mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
116e04ba14
This patch fixes a tailcall issue caused by abusing the tailcall in bpf2bpf feature. As we know, tail_call_cnt propagates by rax from caller to callee when to call subprog in tailcall context. But, like the following example, MAX_TAIL_CALL_CNT won't work because of missing tail_call_cnt back-propagation from callee to caller. \#include <linux/bpf.h> \#include <bpf/bpf_helpers.h> \#include "bpf_legacy.h" struct { __uint(type, BPF_MAP_TYPE_PROG_ARRAY); __uint(max_entries, 1); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u32)); } jmp_table SEC(".maps"); int count = 0; static __noinline int subprog_tail1(struct __sk_buff *skb) { bpf_tail_call_static(skb, &jmp_table, 0); return 0; } static __noinline int subprog_tail2(struct __sk_buff *skb) { bpf_tail_call_static(skb, &jmp_table, 0); return 0; } SEC("tc") int entry(struct __sk_buff *skb) { volatile int ret = 1; count++; subprog_tail1(skb); subprog_tail2(skb); return ret; } char __license[] SEC("license") = "GPL"; At run time, the tail_call_cnt in entry() will be propagated to subprog_tail1() and subprog_tail2(). But, when the tail_call_cnt in subprog_tail1() updates when bpf_tail_call_static(), the tail_call_cnt in entry() won't be updated at the same time. As a result, in entry(), when tail_call_cnt in entry() is less than MAX_TAIL_CALL_CNT and subprog_tail1() returns because of MAX_TAIL_CALL_CNT limit, bpf_tail_call_static() in suprog_tail2() is able to run because the tail_call_cnt in subprog_tail2() propagated from entry() is less than MAX_TAIL_CALL_CNT. So, how many tailcalls are there for this case if no error happens? From top-down view, does it look like hierarchy layer and layer? With this view, there will be 2+4+8+...+2^33 = 2^34 - 2 = 17,179,869,182 tailcalls for this case. How about there are N subprog_tail() in entry()? There will be almost N^34 tailcalls. Then, in this patch, it resolves this case on x86_64. In stead of propagating tail_call_cnt from caller to callee, it propagates its pointer, tail_call_cnt_ptr, tcc_ptr for short. However, where does it store tail_call_cnt? It stores tail_call_cnt on the stack of main prog. When tail call happens in subprog, it increments tail_call_cnt by tcc_ptr. Meanwhile, it stores tail_call_cnt_ptr on the stack of main prog, too. And, before jump to tail callee, it has to pop tail_call_cnt and tail_call_cnt_ptr. Then, at the prologue of subprog, it must not make rax as tail_call_cnt_ptr again. It has to reuse tail_call_cnt_ptr from caller. As a result, at run time, it has to recognize rax is tail_call_cnt or tail_call_cnt_ptr at prologue by: 1. rax is tail_call_cnt if rax is <= MAX_TAIL_CALL_CNT. 2. rax is tail_call_cnt_ptr if rax is > MAX_TAIL_CALL_CNT, because a pointer won't be <= MAX_TAIL_CALL_CNT. Here's an example to dump JITed. struct { __uint(type, BPF_MAP_TYPE_PROG_ARRAY); __uint(max_entries, 1); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u32)); } jmp_table SEC(".maps"); int count = 0; static __noinline int subprog_tail(struct __sk_buff *skb) { bpf_tail_call_static(skb, &jmp_table, 0); return 0; } SEC("tc") int entry(struct __sk_buff *skb) { int ret = 1; count++; subprog_tail(skb); subprog_tail(skb); return ret; } When bpftool p d j id 42: int entry(struct __sk_buff * skb): bpf_prog_0c0f4c2413ef19b1_entry: ; int entry(struct __sk_buff *skb) 0: endbr64 4: nopl (%rax,%rax) 9: xorq %rax, %rax ;; rax = 0 (tail_call_cnt) c: pushq %rbp d: movq %rsp, %rbp 10: endbr64 14: cmpq $33, %rax ;; if rax > 33, rax = tcc_ptr 18: ja 0x20 ;; if rax > 33 goto 0x20 ---+ 1a: pushq %rax ;; [rbp - 8] = rax = 0 | 1b: movq %rsp, %rax ;; rax = rbp - 8 | 1e: jmp 0x21 ;; ---------+ | 20: pushq %rax ;; <--------|---------------+ 21: pushq %rax ;; <--------+ [rbp - 16] = rax 22: pushq %rbx ;; callee saved 23: movq %rdi, %rbx ;; rbx = skb (callee saved) ; count++; 26: movabsq $-82417199407104, %rdi 30: movl (%rdi), %esi 33: addl $1, %esi 36: movl %esi, (%rdi) ; subprog_tail(skb); 39: movq %rbx, %rdi ;; rdi = skb 3c: movq -16(%rbp), %rax ;; rax = tcc_ptr 43: callq 0x80 ;; call subprog_tail() ; subprog_tail(skb); 48: movq %rbx, %rdi ;; rdi = skb 4b: movq -16(%rbp), %rax ;; rax = tcc_ptr 52: callq 0x80 ;; call subprog_tail() ; return ret; 57: movl $1, %eax 5c: popq %rbx 5d: leave 5e: retq int subprog_tail(struct __sk_buff * skb): bpf_prog_3a140cef239a4b4f_subprog_tail: ; int subprog_tail(struct __sk_buff *skb) 0: endbr64 4: nopl (%rax,%rax) 9: nopl (%rax) ;; do not touch tail_call_cnt c: pushq %rbp d: movq %rsp, %rbp 10: endbr64 14: pushq %rax ;; [rbp - 8] = rax (tcc_ptr) 15: pushq %rax ;; [rbp - 16] = rax (tcc_ptr) 16: pushq %rbx ;; callee saved 17: pushq %r13 ;; callee saved 19: movq %rdi, %rbx ;; rbx = skb ; asm volatile("r1 = %[ctx]\n\t" 1c: movabsq $-105487587488768, %r13 ;; r13 = jmp_table 26: movq %rbx, %rdi ;; 1st arg, skb 29: movq %r13, %rsi ;; 2nd arg, jmp_table 2c: xorl %edx, %edx ;; 3rd arg, index = 0 2e: movq -16(%rbp), %rax ;; rax = [rbp - 16] (tcc_ptr) 35: cmpq $33, (%rax) 39: jae 0x4e ;; if *tcc_ptr >= 33 goto 0x4e --------+ 3b: jmp 0x4e ;; jmp bypass, toggled by poking | 40: addq $1, (%rax) ;; (*tcc_ptr)++ | 44: popq %r13 ;; callee saved | 46: popq %rbx ;; callee saved | 47: popq %rax ;; undo rbp-16 push | 48: popq %rax ;; undo rbp-8 push | 49: nopl (%rax,%rax) ;; tail call target, toggled by poking | ; return 0; ;; | 4e: popq %r13 ;; restore callee saved <--------------+ 50: popq %rbx ;; restore callee saved 51: leave 52: retq Furthermore, when trampoline is the caller of bpf prog, which is tail_call_reachable, it is required to propagate rax through trampoline. Fixes: |
||
---|---|---|
.. | ||
bpf_jit_comp32.c | ||
bpf_jit_comp.c | ||
Makefile |