linux/drivers/iio/imu/adis16475.c
Jonathan Cameron 6c9304d6af iio:imu:adis: Move exports into IIO_ADISLIB namespace
In order to avoid unneessary pollution of the global symbol namespace
move the common/library functions into a specific namespace and import
that into the various specific device drivers that use them.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Song Bao Hua (Barry Song) <song.bao.hua@hisilicon.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lore.kernel.org/r/20220130205701.334592-9-jic23@kernel.org
2022-02-18 11:42:26 +00:00

1369 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ADIS16475 IMU driver
*
* Copyright 2019 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/imu/adis.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/irq.h>
#include <linux/lcm.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/spi/spi.h>
#define ADIS16475_REG_DIAG_STAT 0x02
#define ADIS16475_REG_X_GYRO_L 0x04
#define ADIS16475_REG_Y_GYRO_L 0x08
#define ADIS16475_REG_Z_GYRO_L 0x0C
#define ADIS16475_REG_X_ACCEL_L 0x10
#define ADIS16475_REG_Y_ACCEL_L 0x14
#define ADIS16475_REG_Z_ACCEL_L 0x18
#define ADIS16475_REG_TEMP_OUT 0x1c
#define ADIS16475_REG_X_GYRO_BIAS_L 0x40
#define ADIS16475_REG_Y_GYRO_BIAS_L 0x44
#define ADIS16475_REG_Z_GYRO_BIAS_L 0x48
#define ADIS16475_REG_X_ACCEL_BIAS_L 0x4c
#define ADIS16475_REG_Y_ACCEL_BIAS_L 0x50
#define ADIS16475_REG_Z_ACCEL_BIAS_L 0x54
#define ADIS16475_REG_FILT_CTRL 0x5c
#define ADIS16475_FILT_CTRL_MASK GENMASK(2, 0)
#define ADIS16475_FILT_CTRL(x) FIELD_PREP(ADIS16475_FILT_CTRL_MASK, x)
#define ADIS16475_REG_MSG_CTRL 0x60
#define ADIS16475_MSG_CTRL_DR_POL_MASK BIT(0)
#define ADIS16475_MSG_CTRL_DR_POL(x) \
FIELD_PREP(ADIS16475_MSG_CTRL_DR_POL_MASK, x)
#define ADIS16475_SYNC_MODE_MASK GENMASK(4, 2)
#define ADIS16475_SYNC_MODE(x) FIELD_PREP(ADIS16475_SYNC_MODE_MASK, x)
#define ADIS16475_REG_UP_SCALE 0x62
#define ADIS16475_REG_DEC_RATE 0x64
#define ADIS16475_REG_GLOB_CMD 0x68
#define ADIS16475_REG_FIRM_REV 0x6c
#define ADIS16475_REG_FIRM_DM 0x6e
#define ADIS16475_REG_FIRM_Y 0x70
#define ADIS16475_REG_PROD_ID 0x72
#define ADIS16475_REG_SERIAL_NUM 0x74
#define ADIS16475_REG_FLASH_CNT 0x7c
#define ADIS16500_BURST32_MASK BIT(9)
#define ADIS16500_BURST32(x) FIELD_PREP(ADIS16500_BURST32_MASK, x)
/* number of data elements in burst mode */
#define ADIS16475_BURST32_MAX_DATA 32
#define ADIS16475_BURST_MAX_DATA 20
#define ADIS16475_MAX_SCAN_DATA 20
/* spi max speed in brust mode */
#define ADIS16475_BURST_MAX_SPEED 1000000
#define ADIS16475_LSB_DEC_MASK BIT(0)
#define ADIS16475_LSB_FIR_MASK BIT(1)
enum {
ADIS16475_SYNC_DIRECT = 1,
ADIS16475_SYNC_SCALED,
ADIS16475_SYNC_OUTPUT,
ADIS16475_SYNC_PULSE = 5,
};
struct adis16475_sync {
u16 sync_mode;
u16 min_rate;
u16 max_rate;
};
struct adis16475_chip_info {
const struct iio_chan_spec *channels;
const struct adis16475_sync *sync;
const struct adis_data adis_data;
const char *name;
u32 num_channels;
u32 gyro_max_val;
u32 gyro_max_scale;
u32 accel_max_val;
u32 accel_max_scale;
u32 temp_scale;
u32 int_clk;
u16 max_dec;
u8 num_sync;
bool has_burst32;
};
struct adis16475 {
const struct adis16475_chip_info *info;
struct adis adis;
u32 clk_freq;
bool burst32;
unsigned long lsb_flag;
u16 sync_mode;
/* Alignment needed for the timestamp */
__be16 data[ADIS16475_MAX_SCAN_DATA] __aligned(8);
};
enum {
ADIS16475_SCAN_GYRO_X,
ADIS16475_SCAN_GYRO_Y,
ADIS16475_SCAN_GYRO_Z,
ADIS16475_SCAN_ACCEL_X,
ADIS16475_SCAN_ACCEL_Y,
ADIS16475_SCAN_ACCEL_Z,
ADIS16475_SCAN_TEMP,
ADIS16475_SCAN_DIAG_S_FLAGS,
ADIS16475_SCAN_CRC_FAILURE,
};
static bool low_rate_allow;
module_param(low_rate_allow, bool, 0444);
MODULE_PARM_DESC(low_rate_allow,
"Allow IMU rates below the minimum advisable when external clk is used in SCALED mode (default: N)");
#ifdef CONFIG_DEBUG_FS
static ssize_t adis16475_show_firmware_revision(struct file *file,
char __user *userbuf,
size_t count, loff_t *ppos)
{
struct adis16475 *st = file->private_data;
char buf[7];
size_t len;
u16 rev;
int ret;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_REV, &rev);
if (ret)
return ret;
len = scnprintf(buf, sizeof(buf), "%x.%x\n", rev >> 8, rev & 0xff);
return simple_read_from_buffer(userbuf, count, ppos, buf, len);
}
static const struct file_operations adis16475_firmware_revision_fops = {
.open = simple_open,
.read = adis16475_show_firmware_revision,
.llseek = default_llseek,
.owner = THIS_MODULE,
};
static ssize_t adis16475_show_firmware_date(struct file *file,
char __user *userbuf,
size_t count, loff_t *ppos)
{
struct adis16475 *st = file->private_data;
u16 md, year;
char buf[12];
size_t len;
int ret;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_Y, &year);
if (ret)
return ret;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FIRM_DM, &md);
if (ret)
return ret;
len = snprintf(buf, sizeof(buf), "%.2x-%.2x-%.4x\n", md >> 8, md & 0xff,
year);
return simple_read_from_buffer(userbuf, count, ppos, buf, len);
}
static const struct file_operations adis16475_firmware_date_fops = {
.open = simple_open,
.read = adis16475_show_firmware_date,
.llseek = default_llseek,
.owner = THIS_MODULE,
};
static int adis16475_show_serial_number(void *arg, u64 *val)
{
struct adis16475 *st = arg;
u16 serial;
int ret;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_SERIAL_NUM, &serial);
if (ret)
return ret;
*val = serial;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(adis16475_serial_number_fops,
adis16475_show_serial_number, NULL, "0x%.4llx\n");
static int adis16475_show_product_id(void *arg, u64 *val)
{
struct adis16475 *st = arg;
u16 prod_id;
int ret;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_PROD_ID, &prod_id);
if (ret)
return ret;
*val = prod_id;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(adis16475_product_id_fops,
adis16475_show_product_id, NULL, "%llu\n");
static int adis16475_show_flash_count(void *arg, u64 *val)
{
struct adis16475 *st = arg;
u32 flash_count;
int ret;
ret = adis_read_reg_32(&st->adis, ADIS16475_REG_FLASH_CNT,
&flash_count);
if (ret)
return ret;
*val = flash_count;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(adis16475_flash_count_fops,
adis16475_show_flash_count, NULL, "%lld\n");
static void adis16475_debugfs_init(struct iio_dev *indio_dev)
{
struct adis16475 *st = iio_priv(indio_dev);
struct dentry *d = iio_get_debugfs_dentry(indio_dev);
debugfs_create_file_unsafe("serial_number", 0400,
d, st, &adis16475_serial_number_fops);
debugfs_create_file_unsafe("product_id", 0400,
d, st, &adis16475_product_id_fops);
debugfs_create_file_unsafe("flash_count", 0400,
d, st, &adis16475_flash_count_fops);
debugfs_create_file("firmware_revision", 0400,
d, st, &adis16475_firmware_revision_fops);
debugfs_create_file("firmware_date", 0400, d,
st, &adis16475_firmware_date_fops);
}
#else
static void adis16475_debugfs_init(struct iio_dev *indio_dev)
{
}
#endif
static int adis16475_get_freq(struct adis16475 *st, u32 *freq)
{
int ret;
u16 dec;
u32 sample_rate = st->clk_freq;
adis_dev_lock(&st->adis);
if (st->sync_mode == ADIS16475_SYNC_SCALED) {
u16 sync_scale;
ret = __adis_read_reg_16(&st->adis, ADIS16475_REG_UP_SCALE, &sync_scale);
if (ret)
goto error;
sample_rate = st->clk_freq * sync_scale;
}
ret = __adis_read_reg_16(&st->adis, ADIS16475_REG_DEC_RATE, &dec);
if (ret)
goto error;
adis_dev_unlock(&st->adis);
*freq = DIV_ROUND_CLOSEST(sample_rate, dec + 1);
return 0;
error:
adis_dev_unlock(&st->adis);
return ret;
}
static int adis16475_set_freq(struct adis16475 *st, const u32 freq)
{
u16 dec;
int ret;
u32 sample_rate = st->clk_freq;
if (!freq)
return -EINVAL;
adis_dev_lock(&st->adis);
/*
* When using sync scaled mode, the input clock needs to be scaled so that we have
* an IMU sample rate between (optimally) 1900 and 2100. After this, we can use the
* decimation filter to lower the sampling rate in order to get what the user wants.
* Optimally, the user sample rate is a multiple of both the IMU sample rate and
* the input clock. Hence, calculating the sync_scale dynamically gives us better
* chances of achieving a perfect/integer value for DEC_RATE. The math here is:
* 1. lcm of the input clock and the desired output rate.
* 2. get the highest multiple of the previous result lower than the adis max rate.
* 3. The last result becomes the IMU sample rate. Use that to calculate SYNC_SCALE
* and DEC_RATE (to get the user output rate)
*/
if (st->sync_mode == ADIS16475_SYNC_SCALED) {
unsigned long scaled_rate = lcm(st->clk_freq, freq);
int sync_scale;
/*
* If lcm is bigger than the IMU maximum sampling rate there's no perfect
* solution. In this case, we get the highest multiple of the input clock
* lower than the IMU max sample rate.
*/
if (scaled_rate > 2100000)
scaled_rate = 2100000 / st->clk_freq * st->clk_freq;
else
scaled_rate = 2100000 / scaled_rate * scaled_rate;
/*
* This is not an hard requirement but it's not advised to run the IMU
* with a sample rate lower than 4000Hz due to possible undersampling
* issues. However, there are users that might really want to take the risk.
* Hence, we provide a module parameter for them. If set, we allow sample
* rates lower than 4KHz. By default, we won't allow this and we just roundup
* the rate to the next multiple of the input clock bigger than 4KHz. This
* is done like this as in some cases (when DEC_RATE is 0) might give
* us the closest value to the one desired by the user...
*/
if (scaled_rate < 1900000 && !low_rate_allow)
scaled_rate = roundup(1900000, st->clk_freq);
sync_scale = scaled_rate / st->clk_freq;
ret = __adis_write_reg_16(&st->adis, ADIS16475_REG_UP_SCALE, sync_scale);
if (ret)
goto error;
sample_rate = scaled_rate;
}
dec = DIV_ROUND_CLOSEST(sample_rate, freq);
if (dec)
dec--;
if (dec > st->info->max_dec)
dec = st->info->max_dec;
ret = __adis_write_reg_16(&st->adis, ADIS16475_REG_DEC_RATE, dec);
if (ret)
goto error;
adis_dev_unlock(&st->adis);
/*
* If decimation is used, then gyro and accel data will have meaningful
* bits on the LSB registers. This info is used on the trigger handler.
*/
assign_bit(ADIS16475_LSB_DEC_MASK, &st->lsb_flag, dec);
return 0;
error:
adis_dev_unlock(&st->adis);
return ret;
}
/* The values are approximated. */
static const u32 adis16475_3db_freqs[] = {
[0] = 720, /* Filter disabled, full BW (~720Hz) */
[1] = 360,
[2] = 164,
[3] = 80,
[4] = 40,
[5] = 20,
[6] = 10,
};
static int adis16475_get_filter(struct adis16475 *st, u32 *filter)
{
u16 filter_sz;
int ret;
const int mask = ADIS16475_FILT_CTRL_MASK;
ret = adis_read_reg_16(&st->adis, ADIS16475_REG_FILT_CTRL, &filter_sz);
if (ret)
return ret;
*filter = adis16475_3db_freqs[filter_sz & mask];
return 0;
}
static int adis16475_set_filter(struct adis16475 *st, const u32 filter)
{
int i = ARRAY_SIZE(adis16475_3db_freqs);
int ret;
while (--i) {
if (adis16475_3db_freqs[i] >= filter)
break;
}
ret = adis_write_reg_16(&st->adis, ADIS16475_REG_FILT_CTRL,
ADIS16475_FILT_CTRL(i));
if (ret)
return ret;
/*
* If FIR is used, then gyro and accel data will have meaningful
* bits on the LSB registers. This info is used on the trigger handler.
*/
assign_bit(ADIS16475_LSB_FIR_MASK, &st->lsb_flag, i);
return 0;
}
static const u32 adis16475_calib_regs[] = {
[ADIS16475_SCAN_GYRO_X] = ADIS16475_REG_X_GYRO_BIAS_L,
[ADIS16475_SCAN_GYRO_Y] = ADIS16475_REG_Y_GYRO_BIAS_L,
[ADIS16475_SCAN_GYRO_Z] = ADIS16475_REG_Z_GYRO_BIAS_L,
[ADIS16475_SCAN_ACCEL_X] = ADIS16475_REG_X_ACCEL_BIAS_L,
[ADIS16475_SCAN_ACCEL_Y] = ADIS16475_REG_Y_ACCEL_BIAS_L,
[ADIS16475_SCAN_ACCEL_Z] = ADIS16475_REG_Z_ACCEL_BIAS_L,
};
static int adis16475_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long info)
{
struct adis16475 *st = iio_priv(indio_dev);
int ret;
u32 tmp;
switch (info) {
case IIO_CHAN_INFO_RAW:
return adis_single_conversion(indio_dev, chan, 0, val);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
*val = st->info->gyro_max_val;
*val2 = st->info->gyro_max_scale;
return IIO_VAL_FRACTIONAL;
case IIO_ACCEL:
*val = st->info->accel_max_val;
*val2 = st->info->accel_max_scale;
return IIO_VAL_FRACTIONAL;
case IIO_TEMP:
*val = st->info->temp_scale;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
ret = adis_read_reg_32(&st->adis,
adis16475_calib_regs[chan->scan_index],
val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = adis16475_get_filter(st, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = adis16475_get_freq(st, &tmp);
if (ret)
return ret;
*val = tmp / 1000;
*val2 = (tmp % 1000) * 1000;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int adis16475_write_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int val, int val2, long info)
{
struct adis16475 *st = iio_priv(indio_dev);
u32 tmp;
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
tmp = val * 1000 + val2 / 1000;
return adis16475_set_freq(st, tmp);
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return adis16475_set_filter(st, val);
case IIO_CHAN_INFO_CALIBBIAS:
return adis_write_reg_32(&st->adis,
adis16475_calib_regs[chan->scan_index],
val);
default:
return -EINVAL;
}
}
#define ADIS16475_MOD_CHAN(_type, _mod, _address, _si, _r_bits, _s_bits) \
{ \
.type = (_type), \
.modified = 1, \
.channel2 = (_mod), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.address = (_address), \
.scan_index = (_si), \
.scan_type = { \
.sign = 's', \
.realbits = (_r_bits), \
.storagebits = (_s_bits), \
.endianness = IIO_BE, \
}, \
}
#define ADIS16475_GYRO_CHANNEL(_mod) \
ADIS16475_MOD_CHAN(IIO_ANGL_VEL, IIO_MOD_ ## _mod, \
ADIS16475_REG_ ## _mod ## _GYRO_L, \
ADIS16475_SCAN_GYRO_ ## _mod, 32, 32)
#define ADIS16475_ACCEL_CHANNEL(_mod) \
ADIS16475_MOD_CHAN(IIO_ACCEL, IIO_MOD_ ## _mod, \
ADIS16475_REG_ ## _mod ## _ACCEL_L, \
ADIS16475_SCAN_ACCEL_ ## _mod, 32, 32)
#define ADIS16475_TEMP_CHANNEL() { \
.type = IIO_TEMP, \
.indexed = 1, \
.channel = 0, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.address = ADIS16475_REG_TEMP_OUT, \
.scan_index = ADIS16475_SCAN_TEMP, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec adis16475_channels[] = {
ADIS16475_GYRO_CHANNEL(X),
ADIS16475_GYRO_CHANNEL(Y),
ADIS16475_GYRO_CHANNEL(Z),
ADIS16475_ACCEL_CHANNEL(X),
ADIS16475_ACCEL_CHANNEL(Y),
ADIS16475_ACCEL_CHANNEL(Z),
ADIS16475_TEMP_CHANNEL(),
IIO_CHAN_SOFT_TIMESTAMP(7)
};
enum adis16475_variant {
ADIS16470,
ADIS16475_1,
ADIS16475_2,
ADIS16475_3,
ADIS16477_1,
ADIS16477_2,
ADIS16477_3,
ADIS16465_1,
ADIS16465_2,
ADIS16465_3,
ADIS16467_1,
ADIS16467_2,
ADIS16467_3,
ADIS16500,
ADIS16505_1,
ADIS16505_2,
ADIS16505_3,
ADIS16507_1,
ADIS16507_2,
ADIS16507_3,
};
enum {
ADIS16475_DIAG_STAT_DATA_PATH = 1,
ADIS16475_DIAG_STAT_FLASH_MEM,
ADIS16475_DIAG_STAT_SPI,
ADIS16475_DIAG_STAT_STANDBY,
ADIS16475_DIAG_STAT_SENSOR,
ADIS16475_DIAG_STAT_MEMORY,
ADIS16475_DIAG_STAT_CLK,
};
static const char * const adis16475_status_error_msgs[] = {
[ADIS16475_DIAG_STAT_DATA_PATH] = "Data Path Overrun",
[ADIS16475_DIAG_STAT_FLASH_MEM] = "Flash memory update failure",
[ADIS16475_DIAG_STAT_SPI] = "SPI communication error",
[ADIS16475_DIAG_STAT_STANDBY] = "Standby mode",
[ADIS16475_DIAG_STAT_SENSOR] = "Sensor failure",
[ADIS16475_DIAG_STAT_MEMORY] = "Memory failure",
[ADIS16475_DIAG_STAT_CLK] = "Clock error",
};
#define ADIS16475_DATA(_prod_id, _timeouts) \
{ \
.msc_ctrl_reg = ADIS16475_REG_MSG_CTRL, \
.glob_cmd_reg = ADIS16475_REG_GLOB_CMD, \
.diag_stat_reg = ADIS16475_REG_DIAG_STAT, \
.prod_id_reg = ADIS16475_REG_PROD_ID, \
.prod_id = (_prod_id), \
.self_test_mask = BIT(2), \
.self_test_reg = ADIS16475_REG_GLOB_CMD, \
.cs_change_delay = 16, \
.read_delay = 5, \
.write_delay = 5, \
.status_error_msgs = adis16475_status_error_msgs, \
.status_error_mask = BIT(ADIS16475_DIAG_STAT_DATA_PATH) | \
BIT(ADIS16475_DIAG_STAT_FLASH_MEM) | \
BIT(ADIS16475_DIAG_STAT_SPI) | \
BIT(ADIS16475_DIAG_STAT_STANDBY) | \
BIT(ADIS16475_DIAG_STAT_SENSOR) | \
BIT(ADIS16475_DIAG_STAT_MEMORY) | \
BIT(ADIS16475_DIAG_STAT_CLK), \
.unmasked_drdy = true, \
.timeouts = (_timeouts), \
.burst_reg_cmd = ADIS16475_REG_GLOB_CMD, \
.burst_len = ADIS16475_BURST_MAX_DATA, \
.burst_max_len = ADIS16475_BURST32_MAX_DATA, \
.burst_max_speed_hz = ADIS16475_BURST_MAX_SPEED \
}
static const struct adis16475_sync adis16475_sync_mode[] = {
{ ADIS16475_SYNC_OUTPUT },
{ ADIS16475_SYNC_DIRECT, 1900, 2100 },
{ ADIS16475_SYNC_SCALED, 1, 128 },
{ ADIS16475_SYNC_PULSE, 1000, 2100 },
};
static const struct adis_timeout adis16475_timeouts = {
.reset_ms = 200,
.sw_reset_ms = 200,
.self_test_ms = 20,
};
static const struct adis_timeout adis1650x_timeouts = {
.reset_ms = 260,
.sw_reset_ms = 260,
.self_test_ms = 30,
};
static const struct adis16475_chip_info adis16475_chip_info[] = {
[ADIS16470] = {
.name = "adis16470",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16470, &adis16475_timeouts),
},
[ADIS16475_1] = {
.name = "adis16475-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16475, &adis16475_timeouts),
},
[ADIS16475_2] = {
.name = "adis16475-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16475, &adis16475_timeouts),
},
[ADIS16475_3] = {
.name = "adis16475-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16475, &adis16475_timeouts),
},
[ADIS16477_1] = {
.name = "adis16477-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16477, &adis16475_timeouts),
},
[ADIS16477_2] = {
.name = "adis16477-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16477, &adis16475_timeouts),
},
[ADIS16477_3] = {
.name = "adis16477-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16477, &adis16475_timeouts),
},
[ADIS16465_1] = {
.name = "adis16465-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16465, &adis16475_timeouts),
},
[ADIS16465_2] = {
.name = "adis16465-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16465, &adis16475_timeouts),
},
[ADIS16465_3] = {
.name = "adis16465-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(4000 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16465, &adis16475_timeouts),
},
[ADIS16467_1] = {
.name = "adis16467-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16467, &adis16475_timeouts),
},
[ADIS16467_2] = {
.name = "adis16467-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16467, &adis16475_timeouts),
},
[ADIS16467_3] = {
.name = "adis16467-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 1,
.accel_max_scale = IIO_M_S_2_TO_G(800 << 16),
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
.num_sync = ARRAY_SIZE(adis16475_sync_mode),
.adis_data = ADIS16475_DATA(16467, &adis16475_timeouts),
},
[ADIS16500] = {
.name = "adis16500",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 392,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16500, &adis1650x_timeouts),
},
[ADIS16505_1] = {
.name = "adis16505-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 78,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts),
},
[ADIS16505_2] = {
.name = "adis16505-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 78,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts),
},
[ADIS16505_3] = {
.name = "adis16505-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 78,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16505, &adis1650x_timeouts),
},
[ADIS16507_1] = {
.name = "adis16507-1",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(160 << 16),
.accel_max_val = 392,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts),
},
[ADIS16507_2] = {
.name = "adis16507-2",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(40 << 16),
.accel_max_val = 392,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts),
},
[ADIS16507_3] = {
.name = "adis16507-3",
.num_channels = ARRAY_SIZE(adis16475_channels),
.channels = adis16475_channels,
.gyro_max_val = 1,
.gyro_max_scale = IIO_RAD_TO_DEGREE(10 << 16),
.accel_max_val = 392,
.accel_max_scale = 32000 << 16,
.temp_scale = 100,
.int_clk = 2000,
.max_dec = 1999,
.sync = adis16475_sync_mode,
/* pulse sync not supported */
.num_sync = ARRAY_SIZE(adis16475_sync_mode) - 1,
.has_burst32 = true,
.adis_data = ADIS16475_DATA(16507, &adis1650x_timeouts),
},
};
static const struct iio_info adis16475_info = {
.read_raw = &adis16475_read_raw,
.write_raw = &adis16475_write_raw,
.update_scan_mode = adis_update_scan_mode,
.debugfs_reg_access = adis_debugfs_reg_access,
};
static bool adis16475_validate_crc(const u8 *buffer, u16 crc,
const bool burst32)
{
int i;
/* extra 6 elements for low gyro and accel */
const u16 sz = burst32 ? ADIS16475_BURST32_MAX_DATA :
ADIS16475_BURST_MAX_DATA;
for (i = 0; i < sz - 2; i++)
crc -= buffer[i];
return crc == 0;
}
static void adis16475_burst32_check(struct adis16475 *st)
{
int ret;
struct adis *adis = &st->adis;
if (!st->info->has_burst32)
return;
if (st->lsb_flag && !st->burst32) {
const u16 en = ADIS16500_BURST32(1);
ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL,
ADIS16500_BURST32_MASK, en);
if (ret)
return;
st->burst32 = true;
/*
* In 32-bit mode we need extra 2 bytes for all gyro
* and accel channels.
*/
adis->burst_extra_len = 6 * sizeof(u16);
adis->xfer[1].len += 6 * sizeof(u16);
dev_dbg(&adis->spi->dev, "Enable burst32 mode, xfer:%d",
adis->xfer[1].len);
} else if (!st->lsb_flag && st->burst32) {
const u16 en = ADIS16500_BURST32(0);
ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL,
ADIS16500_BURST32_MASK, en);
if (ret)
return;
st->burst32 = false;
/* Remove the extra bits */
adis->burst_extra_len = 0;
adis->xfer[1].len -= 6 * sizeof(u16);
dev_dbg(&adis->spi->dev, "Disable burst32 mode, xfer:%d\n",
adis->xfer[1].len);
}
}
static irqreturn_t adis16475_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adis16475 *st = iio_priv(indio_dev);
struct adis *adis = &st->adis;
int ret, bit, i = 0;
__be16 *buffer;
u16 crc;
bool valid;
/* offset until the first element after gyro and accel */
const u8 offset = st->burst32 ? 13 : 7;
ret = spi_sync(adis->spi, &adis->msg);
if (ret)
goto check_burst32;
buffer = adis->buffer;
crc = be16_to_cpu(buffer[offset + 2]);
valid = adis16475_validate_crc(adis->buffer, crc, st->burst32);
if (!valid) {
dev_err(&adis->spi->dev, "Invalid crc\n");
goto check_burst32;
}
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
/*
* When burst mode is used, system flags is the first data
* channel in the sequence, but the scan index is 7.
*/
switch (bit) {
case ADIS16475_SCAN_TEMP:
st->data[i++] = buffer[offset];
break;
case ADIS16475_SCAN_GYRO_X ... ADIS16475_SCAN_ACCEL_Z:
/*
* The first 2 bytes on the received data are the
* DIAG_STAT reg, hence the +1 offset here...
*/
if (st->burst32) {
/* upper 16 */
st->data[i++] = buffer[bit * 2 + 2];
/* lower 16 */
st->data[i++] = buffer[bit * 2 + 1];
} else {
st->data[i++] = buffer[bit + 1];
/*
* Don't bother in doing the manual read if the
* device supports burst32. burst32 will be
* enabled in the next call to
* adis16475_burst32_check()...
*/
if (st->lsb_flag && !st->info->has_burst32) {
u16 val = 0;
const u32 reg = ADIS16475_REG_X_GYRO_L +
bit * 4;
adis_read_reg_16(adis, reg, &val);
st->data[i++] = cpu_to_be16(val);
} else {
/* lower not used */
st->data[i++] = 0;
}
}
break;
}
}
iio_push_to_buffers_with_timestamp(indio_dev, st->data, pf->timestamp);
check_burst32:
/*
* We only check the burst mode at the end of the current capture since
* it takes a full data ready cycle for the device to update the burst
* array.
*/
adis16475_burst32_check(st);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static void adis16475_disable_clk(void *data)
{
clk_disable_unprepare((struct clk *)data);
}
static int adis16475_config_sync_mode(struct adis16475 *st)
{
int ret;
struct device *dev = &st->adis.spi->dev;
const struct adis16475_sync *sync;
u32 sync_mode;
/* default to internal clk */
st->clk_freq = st->info->int_clk * 1000;
ret = device_property_read_u32(dev, "adi,sync-mode", &sync_mode);
if (ret)
return 0;
if (sync_mode >= st->info->num_sync) {
dev_err(dev, "Invalid sync mode: %u for %s\n", sync_mode,
st->info->name);
return -EINVAL;
}
sync = &st->info->sync[sync_mode];
st->sync_mode = sync->sync_mode;
/* All the other modes require external input signal */
if (sync->sync_mode != ADIS16475_SYNC_OUTPUT) {
struct clk *clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, adis16475_disable_clk, clk);
if (ret)
return ret;
st->clk_freq = clk_get_rate(clk);
if (st->clk_freq < sync->min_rate ||
st->clk_freq > sync->max_rate) {
dev_err(dev,
"Clk rate:%u not in a valid range:[%u %u]\n",
st->clk_freq, sync->min_rate, sync->max_rate);
return -EINVAL;
}
if (sync->sync_mode == ADIS16475_SYNC_SCALED) {
u16 up_scale;
/*
* In sync scaled mode, the IMU sample rate is the clk_freq * sync_scale.
* Hence, default the IMU sample rate to the highest multiple of the input
* clock lower than the IMU max sample rate. The optimal range is
* 1900-2100 sps...
*/
up_scale = 2100 / st->clk_freq;
ret = __adis_write_reg_16(&st->adis,
ADIS16475_REG_UP_SCALE,
up_scale);
if (ret)
return ret;
}
st->clk_freq *= 1000;
}
/*
* Keep in mind that the mask for the clk modes in adis1650*
* chips is different (1100 instead of 11100). However, we
* are not configuring BIT(4) in these chips and the default
* value is 0, so we are fine in doing the below operations.
* I'm keeping this for simplicity and avoiding extra variables
* in chip_info.
*/
ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL,
ADIS16475_SYNC_MODE_MASK, sync->sync_mode);
if (ret)
return ret;
usleep_range(250, 260);
return 0;
}
static int adis16475_config_irq_pin(struct adis16475 *st)
{
int ret;
struct irq_data *desc;
u32 irq_type;
u16 val = 0;
u8 polarity;
struct spi_device *spi = st->adis.spi;
desc = irq_get_irq_data(spi->irq);
if (!desc) {
dev_err(&spi->dev, "Could not find IRQ %d\n", spi->irq);
return -EINVAL;
}
/*
* It is possible to configure the data ready polarity. Furthermore, we
* need to update the adis struct if we want data ready as active low.
*/
irq_type = irqd_get_trigger_type(desc);
if (irq_type == IRQ_TYPE_EDGE_RISING) {
polarity = 1;
st->adis.irq_flag = IRQF_TRIGGER_RISING;
} else if (irq_type == IRQ_TYPE_EDGE_FALLING) {
polarity = 0;
st->adis.irq_flag = IRQF_TRIGGER_FALLING;
} else {
dev_err(&spi->dev, "Invalid interrupt type 0x%x specified\n",
irq_type);
return -EINVAL;
}
val = ADIS16475_MSG_CTRL_DR_POL(polarity);
ret = __adis_update_bits(&st->adis, ADIS16475_REG_MSG_CTRL,
ADIS16475_MSG_CTRL_DR_POL_MASK, val);
if (ret)
return ret;
/*
* There is a delay writing to any bits written to the MSC_CTRL
* register. It should not be bigger than 200us, so 250 should be more
* than enough!
*/
usleep_range(250, 260);
return 0;
}
static const struct of_device_id adis16475_of_match[] = {
{ .compatible = "adi,adis16470",
.data = &adis16475_chip_info[ADIS16470] },
{ .compatible = "adi,adis16475-1",
.data = &adis16475_chip_info[ADIS16475_1] },
{ .compatible = "adi,adis16475-2",
.data = &adis16475_chip_info[ADIS16475_2] },
{ .compatible = "adi,adis16475-3",
.data = &adis16475_chip_info[ADIS16475_3] },
{ .compatible = "adi,adis16477-1",
.data = &adis16475_chip_info[ADIS16477_1] },
{ .compatible = "adi,adis16477-2",
.data = &adis16475_chip_info[ADIS16477_2] },
{ .compatible = "adi,adis16477-3",
.data = &adis16475_chip_info[ADIS16477_3] },
{ .compatible = "adi,adis16465-1",
.data = &adis16475_chip_info[ADIS16465_1] },
{ .compatible = "adi,adis16465-2",
.data = &adis16475_chip_info[ADIS16465_2] },
{ .compatible = "adi,adis16465-3",
.data = &adis16475_chip_info[ADIS16465_3] },
{ .compatible = "adi,adis16467-1",
.data = &adis16475_chip_info[ADIS16467_1] },
{ .compatible = "adi,adis16467-2",
.data = &adis16475_chip_info[ADIS16467_2] },
{ .compatible = "adi,adis16467-3",
.data = &adis16475_chip_info[ADIS16467_3] },
{ .compatible = "adi,adis16500",
.data = &adis16475_chip_info[ADIS16500] },
{ .compatible = "adi,adis16505-1",
.data = &adis16475_chip_info[ADIS16505_1] },
{ .compatible = "adi,adis16505-2",
.data = &adis16475_chip_info[ADIS16505_2] },
{ .compatible = "adi,adis16505-3",
.data = &adis16475_chip_info[ADIS16505_3] },
{ .compatible = "adi,adis16507-1",
.data = &adis16475_chip_info[ADIS16507_1] },
{ .compatible = "adi,adis16507-2",
.data = &adis16475_chip_info[ADIS16507_2] },
{ .compatible = "adi,adis16507-3",
.data = &adis16475_chip_info[ADIS16507_3] },
{ },
};
MODULE_DEVICE_TABLE(of, adis16475_of_match);
static int adis16475_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct adis16475 *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->info = device_get_match_data(&spi->dev);
if (!st->info)
return -EINVAL;
ret = adis_init(&st->adis, indio_dev, spi, &st->info->adis_data);
if (ret)
return ret;
indio_dev->name = st->info->name;
indio_dev->channels = st->info->channels;
indio_dev->num_channels = st->info->num_channels;
indio_dev->info = &adis16475_info;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = __adis_initial_startup(&st->adis);
if (ret)
return ret;
ret = adis16475_config_irq_pin(st);
if (ret)
return ret;
ret = adis16475_config_sync_mode(st);
if (ret)
return ret;
ret = devm_adis_setup_buffer_and_trigger(&st->adis, indio_dev,
adis16475_trigger_handler);
if (ret)
return ret;
ret = devm_iio_device_register(&spi->dev, indio_dev);
if (ret)
return ret;
adis16475_debugfs_init(indio_dev);
return 0;
}
static struct spi_driver adis16475_driver = {
.driver = {
.name = "adis16475",
.of_match_table = adis16475_of_match,
},
.probe = adis16475_probe,
};
module_spi_driver(adis16475_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADIS16475 IMU driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_ADISLIB);