(mem_send, sizeof(mem_send));
ASSERT_GE(pipe(p), 0);
EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len);
EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), send_len);
EXPECT_EQ(read(p[0], mem_recv, send_len), send_len);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, splice_cmsg_to_pipe)
{
char *test_str = "test_read";
char record_type = 100;
int send_len = 10;
char buf[10];
int p[2];
if (self->notls)
SKIP(return, "no TLS support");
ASSERT_GE(pipe(p), 0);
EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10);
EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1);
EXPECT_EQ(errno, EINVAL);
EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(errno, EIO);
EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type,
buf, sizeof(buf), MSG_WAITALL),
send_len);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
}
TEST_F(tls, splice_dec_cmsg_to_pipe)
{
char *test_str = "test_read";
char record_type = 100;
int send_len = 10;
char buf[10];
int p[2];
if (self->notls)
SKIP(return, "no TLS support");
ASSERT_GE(pipe(p), 0);
EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10);
EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(errno, EIO);
EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1);
EXPECT_EQ(errno, EINVAL);
EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type,
buf, sizeof(buf), MSG_WAITALL),
send_len);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
}
TEST_F(tls, recv_and_splice)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char mem_send[TLS_PAYLOAD_MAX_LEN];
char mem_recv[TLS_PAYLOAD_MAX_LEN];
int half = send_len / 2;
int p[2];
ASSERT_GE(pipe(p), 0);
EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len);
/* Recv hald of the record, splice the other half */
EXPECT_EQ(recv(self->cfd, mem_recv, half, MSG_WAITALL), half);
EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, half, SPLICE_F_NONBLOCK),
half);
EXPECT_EQ(read(p[0], &mem_recv[half], half), half);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, peek_and_splice)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char mem_send[TLS_PAYLOAD_MAX_LEN];
char mem_recv[TLS_PAYLOAD_MAX_LEN];
int chunk = TLS_PAYLOAD_MAX_LEN / 4;
int n, i, p[2];
memrnd(mem_send, sizeof(mem_send));
ASSERT_GE(pipe(p), 0);
for (i = 0; i < 4; i++)
EXPECT_EQ(send(self->fd, &mem_send[chunk * i], chunk, 0),
chunk);
EXPECT_EQ(recv(self->cfd, mem_recv, chunk * 5 / 2,
MSG_WAITALL | MSG_PEEK),
chunk * 5 / 2);
EXPECT_EQ(memcmp(mem_send, mem_recv, chunk * 5 / 2), 0);
n = 0;
while (n < send_len) {
i = splice(self->cfd, NULL, p[1], NULL, send_len - n, 0);
EXPECT_GT(i, 0);
n += i;
}
EXPECT_EQ(n, send_len);
EXPECT_EQ(read(p[0], mem_recv, send_len), send_len);
EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0);
}
TEST_F(tls, recvmsg_single)
{
char const *test_str = "test_recvmsg_single";
int send_len = strlen(test_str) + 1;
char buf[20];
struct msghdr hdr;
struct iovec vec;
memset(&hdr, 0, sizeof(hdr));
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
vec.iov_base = (char *)buf;
vec.iov_len = send_len;
hdr.msg_iovlen = 1;
hdr.msg_iov = &vec;
EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
}
TEST_F(tls, recvmsg_single_max)
{
int send_len = TLS_PAYLOAD_MAX_LEN;
char send_mem[TLS_PAYLOAD_MAX_LEN];
char recv_mem[TLS_PAYLOAD_MAX_LEN];
struct iovec vec;
struct msghdr hdr;
memrnd(send_mem, sizeof(send_mem));
EXPECT_EQ(send(self->fd, send_mem, send_len, 0), send_len);
vec.iov_base = (char *)recv_mem;
vec.iov_len = TLS_PAYLOAD_MAX_LEN;
hdr.msg_iovlen = 1;
hdr.msg_iov = &vec;
EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1);
EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0);
}
TEST_F(tls, recvmsg_multiple)
{
unsigned int msg_iovlen = 1024;
struct iovec vec[1024];
char *iov_base[1024];
unsigned int iov_len = 16;
int send_len = 1 << 14;
char buf[1 << 14];
struct msghdr hdr;
int i;
memrnd(buf, sizeof(buf));
EXPECT_EQ(send(self->fd, buf, send_len, 0), send_len);
for (i = 0; i < msg_iovlen; i++) {
iov_base[i] = (char *)malloc(iov_len);
vec[i].iov_base = iov_base[i];
vec[i].iov_len = iov_len;
}
hdr.msg_iovlen = msg_iovlen;
hdr.msg_iov = vec;
EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1);
for (i = 0; i < msg_iovlen; i++)
free(iov_base[i]);
}
TEST_F(tls, single_send_multiple_recv)
{
unsigned int total_len = TLS_PAYLOAD_MAX_LEN * 2;
unsigned int send_len = TLS_PAYLOAD_MAX_LEN;
char send_mem[TLS_PAYLOAD_MAX_LEN * 2];
char recv_mem[TLS_PAYLOAD_MAX_LEN * 2];
memrnd(send_mem, sizeof(send_mem));
EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0);
memset(recv_mem, 0, total_len);
EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1);
EXPECT_NE(recv(self->cfd, recv_mem + send_len, send_len, 0), -1);
EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0);
}
TEST_F(tls, multiple_send_single_recv)
{
unsigned int total_len = 2 * 10;
unsigned int send_len = 10;
char recv_mem[2 * 10];
char send_mem[10];
memrnd(send_mem, sizeof(send_mem));
EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0);
EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0);
memset(recv_mem, 0, total_len);
EXPECT_EQ(recv(self->cfd, recv_mem, total_len, MSG_WAITALL), total_len);
EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0);
EXPECT_EQ(memcmp(send_mem, recv_mem + send_len, send_len), 0);
}
TEST_F(tls, single_send_multiple_recv_non_align)
{
const unsigned int total_len = 15;
const unsigned int recv_len = 10;
char recv_mem[recv_len * 2];
char send_mem[total_len];
memrnd(send_mem, sizeof(send_mem));
EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0);
memset(recv_mem, 0, total_len);
EXPECT_EQ(recv(self->cfd, recv_mem, recv_len, 0), recv_len);
EXPECT_EQ(recv(self->cfd, recv_mem + recv_len, recv_len, 0), 5);
EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0);
}
TEST_F(tls, recv_partial)
{
char const *test_str = "test_read_partial";
char const *test_str_first = "test_read";
char const *test_str_second = "_partial";
int send_len = strlen(test_str) + 1;
char recv_mem[18];
memset(recv_mem, 0, sizeof(recv_mem));
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->cfd, recv_mem, strlen(test_str_first),
MSG_WAITALL), -1);
EXPECT_EQ(memcmp(test_str_first, recv_mem, strlen(test_str_first)), 0);
memset(recv_mem, 0, sizeof(recv_mem));
EXPECT_NE(recv(self->cfd, recv_mem, strlen(test_str_second),
MSG_WAITALL), -1);
EXPECT_EQ(memcmp(test_str_second, recv_mem, strlen(test_str_second)),
0);
}
TEST_F(tls, recv_nonblock)
{
char buf[4096];
bool err;
EXPECT_EQ(recv(self->cfd, buf, sizeof(buf), MSG_DONTWAIT), -1);
err = (errno == EAGAIN || errno == EWOULDBLOCK);
EXPECT_EQ(err, true);
}
TEST_F(tls, recv_peek)
{
char const *test_str = "test_read_peek";
int send_len = strlen(test_str) + 1;
char buf[15];
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_PEEK), send_len);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
memset(buf, 0, sizeof(buf));
EXPECT_EQ(recv(self->cfd, buf, send_len, 0), send_len);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
}
TEST_F(tls, recv_peek_multiple)
{
char const *test_str = "test_read_peek";
int send_len = strlen(test_str) + 1;
unsigned int num_peeks = 100;
char buf[15];
int i;
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
for (i = 0; i < num_peeks; i++) {
EXPECT_NE(recv(self->cfd, buf, send_len, MSG_PEEK), -1);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
memset(buf, 0, sizeof(buf));
}
EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(test_str, buf, send_len), 0);
}
TEST_F(tls, recv_peek_multiple_records)
{
char const *test_str = "test_read_peek_mult_recs";
char const *test_str_first = "test_read_peek";
char const *test_str_second = "_mult_recs";
int len;
char buf[64];
len = strlen(test_str_first);
EXPECT_EQ(send(self->fd, test_str_first, len, 0), len);
len = strlen(test_str_second) + 1;
EXPECT_EQ(send(self->fd, test_str_second, len, 0), len);
len = strlen(test_str_first);
memset(buf, 0, len);
EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len);
/* MSG_PEEK can only peek into the current record. */
len = strlen(test_str_first);
EXPECT_EQ(memcmp(test_str_first, buf, len), 0);
len = strlen(test_str) + 1;
memset(buf, 0, len);
EXPECT_EQ(recv(self->cfd, buf, len, MSG_WAITALL), len);
/* Non-MSG_PEEK will advance strparser (and therefore record)
* however.
*/
len = strlen(test_str) + 1;
EXPECT_EQ(memcmp(test_str, buf, len), 0);
/* MSG_MORE will hold current record open, so later MSG_PEEK
* will see everything.
*/
len = strlen(test_str_first);
EXPECT_EQ(send(self->fd, test_str_first, len, MSG_MORE), len);
len = strlen(test_str_second) + 1;
EXPECT_EQ(send(self->fd, test_str_second, len, 0), len);
len = strlen(test_str) + 1;
memset(buf, 0, len);
EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len);
len = strlen(test_str) + 1;
EXPECT_EQ(memcmp(test_str, buf, len), 0);
}
TEST_F(tls, recv_peek_large_buf_mult_recs)
{
char const *test_str = "test_read_peek_mult_recs";
char const *test_str_first = "test_read_peek";
char const *test_str_second = "_mult_recs";
int len;
char buf[64];
len = strlen(test_str_first);
EXPECT_EQ(send(self->fd, test_str_first, len, 0), len);
len = strlen(test_str_second) + 1;
EXPECT_EQ(send(self->fd, test_str_second, len, 0), len);
len = strlen(test_str) + 1;
memset(buf, 0, len);
EXPECT_NE((len = recv(self->cfd, buf, len,
MSG_PEEK | MSG_WAITALL)), -1);
len = strlen(test_str) + 1;
EXPECT_EQ(memcmp(test_str, buf, len), 0);
}
TEST_F(tls, recv_lowat)
{
char send_mem[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
char recv_mem[20];
int lowat = 8;
EXPECT_EQ(send(self->fd, send_mem, 10, 0), 10);
EXPECT_EQ(send(self->fd, send_mem, 5, 0), 5);
memset(recv_mem, 0, 20);
EXPECT_EQ(setsockopt(self->cfd, SOL_SOCKET, SO_RCVLOWAT,
&lowat, sizeof(lowat)), 0);
EXPECT_EQ(recv(self->cfd, recv_mem, 1, MSG_WAITALL), 1);
EXPECT_EQ(recv(self->cfd, recv_mem + 1, 6, MSG_WAITALL), 6);
EXPECT_EQ(recv(self->cfd, recv_mem + 7, 10, 0), 8);
EXPECT_EQ(memcmp(send_mem, recv_mem, 10), 0);
EXPECT_EQ(memcmp(send_mem, recv_mem + 10, 5), 0);
}
TEST_F(tls, bidir)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10];
int ret;
if (!self->notls) {
struct tls_crypto_info_keys tls12;
tls_crypto_info_init(variant->tls_version, variant->cipher_type,
&tls12);
ret = setsockopt(self->fd, SOL_TLS, TLS_RX, &tls12,
tls12.len);
ASSERT_EQ(ret, 0);
ret = setsockopt(self->cfd, SOL_TLS, TLS_TX, &tls12,
tls12.len);
ASSERT_EQ(ret, 0);
}
ASSERT_EQ(strlen(test_str) + 1, send_len);
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
memset(buf, 0, sizeof(buf));
EXPECT_EQ(send(self->cfd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->fd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
};
TEST_F(tls, pollin)
{
char const *test_str = "test_poll";
struct pollfd fd = { 0, 0, 0 };
char buf[10];
int send_len = 10;
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
fd.fd = self->cfd;
fd.events = POLLIN;
EXPECT_EQ(poll(&fd, 1, 20), 1);
EXPECT_EQ(fd.revents & POLLIN, 1);
EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len);
/* Test timing out */
EXPECT_EQ(poll(&fd, 1, 20), 0);
}
TEST_F(tls, poll_wait)
{
char const *test_str = "test_poll_wait";
int send_len = strlen(test_str) + 1;
struct pollfd fd = { 0, 0, 0 };
char recv_mem[15];
fd.fd = self->cfd;
fd.events = POLLIN;
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
/* Set timeout to inf. secs */
EXPECT_EQ(poll(&fd, 1, -1), 1);
EXPECT_EQ(fd.revents & POLLIN, 1);
EXPECT_EQ(recv(self->cfd, recv_mem, send_len, MSG_WAITALL), send_len);
}
TEST_F(tls, poll_wait_split)
{
struct pollfd fd = { 0, 0, 0 };
char send_mem[20] = {};
char recv_mem[15];
fd.fd = self->cfd;
fd.events = POLLIN;
/* Send 20 bytes */
EXPECT_EQ(send(self->fd, send_mem, sizeof(send_mem), 0),
sizeof(send_mem));
/* Poll with inf. timeout */
EXPECT_EQ(poll(&fd, 1, -1), 1);
EXPECT_EQ(fd.revents & POLLIN, 1);
EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), MSG_WAITALL),
sizeof(recv_mem));
/* Now the remaining 5 bytes of record data are in TLS ULP */
fd.fd = self->cfd;
fd.events = POLLIN;
EXPECT_EQ(poll(&fd, 1, -1), 1);
EXPECT_EQ(fd.revents & POLLIN, 1);
EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), 0),
sizeof(send_mem) - sizeof(recv_mem));
}
TEST_F(tls, blocking)
{
size_t data = 100000;
int res = fork();
EXPECT_NE(res, -1);
if (res) {
/* parent */
size_t left = data;
char buf[16384];
int status;
int pid2;
while (left) {
int res = send(self->fd, buf,
left > 16384 ? 16384 : left, 0);
EXPECT_GE(res, 0);
left -= res;
}
pid2 = wait(&status);
EXPECT_EQ(status, 0);
EXPECT_EQ(res, pid2);
} else {
/* child */
size_t left = data;
char buf[16384];
while (left) {
int res = recv(self->cfd, buf,
left > 16384 ? 16384 : left, 0);
EXPECT_GE(res, 0);
left -= res;
}
}
}
TEST_F(tls, nonblocking)
{
size_t data = 100000;
int sendbuf = 100;
int flags;
int res;
flags = fcntl(self->fd, F_GETFL, 0);
fcntl(self->fd, F_SETFL, flags | O_NONBLOCK);
fcntl(self->cfd, F_SETFL, flags | O_NONBLOCK);
/* Ensure nonblocking behavior by imposing a small send
* buffer.
*/
EXPECT_EQ(setsockopt(self->fd, SOL_SOCKET, SO_SNDBUF,
&sendbuf, sizeof(sendbuf)), 0);
res = fork();
EXPECT_NE(res, -1);
if (res) {
/* parent */
bool eagain = false;
size_t left = data;
char buf[16384];
int status;
int pid2;
while (left) {
int res = send(self->fd, buf,
left > 16384 ? 16384 : left, 0);
if (res == -1 && errno == EAGAIN) {
eagain = true;
usleep(10000);
continue;
}
EXPECT_GE(res, 0);
left -= res;
}
EXPECT_TRUE(eagain);
pid2 = wait(&status);
EXPECT_EQ(status, 0);
EXPECT_EQ(res, pid2);
} else {
/* child */
bool eagain = false;
size_t left = data;
char buf[16384];
while (left) {
int res = recv(self->cfd, buf,
left > 16384 ? 16384 : left, 0);
if (res == -1 && errno == EAGAIN) {
eagain = true;
usleep(10000);
continue;
}
EXPECT_GE(res, 0);
left -= res;
}
EXPECT_TRUE(eagain);
}
}
static void
test_mutliproc(struct __test_metadata *_metadata, struct _test_data_tls *self,
bool sendpg, unsigned int n_readers, unsigned int n_writers)
{
const unsigned int n_children = n_readers + n_writers;
const size_t data = 6 * 1000 * 1000;
const size_t file_sz = data / 100;
size_t read_bias, write_bias;
int i, fd, child_id;
char buf[file_sz];
pid_t pid;
/* Only allow multiples for simplicity */
ASSERT_EQ(!(n_readers % n_writers) || !(n_writers % n_readers), true);
read_bias = n_writers / n_readers ?: 1;
write_bias = n_readers / n_writers ?: 1;
/* prep a file to send */
fd = open("/tmp/", O_TMPFILE | O_RDWR, 0600);
ASSERT_GE(fd, 0);
memset(buf, 0xac, file_sz);
ASSERT_EQ(write(fd, buf, file_sz), file_sz);
/* spawn children */
for (child_id = 0; child_id < n_children; child_id++) {
pid = fork();
ASSERT_NE(pid, -1);
if (!pid)
break;
}
/* parent waits for all children */
if (pid) {
for (i = 0; i < n_children; i++) {
int status;
wait(&status);
EXPECT_EQ(status, 0);
}
return;
}
/* Split threads for reading and writing */
if (child_id < n_readers) {
size_t left = data * read_bias;
char rb[8001];
while (left) {
int res;
res = recv(self->cfd, rb,
left > sizeof(rb) ? sizeof(rb) : left, 0);
EXPECT_GE(res, 0);
left -= res;
}
} else {
size_t left = data * write_bias;
while (left) {
int res;
ASSERT_EQ(lseek(fd, 0, SEEK_SET), 0);
if (sendpg)
res = sendfile(self->fd, fd, NULL,
left > file_sz ? file_sz : left);
else
res = send(self->fd, buf,
left > file_sz ? file_sz : left, 0);
EXPECT_GE(res, 0);
left -= res;
}
}
}
TEST_F(tls, mutliproc_even)
{
test_mutliproc(_metadata, self, false, 6, 6);
}
TEST_F(tls, mutliproc_readers)
{
test_mutliproc(_metadata, self, false, 4, 12);
}
TEST_F(tls, mutliproc_writers)
{
test_mutliproc(_metadata, self, false, 10, 2);
}
TEST_F(tls, mutliproc_sendpage_even)
{
test_mutliproc(_metadata, self, true, 6, 6);
}
TEST_F(tls, mutliproc_sendpage_readers)
{
test_mutliproc(_metadata, self, true, 4, 12);
}
TEST_F(tls, mutliproc_sendpage_writers)
{
test_mutliproc(_metadata, self, true, 10, 2);
}
TEST_F(tls, control_msg)
{
char *test_str = "test_read";
char record_type = 100;
int send_len = 10;
char buf[10];
if (self->notls)
SKIP(return, "no TLS support");
EXPECT_EQ(tls_send_cmsg(self->fd, record_type, test_str, send_len, 0),
send_len);
/* Should fail because we didn't provide a control message */
EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type,
buf, sizeof(buf), MSG_WAITALL | MSG_PEEK),
send_len);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
/* Recv the message again without MSG_PEEK */
memset(buf, 0, sizeof(buf));
EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type,
buf, sizeof(buf), MSG_WAITALL),
send_len);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
}
TEST_F(tls, shutdown)
{
char const *test_str = "test_read";
int send_len = 10;
char buf[10];
ASSERT_EQ(strlen(test_str) + 1, send_len);
EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len);
EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1);
EXPECT_EQ(memcmp(buf, test_str, send_len), 0);
shutdown(self->fd, SHUT_RDWR);
shutdown(self->cfd, SHUT_RDWR);
}
TEST_F(tls, shutdown_unsent)
{
char const *test_str = "test_read";
int send_len = 10;
EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len);
shutdown(self->fd, SHUT_RDWR);
shutdown(self->cfd, SHUT_RDWR);
}
TEST_F(tls, shutdown_reuse)
{
struct sockaddr_in addr;
int ret;
shutdown(self->fd, SHUT_RDWR);
shutdown(self->cfd, SHUT_RDWR);
close(self->cfd);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = 0;
ret = bind(self->fd, &addr, sizeof(addr));
EXPECT_EQ(ret, 0);
ret = listen(self->fd, 10);
EXPECT_EQ(ret, -1);
EXPECT_EQ(errno, EINVAL);
ret = connect(self->fd, &addr, sizeof(addr));
EXPECT_EQ(ret, -1);
EXPECT_EQ(errno, EISCONN);
}
FIXTURE(tls_err)
{
int fd, cfd;
int fd2, cfd2;
bool notls;
};
FIXTURE_VARIANT(tls_err)
{
uint16_t tls_version;
};
FIXTURE_VARIANT_ADD(tls_err, 12_aes_gcm)
{
.tls_version = TLS_1_2_VERSION,
};
FIXTURE_VARIANT_ADD(tls_err, 13_aes_gcm)
{
.tls_version = TLS_1_3_VERSION,
};
FIXTURE_SETUP(tls_err)
{
struct tls_crypto_info_keys tls12;
int ret;
tls_crypto_info_init(variant->tls_version, TLS_CIPHER_AES_GCM_128,
&tls12);
ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls);
ulp_sock_pair(_metadata, &self->fd2, &self->cfd2, &self->notls);
if (self->notls)
return;
ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
ret = setsockopt(self->cfd2, SOL_TLS, TLS_RX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
}
FIXTURE_TEARDOWN(tls_err)
{
close(self->fd);
close(self->cfd);
close(self->fd2);
close(self->cfd2);
}
TEST_F(tls_err, bad_rec)
{
char buf[64];
if (self->notls)
SKIP(return, "no TLS support");
memset(buf, 0x55, sizeof(buf));
EXPECT_EQ(send(self->fd2, buf, sizeof(buf), 0), sizeof(buf));
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EMSGSIZE);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), MSG_DONTWAIT), -1);
EXPECT_EQ(errno, EAGAIN);
}
TEST_F(tls_err, bad_auth)
{
char buf[128];
int n;
if (self->notls)
SKIP(return, "no TLS support");
memrnd(buf, sizeof(buf) / 2);
EXPECT_EQ(send(self->fd, buf, sizeof(buf) / 2, 0), sizeof(buf) / 2);
n = recv(self->cfd, buf, sizeof(buf), 0);
EXPECT_GT(n, sizeof(buf) / 2);
buf[n - 1]++;
EXPECT_EQ(send(self->fd2, buf, n, 0), n);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
}
TEST_F(tls_err, bad_in_large_read)
{
char txt[3][64];
char cip[3][128];
char buf[3 * 128];
int i, n;
if (self->notls)
SKIP(return, "no TLS support");
/* Put 3 records in the sockets */
for (i = 0; i < 3; i++) {
memrnd(txt[i], sizeof(txt[i]));
EXPECT_EQ(send(self->fd, txt[i], sizeof(txt[i]), 0),
sizeof(txt[i]));
n = recv(self->cfd, cip[i], sizeof(cip[i]), 0);
EXPECT_GT(n, sizeof(txt[i]));
/* Break the third message */
if (i == 2)
cip[2][n - 1]++;
EXPECT_EQ(send(self->fd2, cip[i], n, 0), n);
}
/* We should be able to receive the first two messages */
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt[0]) * 2);
EXPECT_EQ(memcmp(buf, txt[0], sizeof(txt[0])), 0);
EXPECT_EQ(memcmp(buf + sizeof(txt[0]), txt[1], sizeof(txt[1])), 0);
/* Third mesasge is bad */
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
}
TEST_F(tls_err, bad_cmsg)
{
char *test_str = "test_read";
int send_len = 10;
char cip[128];
char buf[128];
char txt[64];
int n;
if (self->notls)
SKIP(return, "no TLS support");
/* Queue up one data record */
memrnd(txt, sizeof(txt));
EXPECT_EQ(send(self->fd, txt, sizeof(txt), 0), sizeof(txt));
n = recv(self->cfd, cip, sizeof(cip), 0);
EXPECT_GT(n, sizeof(txt));
EXPECT_EQ(send(self->fd2, cip, n, 0), n);
EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10);
n = recv(self->cfd, cip, sizeof(cip), 0);
cip[n - 1]++; /* Break it */
EXPECT_GT(n, send_len);
EXPECT_EQ(send(self->fd2, cip, n, 0), n);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt));
EXPECT_EQ(memcmp(buf, txt, sizeof(txt)), 0);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EBADMSG);
}
TEST_F(tls_err, timeo)
{
struct timeval tv = { .tv_usec = 10000, };
char buf[128];
int ret;
if (self->notls)
SKIP(return, "no TLS support");
ret = setsockopt(self->cfd2, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
ASSERT_EQ(ret, 0);
ret = fork();
ASSERT_GE(ret, 0);
if (ret) {
usleep(1000); /* Give child a head start */
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EAGAIN);
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EAGAIN);
wait(&ret);
} else {
EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1);
EXPECT_EQ(errno, EAGAIN);
exit(0);
}
}
TEST_F(tls_err, poll_partial_rec)
{
struct pollfd pfd = { };
ssize_t rec_len;
char rec[256];
char buf[128];
if (self->notls)
SKIP(return, "no TLS support");
pfd.fd = self->cfd2;
pfd.events = POLLIN;
EXPECT_EQ(poll(&pfd, 1, 1), 0);
memrnd(buf, sizeof(buf));
EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf));
rec_len = recv(self->cfd, rec, sizeof(rec), 0);
EXPECT_GT(rec_len, sizeof(buf));
/* Write 100B, not the full record ... */
EXPECT_EQ(send(self->fd2, rec, 100, 0), 100);
/* ... no full record should mean no POLLIN */
pfd.fd = self->cfd2;
pfd.events = POLLIN;
EXPECT_EQ(poll(&pfd, 1, 1), 0);
/* Now write the rest, and it should all pop out of the other end. */
EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100);
pfd.fd = self->cfd2;
pfd.events = POLLIN;
EXPECT_EQ(poll(&pfd, 1, 1), 1);
EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf));
EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0);
}
TEST_F(tls_err, epoll_partial_rec)
{
struct epoll_event ev, events[10];
ssize_t rec_len;
char rec[256];
char buf[128];
int epollfd;
if (self->notls)
SKIP(return, "no TLS support");
epollfd = epoll_create1(0);
ASSERT_GE(epollfd, 0);
memset(&ev, 0, sizeof(ev));
ev.events = EPOLLIN;
ev.data.fd = self->cfd2;
ASSERT_GE(epoll_ctl(epollfd, EPOLL_CTL_ADD, self->cfd2, &ev), 0);
EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0);
memrnd(buf, sizeof(buf));
EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf));
rec_len = recv(self->cfd, rec, sizeof(rec), 0);
EXPECT_GT(rec_len, sizeof(buf));
/* Write 100B, not the full record ... */
EXPECT_EQ(send(self->fd2, rec, 100, 0), 100);
/* ... no full record should mean no POLLIN */
EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0);
/* Now write the rest, and it should all pop out of the other end. */
EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100);
EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 1);
EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf));
EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0);
close(epollfd);
}
TEST_F(tls_err, poll_partial_rec_async)
{
struct pollfd pfd = { };
ssize_t rec_len;
char rec[256];
char buf[128];
char token;
int p[2];
int ret;
if (self->notls)
SKIP(return, "no TLS support");
ASSERT_GE(pipe(p), 0);
memrnd(buf, sizeof(buf));
EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf));
rec_len = recv(self->cfd, rec, sizeof(rec), 0);
EXPECT_GT(rec_len, sizeof(buf));
ret = fork();
ASSERT_GE(ret, 0);
if (ret) {
int status, pid2;
close(p[1]);
usleep(1000); /* Give child a head start */
EXPECT_EQ(send(self->fd2, rec, 100, 0), 100);
EXPECT_EQ(read(p[0], &token, 1), 1); /* Barrier #1 */
EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0),
rec_len - 100);
pid2 = wait(&status);
EXPECT_EQ(pid2, ret);
EXPECT_EQ(status, 0);
} else {
close(p[0]);
/* Child should sleep in poll(), never get a wake */
pfd.fd = self->cfd2;
pfd.events = POLLIN;
EXPECT_EQ(poll(&pfd, 1, 5), 0);
EXPECT_EQ(write(p[1], &token, 1), 1); /* Barrier #1 */
pfd.fd = self->cfd2;
pfd.events = POLLIN;
EXPECT_EQ(poll(&pfd, 1, 5), 1);
exit(!_metadata->passed);
}
}
TEST(non_established) {
struct tls12_crypto_info_aes_gcm_256 tls12;
struct sockaddr_in addr;
int sfd, ret, fd;
socklen_t len;
len = sizeof(addr);
memset(&tls12, 0, sizeof(tls12));
tls12.info.version = TLS_1_2_VERSION;
tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = 0;
fd = socket(AF_INET, SOCK_STREAM, 0);
sfd = socket(AF_INET, SOCK_STREAM, 0);
ret = bind(sfd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
ret = listen(sfd, 10);
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
EXPECT_EQ(ret, -1);
/* TLS ULP not supported */
if (errno == ENOENT)
return;
EXPECT_EQ(errno, ENOTCONN);
ret = setsockopt(sfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
EXPECT_EQ(ret, -1);
EXPECT_EQ(errno, ENOTCONN);
ret = getsockname(sfd, &addr, &len);
ASSERT_EQ(ret, 0);
ret = connect(fd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
EXPECT_EQ(ret, -1);
EXPECT_EQ(errno, EEXIST);
close(fd);
close(sfd);
}
TEST(keysizes) {
struct tls12_crypto_info_aes_gcm_256 tls12;
int ret, fd, cfd;
bool notls;
memset(&tls12, 0, sizeof(tls12));
tls12.info.version = TLS_1_2_VERSION;
tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256;
ulp_sock_pair(_metadata, &fd, &cfd, &notls);
if (!notls) {
ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12,
sizeof(tls12));
EXPECT_EQ(ret, 0);
ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12,
sizeof(tls12));
EXPECT_EQ(ret, 0);
}
close(fd);
close(cfd);
}
TEST(no_pad) {
struct tls12_crypto_info_aes_gcm_256 tls12;
int ret, fd, cfd, val;
socklen_t len;
bool notls;
memset(&tls12, 0, sizeof(tls12));
tls12.info.version = TLS_1_3_VERSION;
tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256;
ulp_sock_pair(_metadata, &fd, &cfd, &notls);
if (notls)
exit(KSFT_SKIP);
ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, sizeof(tls12));
EXPECT_EQ(ret, 0);
ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, sizeof(tls12));
EXPECT_EQ(ret, 0);
val = 1;
ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD,
(void *)&val, sizeof(val));
EXPECT_EQ(ret, 0);
len = sizeof(val);
val = 2;
ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD,
(void *)&val, &len);
EXPECT_EQ(ret, 0);
EXPECT_EQ(val, 1);
EXPECT_EQ(len, 4);
val = 0;
ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD,
(void *)&val, sizeof(val));
EXPECT_EQ(ret, 0);
len = sizeof(val);
val = 2;
ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD,
(void *)&val, &len);
EXPECT_EQ(ret, 0);
EXPECT_EQ(val, 0);
EXPECT_EQ(len, 4);
close(fd);
close(cfd);
}
TEST(tls_v6ops) {
struct tls_crypto_info_keys tls12;
struct sockaddr_in6 addr, addr2;
int sfd, ret, fd;
socklen_t len, len2;
tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_128, &tls12);
addr.sin6_family = AF_INET6;
addr.sin6_addr = in6addr_any;
addr.sin6_port = 0;
fd = socket(AF_INET6, SOCK_STREAM, 0);
sfd = socket(AF_INET6, SOCK_STREAM, 0);
ret = bind(sfd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
ret = listen(sfd, 10);
ASSERT_EQ(ret, 0);
len = sizeof(addr);
ret = getsockname(sfd, &addr, &len);
ASSERT_EQ(ret, 0);
ret = connect(fd, &addr, sizeof(addr));
ASSERT_EQ(ret, 0);
len = sizeof(addr);
ret = getsockname(fd, &addr, &len);
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
if (ret) {
ASSERT_EQ(errno, ENOENT);
SKIP(return, "no TLS support");
}
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
ret = setsockopt(fd, SOL_TLS, TLS_RX, &tls12, tls12.len);
ASSERT_EQ(ret, 0);
len2 = sizeof(addr2);
ret = getsockname(fd, &addr2, &len2);
ASSERT_EQ(ret, 0);
EXPECT_EQ(len2, len);
EXPECT_EQ(memcmp(&addr, &addr2, len), 0);
close(fd);
close(sfd);
}
TEST(prequeue) {
struct tls_crypto_info_keys tls12;
char buf[20000], buf2[20000];
struct sockaddr_in addr;
int sfd, cfd, ret, fd;
socklen_t len;
len = sizeof(addr);
memrnd(buf, sizeof(buf));
tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_256, &tls12);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = 0;
fd = socket(AF_INET, SOCK_STREAM, 0);
sfd = socket(AF_INET, SOCK_STREAM, 0);
ASSERT_EQ(bind(sfd, &addr, sizeof(addr)), 0);
ASSERT_EQ(listen(sfd, 10), 0);
ASSERT_EQ(getsockname(sfd, &addr, &len), 0);
ASSERT_EQ(connect(fd, &addr, sizeof(addr)), 0);
ASSERT_GE(cfd = accept(sfd, &addr, &len), 0);
close(sfd);
ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls"));
if (ret) {
ASSERT_EQ(errno, ENOENT);
SKIP(return, "no TLS support");
}
ASSERT_EQ(setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len), 0);
EXPECT_EQ(send(fd, buf, sizeof(buf), MSG_DONTWAIT), sizeof(buf));
ASSERT_EQ(setsockopt(cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")), 0);
ASSERT_EQ(setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, tls12.len), 0);
EXPECT_EQ(recv(cfd, buf2, sizeof(buf2), MSG_WAITALL), sizeof(buf2));
EXPECT_EQ(memcmp(buf, buf2, sizeof(buf)), 0);
close(fd);
close(cfd);
}
static void __attribute__((constructor)) fips_check(void) {
int res;
FILE *f;
f = fopen("/proc/sys/crypto/fips_enabled", "r");
if (f) {
res = fscanf(f, "%d", &fips_enabled);
if (res != 1)
ksft_print_msg("ERROR: Couldn't read /proc/sys/crypto/fips_enabled\n");
fclose(f);
}
}
TEST_HARNESS_MAIN