mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
4db64279bc
New CPU #defines encode vendor and family as well as model. [ dhansen: vertically align macro and remove stray subject / ] Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/all/20240424181516.41887-1-tony.luck%40intel.com
1425 lines
36 KiB
C
1425 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* x86 SMP booting functions
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
|
|
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
|
|
* Copyright 2001 Andi Kleen, SuSE Labs.
|
|
*
|
|
* Much of the core SMP work is based on previous work by Thomas Radke, to
|
|
* whom a great many thanks are extended.
|
|
*
|
|
* Thanks to Intel for making available several different Pentium,
|
|
* Pentium Pro and Pentium-II/Xeon MP machines.
|
|
* Original development of Linux SMP code supported by Caldera.
|
|
*
|
|
* Fixes
|
|
* Felix Koop : NR_CPUS used properly
|
|
* Jose Renau : Handle single CPU case.
|
|
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
|
|
* Greg Wright : Fix for kernel stacks panic.
|
|
* Erich Boleyn : MP v1.4 and additional changes.
|
|
* Matthias Sattler : Changes for 2.1 kernel map.
|
|
* Michel Lespinasse : Changes for 2.1 kernel map.
|
|
* Michael Chastain : Change trampoline.S to gnu as.
|
|
* Alan Cox : Dumb bug: 'B' step PPro's are fine
|
|
* Ingo Molnar : Added APIC timers, based on code
|
|
* from Jose Renau
|
|
* Ingo Molnar : various cleanups and rewrites
|
|
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
|
|
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
|
|
* Andi Kleen : Changed for SMP boot into long mode.
|
|
* Martin J. Bligh : Added support for multi-quad systems
|
|
* Dave Jones : Report invalid combinations of Athlon CPUs.
|
|
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
|
|
* Andi Kleen : Converted to new state machine.
|
|
* Ashok Raj : CPU hotplug support
|
|
* Glauber Costa : i386 and x86_64 integration
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/err.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/mc146818rtc.h>
|
|
|
|
#include <asm/acpi.h>
|
|
#include <asm/cacheinfo.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/i8259.h>
|
|
#include <asm/misc.h>
|
|
#include <asm/qspinlock.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/spec-ctrl.h>
|
|
|
|
/* representing HT siblings of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
|
|
|
|
/* representing HT and core siblings of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
|
|
|
|
/* representing HT, core, and die siblings of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_die_map);
|
|
|
|
/* CPUs which are the primary SMT threads */
|
|
struct cpumask __cpu_primary_thread_mask __read_mostly;
|
|
|
|
/* Representing CPUs for which sibling maps can be computed */
|
|
static cpumask_var_t cpu_sibling_setup_mask;
|
|
|
|
struct mwait_cpu_dead {
|
|
unsigned int control;
|
|
unsigned int status;
|
|
};
|
|
|
|
#define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
|
|
#define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
|
|
|
|
/*
|
|
* Cache line aligned data for mwait_play_dead(). Separate on purpose so
|
|
* that it's unlikely to be touched by other CPUs.
|
|
*/
|
|
static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
|
|
|
|
/* Maximum number of SMT threads on any online core */
|
|
int __read_mostly __max_smt_threads = 1;
|
|
|
|
/* Flag to indicate if a complete sched domain rebuild is required */
|
|
bool x86_topology_update;
|
|
|
|
int arch_update_cpu_topology(void)
|
|
{
|
|
int retval = x86_topology_update;
|
|
|
|
x86_topology_update = false;
|
|
return retval;
|
|
}
|
|
|
|
static unsigned int smpboot_warm_reset_vector_count;
|
|
|
|
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
if (!smpboot_warm_reset_vector_count++) {
|
|
CMOS_WRITE(0xa, 0xf);
|
|
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
|
|
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
|
|
}
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
}
|
|
|
|
static inline void smpboot_restore_warm_reset_vector(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Paranoid: Set warm reset code and vector here back
|
|
* to default values.
|
|
*/
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
if (!--smpboot_warm_reset_vector_count) {
|
|
CMOS_WRITE(0, 0xf);
|
|
*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
|
|
}
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
}
|
|
|
|
/* Run the next set of setup steps for the upcoming CPU */
|
|
static void ap_starting(void)
|
|
{
|
|
int cpuid = smp_processor_id();
|
|
|
|
/* Mop up eventual mwait_play_dead() wreckage */
|
|
this_cpu_write(mwait_cpu_dead.status, 0);
|
|
this_cpu_write(mwait_cpu_dead.control, 0);
|
|
|
|
/*
|
|
* If woken up by an INIT in an 82489DX configuration the alive
|
|
* synchronization guarantees that the CPU does not reach this
|
|
* point before an INIT_deassert IPI reaches the local APIC, so it
|
|
* is now safe to touch the local APIC.
|
|
*
|
|
* Set up this CPU, first the APIC, which is probably redundant on
|
|
* most boards.
|
|
*/
|
|
apic_ap_setup();
|
|
|
|
/* Save the processor parameters. */
|
|
smp_store_cpu_info(cpuid);
|
|
|
|
/*
|
|
* The topology information must be up to date before
|
|
* notify_cpu_starting().
|
|
*/
|
|
set_cpu_sibling_map(cpuid);
|
|
|
|
ap_init_aperfmperf();
|
|
|
|
pr_debug("Stack at about %p\n", &cpuid);
|
|
|
|
wmb();
|
|
|
|
/*
|
|
* This runs the AP through all the cpuhp states to its target
|
|
* state CPUHP_ONLINE.
|
|
*/
|
|
notify_cpu_starting(cpuid);
|
|
}
|
|
|
|
static void ap_calibrate_delay(void)
|
|
{
|
|
/*
|
|
* Calibrate the delay loop and update loops_per_jiffy in cpu_data.
|
|
* smp_store_cpu_info() stored a value that is close but not as
|
|
* accurate as the value just calculated.
|
|
*
|
|
* As this is invoked after the TSC synchronization check,
|
|
* calibrate_delay_is_known() will skip the calibration routine
|
|
* when TSC is synchronized across sockets.
|
|
*/
|
|
calibrate_delay();
|
|
cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
|
|
}
|
|
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
static void notrace start_secondary(void *unused)
|
|
{
|
|
/*
|
|
* Don't put *anything* except direct CPU state initialization
|
|
* before cpu_init(), SMP booting is too fragile that we want to
|
|
* limit the things done here to the most necessary things.
|
|
*/
|
|
cr4_init();
|
|
|
|
/*
|
|
* 32-bit specific. 64-bit reaches this code with the correct page
|
|
* table established. Yet another historical divergence.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
/* switch away from the initial page table */
|
|
load_cr3(swapper_pg_dir);
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
cpu_init_exception_handling();
|
|
|
|
/*
|
|
* Load the microcode before reaching the AP alive synchronization
|
|
* point below so it is not part of the full per CPU serialized
|
|
* bringup part when "parallel" bringup is enabled.
|
|
*
|
|
* That's even safe when hyperthreading is enabled in the CPU as
|
|
* the core code starts the primary threads first and leaves the
|
|
* secondary threads waiting for SIPI. Loading microcode on
|
|
* physical cores concurrently is a safe operation.
|
|
*
|
|
* This covers both the Intel specific issue that concurrent
|
|
* microcode loading on SMT siblings must be prohibited and the
|
|
* vendor independent issue`that microcode loading which changes
|
|
* CPUID, MSRs etc. must be strictly serialized to maintain
|
|
* software state correctness.
|
|
*/
|
|
load_ucode_ap();
|
|
|
|
/*
|
|
* Synchronization point with the hotplug core. Sets this CPUs
|
|
* synchronization state to ALIVE and spin-waits for the control CPU to
|
|
* release this CPU for further bringup.
|
|
*/
|
|
cpuhp_ap_sync_alive();
|
|
|
|
cpu_init();
|
|
fpu__init_cpu();
|
|
rcutree_report_cpu_starting(raw_smp_processor_id());
|
|
x86_cpuinit.early_percpu_clock_init();
|
|
|
|
ap_starting();
|
|
|
|
/* Check TSC synchronization with the control CPU. */
|
|
check_tsc_sync_target();
|
|
|
|
/*
|
|
* Calibrate the delay loop after the TSC synchronization check.
|
|
* This allows to skip the calibration when TSC is synchronized
|
|
* across sockets.
|
|
*/
|
|
ap_calibrate_delay();
|
|
|
|
speculative_store_bypass_ht_init();
|
|
|
|
/*
|
|
* Lock vector_lock, set CPU online and bring the vector
|
|
* allocator online. Online must be set with vector_lock held
|
|
* to prevent a concurrent irq setup/teardown from seeing a
|
|
* half valid vector space.
|
|
*/
|
|
lock_vector_lock();
|
|
set_cpu_online(smp_processor_id(), true);
|
|
lapic_online();
|
|
unlock_vector_lock();
|
|
x86_platform.nmi_init();
|
|
|
|
/* enable local interrupts */
|
|
local_irq_enable();
|
|
|
|
x86_cpuinit.setup_percpu_clockev();
|
|
|
|
wmb();
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
/*
|
|
* The bootstrap kernel entry code has set these up. Save them for
|
|
* a given CPU
|
|
*/
|
|
void smp_store_cpu_info(int id)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(id);
|
|
|
|
/* Copy boot_cpu_data only on the first bringup */
|
|
if (!c->initialized)
|
|
*c = boot_cpu_data;
|
|
c->cpu_index = id;
|
|
/*
|
|
* During boot time, CPU0 has this setup already. Save the info when
|
|
* bringing up an AP.
|
|
*/
|
|
identify_secondary_cpu(c);
|
|
c->initialized = true;
|
|
}
|
|
|
|
static bool
|
|
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
|
|
}
|
|
|
|
static bool
|
|
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
return !WARN_ONCE(!topology_same_node(c, o),
|
|
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
|
|
"[node: %d != %d]. Ignoring dependency.\n",
|
|
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
|
|
}
|
|
|
|
#define link_mask(mfunc, c1, c2) \
|
|
do { \
|
|
cpumask_set_cpu((c1), mfunc(c2)); \
|
|
cpumask_set_cpu((c2), mfunc(c1)); \
|
|
} while (0)
|
|
|
|
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
if (c->topo.pkg_id == o->topo.pkg_id &&
|
|
c->topo.die_id == o->topo.die_id &&
|
|
c->topo.amd_node_id == o->topo.amd_node_id &&
|
|
per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
|
|
if (c->topo.core_id == o->topo.core_id)
|
|
return topology_sane(c, o, "smt");
|
|
|
|
if ((c->topo.cu_id != 0xff) &&
|
|
(o->topo.cu_id != 0xff) &&
|
|
(c->topo.cu_id == o->topo.cu_id))
|
|
return topology_sane(c, o, "smt");
|
|
}
|
|
|
|
} else if (c->topo.pkg_id == o->topo.pkg_id &&
|
|
c->topo.die_id == o->topo.die_id &&
|
|
c->topo.core_id == o->topo.core_id) {
|
|
return topology_sane(c, o, "smt");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
|
|
return false;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
|
|
return c->topo.amd_node_id == o->topo.amd_node_id;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
|
|
/* If the arch didn't set up l2c_id, fall back to SMT */
|
|
if (per_cpu_l2c_id(cpu1) == BAD_APICID)
|
|
return match_smt(c, o);
|
|
|
|
/* Do not match if L2 cache id does not match: */
|
|
if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
|
|
return false;
|
|
|
|
return topology_sane(c, o, "l2c");
|
|
}
|
|
|
|
/*
|
|
* Unlike the other levels, we do not enforce keeping a
|
|
* multicore group inside a NUMA node. If this happens, we will
|
|
* discard the MC level of the topology later.
|
|
*/
|
|
static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
if (c->topo.pkg_id == o->topo.pkg_id)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
|
|
*
|
|
* Any Intel CPU that has multiple nodes per package and does not
|
|
* match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
|
|
*
|
|
* When in SNC mode, these CPUs enumerate an LLC that is shared
|
|
* by multiple NUMA nodes. The LLC is shared for off-package data
|
|
* access but private to the NUMA node (half of the package) for
|
|
* on-package access. CPUID (the source of the information about
|
|
* the LLC) can only enumerate the cache as shared or unshared,
|
|
* but not this particular configuration.
|
|
*/
|
|
|
|
static const struct x86_cpu_id intel_cod_cpu[] = {
|
|
X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
|
|
X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
|
|
X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
|
|
{}
|
|
};
|
|
|
|
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
|
|
{
|
|
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
|
|
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
|
|
bool intel_snc = id && id->driver_data;
|
|
|
|
/* Do not match if we do not have a valid APICID for cpu: */
|
|
if (per_cpu_llc_id(cpu1) == BAD_APICID)
|
|
return false;
|
|
|
|
/* Do not match if LLC id does not match: */
|
|
if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
|
|
return false;
|
|
|
|
/*
|
|
* Allow the SNC topology without warning. Return of false
|
|
* means 'c' does not share the LLC of 'o'. This will be
|
|
* reflected to userspace.
|
|
*/
|
|
if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
|
|
return false;
|
|
|
|
return topology_sane(c, o, "llc");
|
|
}
|
|
|
|
|
|
static inline int x86_sched_itmt_flags(void)
|
|
{
|
|
return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_MC
|
|
static int x86_core_flags(void)
|
|
{
|
|
return cpu_core_flags() | x86_sched_itmt_flags();
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SCHED_SMT
|
|
static int x86_smt_flags(void)
|
|
{
|
|
return cpu_smt_flags();
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SCHED_CLUSTER
|
|
static int x86_cluster_flags(void)
|
|
{
|
|
return cpu_cluster_flags() | x86_sched_itmt_flags();
|
|
}
|
|
#endif
|
|
|
|
static int x86_die_flags(void)
|
|
{
|
|
if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
|
|
return x86_sched_itmt_flags();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set if a package/die has multiple NUMA nodes inside.
|
|
* AMD Magny-Cours, Intel Cluster-on-Die, and Intel
|
|
* Sub-NUMA Clustering have this.
|
|
*/
|
|
static bool x86_has_numa_in_package;
|
|
|
|
static struct sched_domain_topology_level x86_topology[6];
|
|
|
|
static void __init build_sched_topology(void)
|
|
{
|
|
int i = 0;
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
x86_topology[i++] = (struct sched_domain_topology_level){
|
|
cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
|
|
};
|
|
#endif
|
|
#ifdef CONFIG_SCHED_CLUSTER
|
|
x86_topology[i++] = (struct sched_domain_topology_level){
|
|
cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
|
|
};
|
|
#endif
|
|
#ifdef CONFIG_SCHED_MC
|
|
x86_topology[i++] = (struct sched_domain_topology_level){
|
|
cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
|
|
};
|
|
#endif
|
|
/*
|
|
* When there is NUMA topology inside the package skip the PKG domain
|
|
* since the NUMA domains will auto-magically create the right spanning
|
|
* domains based on the SLIT.
|
|
*/
|
|
if (!x86_has_numa_in_package) {
|
|
x86_topology[i++] = (struct sched_domain_topology_level){
|
|
cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
|
|
};
|
|
}
|
|
|
|
/*
|
|
* There must be one trailing NULL entry left.
|
|
*/
|
|
BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
|
|
|
|
set_sched_topology(x86_topology);
|
|
}
|
|
|
|
void set_cpu_sibling_map(int cpu)
|
|
{
|
|
bool has_smt = __max_threads_per_core > 1;
|
|
bool has_mp = has_smt || topology_num_cores_per_package() > 1;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct cpuinfo_x86 *o;
|
|
int i, threads;
|
|
|
|
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
|
|
|
|
if (!has_mp) {
|
|
cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
|
|
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
|
|
cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
|
|
cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
|
|
cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
|
|
c->booted_cores = 1;
|
|
return;
|
|
}
|
|
|
|
for_each_cpu(i, cpu_sibling_setup_mask) {
|
|
o = &cpu_data(i);
|
|
|
|
if (match_pkg(c, o) && !topology_same_node(c, o))
|
|
x86_has_numa_in_package = true;
|
|
|
|
if ((i == cpu) || (has_smt && match_smt(c, o)))
|
|
link_mask(topology_sibling_cpumask, cpu, i);
|
|
|
|
if ((i == cpu) || (has_mp && match_llc(c, o)))
|
|
link_mask(cpu_llc_shared_mask, cpu, i);
|
|
|
|
if ((i == cpu) || (has_mp && match_l2c(c, o)))
|
|
link_mask(cpu_l2c_shared_mask, cpu, i);
|
|
|
|
if ((i == cpu) || (has_mp && match_die(c, o)))
|
|
link_mask(topology_die_cpumask, cpu, i);
|
|
}
|
|
|
|
threads = cpumask_weight(topology_sibling_cpumask(cpu));
|
|
if (threads > __max_smt_threads)
|
|
__max_smt_threads = threads;
|
|
|
|
for_each_cpu(i, topology_sibling_cpumask(cpu))
|
|
cpu_data(i).smt_active = threads > 1;
|
|
|
|
/*
|
|
* This needs a separate iteration over the cpus because we rely on all
|
|
* topology_sibling_cpumask links to be set-up.
|
|
*/
|
|
for_each_cpu(i, cpu_sibling_setup_mask) {
|
|
o = &cpu_data(i);
|
|
|
|
if ((i == cpu) || (has_mp && match_pkg(c, o))) {
|
|
link_mask(topology_core_cpumask, cpu, i);
|
|
|
|
/*
|
|
* Does this new cpu bringup a new core?
|
|
*/
|
|
if (threads == 1) {
|
|
/*
|
|
* for each core in package, increment
|
|
* the booted_cores for this new cpu
|
|
*/
|
|
if (cpumask_first(
|
|
topology_sibling_cpumask(i)) == i)
|
|
c->booted_cores++;
|
|
/*
|
|
* increment the core count for all
|
|
* the other cpus in this package
|
|
*/
|
|
if (i != cpu)
|
|
cpu_data(i).booted_cores++;
|
|
} else if (i != cpu && !c->booted_cores)
|
|
c->booted_cores = cpu_data(i).booted_cores;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* maps the cpu to the sched domain representing multi-core */
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return cpu_llc_shared_mask(cpu);
|
|
}
|
|
|
|
const struct cpumask *cpu_clustergroup_mask(int cpu)
|
|
{
|
|
return cpu_l2c_shared_mask(cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
|
|
|
|
static void impress_friends(void)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
/*
|
|
* Allow the user to impress friends.
|
|
*/
|
|
pr_debug("Before bogomips\n");
|
|
for_each_online_cpu(cpu)
|
|
bogosum += cpu_data(cpu).loops_per_jiffy;
|
|
|
|
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
|
|
num_online_cpus(),
|
|
bogosum/(500000/HZ),
|
|
(bogosum/(5000/HZ))%100);
|
|
|
|
pr_debug("Before bogocount - setting activated=1\n");
|
|
}
|
|
|
|
/*
|
|
* The Multiprocessor Specification 1.4 (1997) example code suggests
|
|
* that there should be a 10ms delay between the BSP asserting INIT
|
|
* and de-asserting INIT, when starting a remote processor.
|
|
* But that slows boot and resume on modern processors, which include
|
|
* many cores and don't require that delay.
|
|
*
|
|
* Cmdline "init_cpu_udelay=" is available to over-ride this delay.
|
|
* Modern processor families are quirked to remove the delay entirely.
|
|
*/
|
|
#define UDELAY_10MS_DEFAULT 10000
|
|
|
|
static unsigned int init_udelay = UINT_MAX;
|
|
|
|
static int __init cpu_init_udelay(char *str)
|
|
{
|
|
get_option(&str, &init_udelay);
|
|
|
|
return 0;
|
|
}
|
|
early_param("cpu_init_udelay", cpu_init_udelay);
|
|
|
|
static void __init smp_quirk_init_udelay(void)
|
|
{
|
|
/* if cmdline changed it from default, leave it alone */
|
|
if (init_udelay != UINT_MAX)
|
|
return;
|
|
|
|
/* if modern processor, use no delay */
|
|
if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
|
|
((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
|
|
((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
|
|
init_udelay = 0;
|
|
return;
|
|
}
|
|
/* else, use legacy delay */
|
|
init_udelay = UDELAY_10MS_DEFAULT;
|
|
}
|
|
|
|
/*
|
|
* Wake up AP by INIT, INIT, STARTUP sequence.
|
|
*/
|
|
static void send_init_sequence(u32 phys_apicid)
|
|
{
|
|
int maxlvt = lapic_get_maxlvt();
|
|
|
|
/* Be paranoid about clearing APIC errors. */
|
|
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
|
|
/* Due to the Pentium erratum 3AP. */
|
|
if (maxlvt > 3)
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
}
|
|
|
|
/* Assert INIT on the target CPU */
|
|
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
|
|
safe_apic_wait_icr_idle();
|
|
|
|
udelay(init_udelay);
|
|
|
|
/* Deassert INIT on the target CPU */
|
|
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
|
|
safe_apic_wait_icr_idle();
|
|
}
|
|
|
|
/*
|
|
* Wake up AP by INIT, INIT, STARTUP sequence.
|
|
*/
|
|
static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
|
|
{
|
|
unsigned long send_status = 0, accept_status = 0;
|
|
int num_starts, j, maxlvt;
|
|
|
|
preempt_disable();
|
|
maxlvt = lapic_get_maxlvt();
|
|
send_init_sequence(phys_apicid);
|
|
|
|
mb();
|
|
|
|
/*
|
|
* Should we send STARTUP IPIs ?
|
|
*
|
|
* Determine this based on the APIC version.
|
|
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
|
|
*/
|
|
if (APIC_INTEGRATED(boot_cpu_apic_version))
|
|
num_starts = 2;
|
|
else
|
|
num_starts = 0;
|
|
|
|
/*
|
|
* Run STARTUP IPI loop.
|
|
*/
|
|
pr_debug("#startup loops: %d\n", num_starts);
|
|
|
|
for (j = 1; j <= num_starts; j++) {
|
|
pr_debug("Sending STARTUP #%d\n", j);
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
pr_debug("After apic_write\n");
|
|
|
|
/*
|
|
* STARTUP IPI
|
|
*/
|
|
|
|
/* Target chip */
|
|
/* Boot on the stack */
|
|
/* Kick the second */
|
|
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
|
|
phys_apicid);
|
|
|
|
/*
|
|
* Give the other CPU some time to accept the IPI.
|
|
*/
|
|
if (init_udelay == 0)
|
|
udelay(10);
|
|
else
|
|
udelay(300);
|
|
|
|
pr_debug("Startup point 1\n");
|
|
|
|
pr_debug("Waiting for send to finish...\n");
|
|
send_status = safe_apic_wait_icr_idle();
|
|
|
|
/*
|
|
* Give the other CPU some time to accept the IPI.
|
|
*/
|
|
if (init_udelay == 0)
|
|
udelay(10);
|
|
else
|
|
udelay(200);
|
|
|
|
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
|
|
apic_write(APIC_ESR, 0);
|
|
accept_status = (apic_read(APIC_ESR) & 0xEF);
|
|
if (send_status || accept_status)
|
|
break;
|
|
}
|
|
pr_debug("After Startup\n");
|
|
|
|
if (send_status)
|
|
pr_err("APIC never delivered???\n");
|
|
if (accept_status)
|
|
pr_err("APIC delivery error (%lx)\n", accept_status);
|
|
|
|
preempt_enable();
|
|
return (send_status | accept_status);
|
|
}
|
|
|
|
/* reduce the number of lines printed when booting a large cpu count system */
|
|
static void announce_cpu(int cpu, int apicid)
|
|
{
|
|
static int width, node_width, first = 1;
|
|
static int current_node = NUMA_NO_NODE;
|
|
int node = early_cpu_to_node(cpu);
|
|
|
|
if (!width)
|
|
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
|
|
|
|
if (!node_width)
|
|
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
|
|
|
|
if (system_state < SYSTEM_RUNNING) {
|
|
if (first)
|
|
pr_info("x86: Booting SMP configuration:\n");
|
|
|
|
if (node != current_node) {
|
|
if (current_node > (-1))
|
|
pr_cont("\n");
|
|
current_node = node;
|
|
|
|
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
|
|
node_width - num_digits(node), " ", node);
|
|
}
|
|
|
|
/* Add padding for the BSP */
|
|
if (first)
|
|
pr_cont("%*s", width + 1, " ");
|
|
first = 0;
|
|
|
|
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
|
|
} else
|
|
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
|
|
node, cpu, apicid);
|
|
}
|
|
|
|
int common_cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
int ret;
|
|
|
|
/* Just in case we booted with a single CPU. */
|
|
alternatives_enable_smp();
|
|
|
|
per_cpu(pcpu_hot.current_task, cpu) = idle;
|
|
cpu_init_stack_canary(cpu, idle);
|
|
|
|
/* Initialize the interrupt stack(s) */
|
|
ret = irq_init_percpu_irqstack(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Stack for startup_32 can be just as for start_secondary onwards */
|
|
per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
|
|
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
|
|
* Returns zero if startup was successfully sent, else error code from
|
|
* ->wakeup_secondary_cpu.
|
|
*/
|
|
static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned long start_ip = real_mode_header->trampoline_start;
|
|
int ret;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
|
|
if (apic->wakeup_secondary_cpu_64)
|
|
start_ip = real_mode_header->trampoline_start64;
|
|
#endif
|
|
idle->thread.sp = (unsigned long)task_pt_regs(idle);
|
|
initial_code = (unsigned long)start_secondary;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
|
|
initial_stack = idle->thread.sp;
|
|
} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
|
|
smpboot_control = cpu;
|
|
}
|
|
|
|
/* Enable the espfix hack for this CPU */
|
|
init_espfix_ap(cpu);
|
|
|
|
/* So we see what's up */
|
|
announce_cpu(cpu, apicid);
|
|
|
|
/*
|
|
* This grunge runs the startup process for
|
|
* the targeted processor.
|
|
*/
|
|
if (x86_platform.legacy.warm_reset) {
|
|
|
|
pr_debug("Setting warm reset code and vector.\n");
|
|
|
|
smpboot_setup_warm_reset_vector(start_ip);
|
|
/*
|
|
* Be paranoid about clearing APIC errors.
|
|
*/
|
|
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
}
|
|
}
|
|
|
|
smp_mb();
|
|
|
|
/*
|
|
* Wake up a CPU in difference cases:
|
|
* - Use a method from the APIC driver if one defined, with wakeup
|
|
* straight to 64-bit mode preferred over wakeup to RM.
|
|
* Otherwise,
|
|
* - Use an INIT boot APIC message
|
|
*/
|
|
if (apic->wakeup_secondary_cpu_64)
|
|
ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
|
|
else if (apic->wakeup_secondary_cpu)
|
|
ret = apic->wakeup_secondary_cpu(apicid, start_ip);
|
|
else
|
|
ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
|
|
|
|
/* If the wakeup mechanism failed, cleanup the warm reset vector */
|
|
if (ret)
|
|
arch_cpuhp_cleanup_kick_cpu(cpu);
|
|
return ret;
|
|
}
|
|
|
|
int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
u32 apicid = apic->cpu_present_to_apicid(cpu);
|
|
int err;
|
|
|
|
lockdep_assert_irqs_enabled();
|
|
|
|
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
|
|
|
|
if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
|
|
pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!test_bit(apicid, phys_cpu_present_map)) {
|
|
pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Save current MTRR state in case it was changed since early boot
|
|
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
|
|
*/
|
|
mtrr_save_state();
|
|
|
|
/* the FPU context is blank, nobody can own it */
|
|
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
|
|
|
|
err = common_cpu_up(cpu, tidle);
|
|
if (err)
|
|
return err;
|
|
|
|
err = do_boot_cpu(apicid, cpu, tidle);
|
|
if (err)
|
|
pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
|
|
|
|
return err;
|
|
}
|
|
|
|
int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
return smp_ops.kick_ap_alive(cpu, tidle);
|
|
}
|
|
|
|
void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
|
|
{
|
|
/* Cleanup possible dangling ends... */
|
|
if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
|
|
smpboot_restore_warm_reset_vector();
|
|
}
|
|
|
|
void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
|
|
{
|
|
if (smp_ops.cleanup_dead_cpu)
|
|
smp_ops.cleanup_dead_cpu(cpu);
|
|
|
|
if (system_state == SYSTEM_RUNNING)
|
|
pr_info("CPU %u is now offline\n", cpu);
|
|
}
|
|
|
|
void arch_cpuhp_sync_state_poll(void)
|
|
{
|
|
if (smp_ops.poll_sync_state)
|
|
smp_ops.poll_sync_state();
|
|
}
|
|
|
|
/**
|
|
* arch_disable_smp_support() - Disables SMP support for x86 at boottime
|
|
*/
|
|
void __init arch_disable_smp_support(void)
|
|
{
|
|
disable_ioapic_support();
|
|
}
|
|
|
|
/*
|
|
* Fall back to non SMP mode after errors.
|
|
*
|
|
* RED-PEN audit/test this more. I bet there is more state messed up here.
|
|
*/
|
|
static __init void disable_smp(void)
|
|
{
|
|
pr_info("SMP disabled\n");
|
|
|
|
disable_ioapic_support();
|
|
topology_reset_possible_cpus_up();
|
|
|
|
cpumask_set_cpu(0, topology_sibling_cpumask(0));
|
|
cpumask_set_cpu(0, topology_core_cpumask(0));
|
|
cpumask_set_cpu(0, topology_die_cpumask(0));
|
|
}
|
|
|
|
void __init smp_prepare_cpus_common(void)
|
|
{
|
|
unsigned int cpu, node;
|
|
|
|
/* Mark all except the boot CPU as hotpluggable */
|
|
for_each_possible_cpu(cpu) {
|
|
if (cpu)
|
|
per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
node = cpu_to_node(cpu);
|
|
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node);
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node);
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node);
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
|
|
}
|
|
|
|
set_cpu_sibling_map(0);
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
smp_ops.smp_prepare_boot_cpu();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Establish whether parallel bringup can be supported. */
|
|
bool __init arch_cpuhp_init_parallel_bringup(void)
|
|
{
|
|
if (!x86_cpuinit.parallel_bringup) {
|
|
pr_info("Parallel CPU startup disabled by the platform\n");
|
|
return false;
|
|
}
|
|
|
|
smpboot_control = STARTUP_READ_APICID;
|
|
pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Prepare for SMP bootup.
|
|
* @max_cpus: configured maximum number of CPUs, It is a legacy parameter
|
|
* for common interface support.
|
|
*/
|
|
void __init native_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
smp_prepare_cpus_common();
|
|
|
|
switch (apic_intr_mode) {
|
|
case APIC_PIC:
|
|
case APIC_VIRTUAL_WIRE_NO_CONFIG:
|
|
disable_smp();
|
|
return;
|
|
case APIC_SYMMETRIC_IO_NO_ROUTING:
|
|
disable_smp();
|
|
/* Setup local timer */
|
|
x86_init.timers.setup_percpu_clockev();
|
|
return;
|
|
case APIC_VIRTUAL_WIRE:
|
|
case APIC_SYMMETRIC_IO:
|
|
break;
|
|
}
|
|
|
|
/* Setup local timer */
|
|
x86_init.timers.setup_percpu_clockev();
|
|
|
|
pr_info("CPU0: ");
|
|
print_cpu_info(&cpu_data(0));
|
|
|
|
uv_system_init();
|
|
|
|
smp_quirk_init_udelay();
|
|
|
|
speculative_store_bypass_ht_init();
|
|
|
|
snp_set_wakeup_secondary_cpu();
|
|
}
|
|
|
|
void arch_thaw_secondary_cpus_begin(void)
|
|
{
|
|
set_cache_aps_delayed_init(true);
|
|
}
|
|
|
|
void arch_thaw_secondary_cpus_end(void)
|
|
{
|
|
cache_aps_init();
|
|
}
|
|
|
|
/*
|
|
* Early setup to make printk work.
|
|
*/
|
|
void __init native_smp_prepare_boot_cpu(void)
|
|
{
|
|
int me = smp_processor_id();
|
|
|
|
/* SMP handles this from setup_per_cpu_areas() */
|
|
if (!IS_ENABLED(CONFIG_SMP))
|
|
switch_gdt_and_percpu_base(me);
|
|
|
|
native_pv_lock_init();
|
|
}
|
|
|
|
void __init native_smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
pr_debug("Boot done\n");
|
|
|
|
build_sched_topology();
|
|
nmi_selftest();
|
|
impress_friends();
|
|
cache_aps_init();
|
|
}
|
|
|
|
/* correctly size the local cpu masks */
|
|
void __init setup_cpu_local_masks(void)
|
|
{
|
|
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
/* Recompute SMT state for all CPUs on offline */
|
|
static void recompute_smt_state(void)
|
|
{
|
|
int max_threads, cpu;
|
|
|
|
max_threads = 0;
|
|
for_each_online_cpu (cpu) {
|
|
int threads = cpumask_weight(topology_sibling_cpumask(cpu));
|
|
|
|
if (threads > max_threads)
|
|
max_threads = threads;
|
|
}
|
|
__max_smt_threads = max_threads;
|
|
}
|
|
|
|
static void remove_siblinginfo(int cpu)
|
|
{
|
|
int sibling;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
for_each_cpu(sibling, topology_core_cpumask(cpu)) {
|
|
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
|
|
/*/
|
|
* last thread sibling in this cpu core going down
|
|
*/
|
|
if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
|
|
cpu_data(sibling).booted_cores--;
|
|
}
|
|
|
|
for_each_cpu(sibling, topology_die_cpumask(cpu))
|
|
cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
|
|
|
|
for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
|
|
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
|
|
if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
|
|
cpu_data(sibling).smt_active = false;
|
|
}
|
|
|
|
for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
|
|
cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
|
|
for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
|
|
cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
|
|
cpumask_clear(cpu_llc_shared_mask(cpu));
|
|
cpumask_clear(cpu_l2c_shared_mask(cpu));
|
|
cpumask_clear(topology_sibling_cpumask(cpu));
|
|
cpumask_clear(topology_core_cpumask(cpu));
|
|
cpumask_clear(topology_die_cpumask(cpu));
|
|
c->topo.core_id = 0;
|
|
c->booted_cores = 0;
|
|
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
|
|
recompute_smt_state();
|
|
}
|
|
|
|
static void remove_cpu_from_maps(int cpu)
|
|
{
|
|
set_cpu_online(cpu, false);
|
|
numa_remove_cpu(cpu);
|
|
}
|
|
|
|
void cpu_disable_common(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
remove_siblinginfo(cpu);
|
|
|
|
/* It's now safe to remove this processor from the online map */
|
|
lock_vector_lock();
|
|
remove_cpu_from_maps(cpu);
|
|
unlock_vector_lock();
|
|
fixup_irqs();
|
|
lapic_offline();
|
|
}
|
|
|
|
int native_cpu_disable(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = lapic_can_unplug_cpu();
|
|
if (ret)
|
|
return ret;
|
|
|
|
cpu_disable_common();
|
|
|
|
/*
|
|
* Disable the local APIC. Otherwise IPI broadcasts will reach
|
|
* it. It still responds normally to INIT, NMI, SMI, and SIPI
|
|
* messages.
|
|
*
|
|
* Disabling the APIC must happen after cpu_disable_common()
|
|
* which invokes fixup_irqs().
|
|
*
|
|
* Disabling the APIC preserves already set bits in IRR, but
|
|
* an interrupt arriving after disabling the local APIC does not
|
|
* set the corresponding IRR bit.
|
|
*
|
|
* fixup_irqs() scans IRR for set bits so it can raise a not
|
|
* yet handled interrupt on the new destination CPU via an IPI
|
|
* but obviously it can't do so for IRR bits which are not set.
|
|
* IOW, interrupts arriving after disabling the local APIC will
|
|
* be lost.
|
|
*/
|
|
apic_soft_disable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void play_dead_common(void)
|
|
{
|
|
idle_task_exit();
|
|
|
|
cpuhp_ap_report_dead();
|
|
|
|
local_irq_disable();
|
|
}
|
|
|
|
/*
|
|
* We need to flush the caches before going to sleep, lest we have
|
|
* dirty data in our caches when we come back up.
|
|
*/
|
|
static inline void mwait_play_dead(void)
|
|
{
|
|
struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned int highest_cstate = 0;
|
|
unsigned int highest_subcstate = 0;
|
|
int i;
|
|
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
|
|
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
|
|
return;
|
|
if (!this_cpu_has(X86_FEATURE_MWAIT))
|
|
return;
|
|
if (!this_cpu_has(X86_FEATURE_CLFLUSH))
|
|
return;
|
|
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
|
|
return;
|
|
|
|
eax = CPUID_MWAIT_LEAF;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
/*
|
|
* eax will be 0 if EDX enumeration is not valid.
|
|
* Initialized below to cstate, sub_cstate value when EDX is valid.
|
|
*/
|
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
|
|
eax = 0;
|
|
} else {
|
|
edx >>= MWAIT_SUBSTATE_SIZE;
|
|
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
|
|
if (edx & MWAIT_SUBSTATE_MASK) {
|
|
highest_cstate = i;
|
|
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
|
|
}
|
|
}
|
|
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
|
|
(highest_subcstate - 1);
|
|
}
|
|
|
|
/* Set up state for the kexec() hack below */
|
|
md->status = CPUDEAD_MWAIT_WAIT;
|
|
md->control = CPUDEAD_MWAIT_WAIT;
|
|
|
|
wbinvd();
|
|
|
|
while (1) {
|
|
/*
|
|
* The CLFLUSH is a workaround for erratum AAI65 for
|
|
* the Xeon 7400 series. It's not clear it is actually
|
|
* needed, but it should be harmless in either case.
|
|
* The WBINVD is insufficient due to the spurious-wakeup
|
|
* case where we return around the loop.
|
|
*/
|
|
mb();
|
|
clflush(md);
|
|
mb();
|
|
__monitor(md, 0, 0);
|
|
mb();
|
|
__mwait(eax, 0);
|
|
|
|
if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
|
|
/*
|
|
* Kexec is about to happen. Don't go back into mwait() as
|
|
* the kexec kernel might overwrite text and data including
|
|
* page tables and stack. So mwait() would resume when the
|
|
* monitor cache line is written to and then the CPU goes
|
|
* south due to overwritten text, page tables and stack.
|
|
*
|
|
* Note: This does _NOT_ protect against a stray MCE, NMI,
|
|
* SMI. They will resume execution at the instruction
|
|
* following the HLT instruction and run into the problem
|
|
* which this is trying to prevent.
|
|
*/
|
|
WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
|
|
while(1)
|
|
native_halt();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kick all "offline" CPUs out of mwait on kexec(). See comment in
|
|
* mwait_play_dead().
|
|
*/
|
|
void smp_kick_mwait_play_dead(void)
|
|
{
|
|
u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
|
|
struct mwait_cpu_dead *md;
|
|
unsigned int cpu, i;
|
|
|
|
for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
|
|
md = per_cpu_ptr(&mwait_cpu_dead, cpu);
|
|
|
|
/* Does it sit in mwait_play_dead() ? */
|
|
if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
|
|
continue;
|
|
|
|
/* Wait up to 5ms */
|
|
for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
|
|
/* Bring it out of mwait */
|
|
WRITE_ONCE(md->control, newstate);
|
|
udelay(5);
|
|
}
|
|
|
|
if (READ_ONCE(md->status) != newstate)
|
|
pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
|
|
}
|
|
}
|
|
|
|
void __noreturn hlt_play_dead(void)
|
|
{
|
|
if (__this_cpu_read(cpu_info.x86) >= 4)
|
|
wbinvd();
|
|
|
|
while (1)
|
|
native_halt();
|
|
}
|
|
|
|
/*
|
|
* native_play_dead() is essentially a __noreturn function, but it can't
|
|
* be marked as such as the compiler may complain about it.
|
|
*/
|
|
void native_play_dead(void)
|
|
{
|
|
if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
|
|
__update_spec_ctrl(0);
|
|
|
|
play_dead_common();
|
|
tboot_shutdown(TB_SHUTDOWN_WFS);
|
|
|
|
mwait_play_dead();
|
|
if (cpuidle_play_dead())
|
|
hlt_play_dead();
|
|
}
|
|
|
|
#else /* ... !CONFIG_HOTPLUG_CPU */
|
|
int native_cpu_disable(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void native_play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
#endif
|