linux/drivers/dma/hsu/hsu.c
Andy Shevchenko f0579c8cea dmaengine: hsu: speed up residue calculation
There is no need to calculate an overall length of the descriptor each time we
call for DMA transfer status. Instead we do this at descriptor allocation stage
and keep the stored length for further usage.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2015-12-05 14:00:34 +05:30

449 lines
11 KiB
C

/*
* Core driver for the High Speed UART DMA
*
* Copyright (C) 2015 Intel Corporation
* Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
*
* Partially based on the bits found in drivers/tty/serial/mfd.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* DMA channel allocation:
* 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
* Write (UART RX).
* 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
* port 3, and so on.
*/
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "hsu.h"
#define HSU_DMA_BUSWIDTHS \
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
{
hsu_chan_writel(hsuc, HSU_CH_CR, 0);
}
static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
{
u32 cr = HSU_CH_CR_CHA;
if (hsuc->direction == DMA_MEM_TO_DEV)
cr &= ~HSU_CH_CR_CHD;
else if (hsuc->direction == DMA_DEV_TO_MEM)
cr |= HSU_CH_CR_CHD;
hsu_chan_writel(hsuc, HSU_CH_CR, cr);
}
static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
{
struct dma_slave_config *config = &hsuc->config;
struct hsu_dma_desc *desc = hsuc->desc;
u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
unsigned int i, count;
if (hsuc->direction == DMA_MEM_TO_DEV) {
bsr = config->dst_maxburst;
mtsr = config->dst_addr_width;
} else if (hsuc->direction == DMA_DEV_TO_MEM) {
bsr = config->src_maxburst;
mtsr = config->src_addr_width;
}
hsu_chan_disable(hsuc);
hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
/* Set descriptors */
count = (desc->nents - desc->active) % HSU_DMA_CHAN_NR_DESC;
for (i = 0; i < count; i++) {
hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
/* Prepare value for DCR */
dcr |= HSU_CH_DCR_DESCA(i);
dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
desc->active++;
}
/* Only for the last descriptor in the chain */
dcr |= HSU_CH_DCR_CHSOD(count - 1);
dcr |= HSU_CH_DCR_CHDI(count - 1);
hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
hsu_chan_enable(hsuc);
}
static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
{
hsu_chan_disable(hsuc);
hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
}
static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
{
hsu_dma_chan_start(hsuc);
}
static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
{
struct virt_dma_desc *vdesc;
/* Get the next descriptor */
vdesc = vchan_next_desc(&hsuc->vchan);
if (!vdesc) {
hsuc->desc = NULL;
return;
}
list_del(&vdesc->node);
hsuc->desc = to_hsu_dma_desc(vdesc);
/* Start the channel with a new descriptor */
hsu_dma_start_channel(hsuc);
}
static u32 hsu_dma_chan_get_sr(struct hsu_dma_chan *hsuc)
{
unsigned long flags;
u32 sr;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
sr = hsu_chan_readl(hsuc, HSU_CH_SR);
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
return sr;
}
irqreturn_t hsu_dma_irq(struct hsu_dma_chip *chip, unsigned short nr)
{
struct hsu_dma_chan *hsuc;
struct hsu_dma_desc *desc;
unsigned long flags;
u32 sr;
/* Sanity check */
if (nr >= chip->hsu->nr_channels)
return IRQ_NONE;
hsuc = &chip->hsu->chan[nr];
/*
* No matter what situation, need read clear the IRQ status
* There is a bug, see Errata 5, HSD 2900918
*/
sr = hsu_dma_chan_get_sr(hsuc);
if (!sr)
return IRQ_NONE;
/* Timeout IRQ, need wait some time, see Errata 2 */
if (hsuc->direction == DMA_DEV_TO_MEM && (sr & HSU_CH_SR_DESCTO_ANY))
udelay(2);
sr &= ~HSU_CH_SR_DESCTO_ANY;
if (!sr)
return IRQ_HANDLED;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
desc = hsuc->desc;
if (desc) {
if (sr & HSU_CH_SR_CHE) {
desc->status = DMA_ERROR;
} else if (desc->active < desc->nents) {
hsu_dma_start_channel(hsuc);
} else {
vchan_cookie_complete(&desc->vdesc);
desc->status = DMA_COMPLETE;
hsu_dma_start_transfer(hsuc);
}
}
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hsu_dma_irq);
static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
{
struct hsu_dma_desc *desc;
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
if (!desc->sg) {
kfree(desc);
return NULL;
}
return desc;
}
static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
{
struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
kfree(desc->sg);
kfree(desc);
}
static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
struct hsu_dma_desc *desc;
struct scatterlist *sg;
unsigned int i;
desc = hsu_dma_alloc_desc(sg_len);
if (!desc)
return NULL;
for_each_sg(sgl, sg, sg_len, i) {
desc->sg[i].addr = sg_dma_address(sg);
desc->sg[i].len = sg_dma_len(sg);
desc->length += sg_dma_len(sg);
}
desc->nents = sg_len;
desc->direction = direction;
/* desc->active = 0 by kzalloc */
desc->status = DMA_IN_PROGRESS;
return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
}
static void hsu_dma_issue_pending(struct dma_chan *chan)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
hsu_dma_start_transfer(hsuc);
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
}
static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
{
struct hsu_dma_desc *desc = hsuc->desc;
size_t bytes = desc->length;
int i;
i = desc->active % HSU_DMA_CHAN_NR_DESC;
do {
bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
} while (--i >= 0);
return bytes;
}
static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *state)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
size_t bytes;
unsigned long flags;
status = dma_cookie_status(chan, cookie, state);
if (status == DMA_COMPLETE)
return status;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
vdesc = vchan_find_desc(&hsuc->vchan, cookie);
if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
bytes = hsu_dma_active_desc_size(hsuc);
dma_set_residue(state, bytes);
status = hsuc->desc->status;
} else if (vdesc) {
bytes = to_hsu_dma_desc(vdesc)->length;
dma_set_residue(state, bytes);
}
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
return status;
}
static int hsu_dma_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
/* Check if chan will be configured for slave transfers */
if (!is_slave_direction(config->direction))
return -EINVAL;
memcpy(&hsuc->config, config, sizeof(hsuc->config));
return 0;
}
static int hsu_dma_pause(struct dma_chan *chan)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
hsu_chan_disable(hsuc);
hsuc->desc->status = DMA_PAUSED;
}
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
return 0;
}
static int hsu_dma_resume(struct dma_chan *chan)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&hsuc->vchan.lock, flags);
if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
hsuc->desc->status = DMA_IN_PROGRESS;
hsu_chan_enable(hsuc);
}
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
return 0;
}
static int hsu_dma_terminate_all(struct dma_chan *chan)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&hsuc->vchan.lock, flags);
hsu_dma_stop_channel(hsuc);
if (hsuc->desc) {
hsu_dma_desc_free(&hsuc->desc->vdesc);
hsuc->desc = NULL;
}
vchan_get_all_descriptors(&hsuc->vchan, &head);
spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
vchan_dma_desc_free_list(&hsuc->vchan, &head);
return 0;
}
static void hsu_dma_free_chan_resources(struct dma_chan *chan)
{
vchan_free_chan_resources(to_virt_chan(chan));
}
int hsu_dma_probe(struct hsu_dma_chip *chip)
{
struct hsu_dma *hsu;
void __iomem *addr = chip->regs + chip->offset;
unsigned short i;
int ret;
hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
if (!hsu)
return -ENOMEM;
chip->hsu = hsu;
/* Calculate nr_channels from the IO space length */
hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
sizeof(*hsu->chan), GFP_KERNEL);
if (!hsu->chan)
return -ENOMEM;
INIT_LIST_HEAD(&hsu->dma.channels);
for (i = 0; i < hsu->nr_channels; i++) {
struct hsu_dma_chan *hsuc = &hsu->chan[i];
hsuc->vchan.desc_free = hsu_dma_desc_free;
vchan_init(&hsuc->vchan, &hsu->dma);
hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
}
dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
hsu->dma.device_issue_pending = hsu_dma_issue_pending;
hsu->dma.device_tx_status = hsu_dma_tx_status;
hsu->dma.device_config = hsu_dma_slave_config;
hsu->dma.device_pause = hsu_dma_pause;
hsu->dma.device_resume = hsu_dma_resume;
hsu->dma.device_terminate_all = hsu_dma_terminate_all;
hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
hsu->dma.dev = chip->dev;
ret = dma_async_device_register(&hsu->dma);
if (ret)
return ret;
dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
return 0;
}
EXPORT_SYMBOL_GPL(hsu_dma_probe);
int hsu_dma_remove(struct hsu_dma_chip *chip)
{
struct hsu_dma *hsu = chip->hsu;
unsigned short i;
dma_async_device_unregister(&hsu->dma);
for (i = 0; i < hsu->nr_channels; i++) {
struct hsu_dma_chan *hsuc = &hsu->chan[i];
tasklet_kill(&hsuc->vchan.task);
}
return 0;
}
EXPORT_SYMBOL_GPL(hsu_dma_remove);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("High Speed UART DMA core driver");
MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");