linux/drivers/mmc/core/mmc_ops.c
Masahiro Yamada c7836d1593 mmc: use empty initializer list to zero-clear structures
In the MMC subsystem, we see such initializers that only clears the
first member explicitly.

For example,

  struct mmc_request mrq = {NULL};

sets the first member (.sbc) to NULL explicitly.  However, this is
an unstable form because we may insert a non-pointer member at the
top of the struct mmc_request in the future. (if we do so, the
compiler will spit warnings.)

So, using a designated initializer is preferred coding style.  The
expression above is equivalent to:

  struct mmc_request mrq = { .sbc = NULL };

Of course, this does not express our intention.  We want to fill
all struct members with zeros.  Please note struct members are
implicitly zero-cleared unless otherwise specified in the initializer.

After all, the most reasonable (and stable) form is:

  struct mmc_request mrq = {};

Do likewise for mmc_command, mmc_data as well.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2017-02-13 13:19:54 +01:00

841 lines
19 KiB
C

/*
* linux/drivers/mmc/core/mmc_ops.h
*
* Copyright 2006-2007 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/scatterlist.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include "core.h"
#include "host.h"
#include "mmc_ops.h"
#define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
static const u8 tuning_blk_pattern_4bit[] = {
0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
};
static const u8 tuning_blk_pattern_8bit[] = {
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
};
int mmc_send_status(struct mmc_card *card, u32 *status)
{
int err;
struct mmc_command cmd = {};
cmd.opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(card->host))
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
if (err)
return err;
/* NOTE: callers are required to understand the difference
* between "native" and SPI format status words!
*/
if (status)
*status = cmd.resp[0];
return 0;
}
static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SELECT_CARD;
if (card) {
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
} else {
cmd.arg = 0;
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
}
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
}
int mmc_select_card(struct mmc_card *card)
{
return _mmc_select_card(card->host, card);
}
int mmc_deselect_cards(struct mmc_host *host)
{
return _mmc_select_card(host, NULL);
}
/*
* Write the value specified in the device tree or board code into the optional
* 16 bit Driver Stage Register. This can be used to tune raise/fall times and
* drive strength of the DAT and CMD outputs. The actual meaning of a given
* value is hardware dependant.
* The presence of the DSR register can be determined from the CSD register,
* bit 76.
*/
int mmc_set_dsr(struct mmc_host *host)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SET_DSR;
cmd.arg = (host->dsr << 16) | 0xffff;
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
}
int mmc_go_idle(struct mmc_host *host)
{
int err;
struct mmc_command cmd = {};
/*
* Non-SPI hosts need to prevent chipselect going active during
* GO_IDLE; that would put chips into SPI mode. Remind them of
* that in case of hardware that won't pull up DAT3/nCS otherwise.
*
* SPI hosts ignore ios.chip_select; it's managed according to
* rules that must accommodate non-MMC slaves which this layer
* won't even know about.
*/
if (!mmc_host_is_spi(host)) {
mmc_set_chip_select(host, MMC_CS_HIGH);
mmc_delay(1);
}
cmd.opcode = MMC_GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
err = mmc_wait_for_cmd(host, &cmd, 0);
mmc_delay(1);
if (!mmc_host_is_spi(host)) {
mmc_set_chip_select(host, MMC_CS_DONTCARE);
mmc_delay(1);
}
host->use_spi_crc = 0;
return err;
}
int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
{
struct mmc_command cmd = {};
int i, err = 0;
cmd.opcode = MMC_SEND_OP_COND;
cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
for (i = 100; i; i--) {
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (mmc_host_is_spi(host)) {
if (!(cmd.resp[0] & R1_SPI_IDLE))
break;
} else {
if (cmd.resp[0] & MMC_CARD_BUSY)
break;
}
err = -ETIMEDOUT;
mmc_delay(10);
}
if (rocr && !mmc_host_is_spi(host))
*rocr = cmd.resp[0];
return err;
}
int mmc_all_send_cid(struct mmc_host *host, u32 *cid)
{
int err;
struct mmc_command cmd = {};
cmd.opcode = MMC_ALL_SEND_CID;
cmd.arg = 0;
cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
if (err)
return err;
memcpy(cid, cmd.resp, sizeof(u32) * 4);
return 0;
}
int mmc_set_relative_addr(struct mmc_card *card)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SET_RELATIVE_ADDR;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
}
static int
mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
{
int err;
struct mmc_command cmd = {};
cmd.opcode = opcode;
cmd.arg = arg;
cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
if (err)
return err;
memcpy(cxd, cmd.resp, sizeof(u32) * 4);
return 0;
}
/*
* NOTE: void *buf, caller for the buf is required to use DMA-capable
* buffer or on-stack buffer (with some overhead in callee).
*/
static int
mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
u32 opcode, void *buf, unsigned len)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.arg = 0;
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = len;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, buf, len);
if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
} else
mmc_set_data_timeout(&data, card);
mmc_wait_for_req(host, &mrq);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return 0;
}
int mmc_send_csd(struct mmc_card *card, u32 *csd)
{
int ret, i;
u32 *csd_tmp;
if (!mmc_host_is_spi(card->host))
return mmc_send_cxd_native(card->host, card->rca << 16,
csd, MMC_SEND_CSD);
csd_tmp = kzalloc(16, GFP_KERNEL);
if (!csd_tmp)
return -ENOMEM;
ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
if (ret)
goto err;
for (i = 0;i < 4;i++)
csd[i] = be32_to_cpu(csd_tmp[i]);
err:
kfree(csd_tmp);
return ret;
}
int mmc_send_cid(struct mmc_host *host, u32 *cid)
{
int ret, i;
u32 *cid_tmp;
if (!mmc_host_is_spi(host)) {
if (!host->card)
return -EINVAL;
return mmc_send_cxd_native(host, host->card->rca << 16,
cid, MMC_SEND_CID);
}
cid_tmp = kzalloc(16, GFP_KERNEL);
if (!cid_tmp)
return -ENOMEM;
ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
if (ret)
goto err;
for (i = 0;i < 4;i++)
cid[i] = be32_to_cpu(cid_tmp[i]);
err:
kfree(cid_tmp);
return ret;
}
int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
{
int err;
u8 *ext_csd;
if (!card || !new_ext_csd)
return -EINVAL;
if (!mmc_can_ext_csd(card))
return -EOPNOTSUPP;
/*
* As the ext_csd is so large and mostly unused, we don't store the
* raw block in mmc_card.
*/
ext_csd = kzalloc(512, GFP_KERNEL);
if (!ext_csd)
return -ENOMEM;
err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
512);
if (err)
kfree(ext_csd);
else
*new_ext_csd = ext_csd;
return err;
}
EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
{
struct mmc_command cmd = {};
int err;
cmd.opcode = MMC_SPI_READ_OCR;
cmd.arg = highcap ? (1 << 30) : 0;
cmd.flags = MMC_RSP_SPI_R3;
err = mmc_wait_for_cmd(host, &cmd, 0);
*ocrp = cmd.resp[1];
return err;
}
int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
{
struct mmc_command cmd = {};
int err;
cmd.opcode = MMC_SPI_CRC_ON_OFF;
cmd.flags = MMC_RSP_SPI_R1;
cmd.arg = use_crc;
err = mmc_wait_for_cmd(host, &cmd, 0);
if (!err)
host->use_spi_crc = use_crc;
return err;
}
static int mmc_switch_status_error(struct mmc_host *host, u32 status)
{
if (mmc_host_is_spi(host)) {
if (status & R1_SPI_ILLEGAL_COMMAND)
return -EBADMSG;
} else {
if (status & 0xFDFFA000)
pr_warn("%s: unexpected status %#x after switch\n",
mmc_hostname(host), status);
if (status & R1_SWITCH_ERROR)
return -EBADMSG;
}
return 0;
}
/* Caller must hold re-tuning */
int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
{
u32 status;
int err;
err = mmc_send_status(card, &status);
if (!crc_err_fatal && err == -EILSEQ)
return 0;
if (err)
return err;
return mmc_switch_status_error(card->host, status);
}
int mmc_switch_status(struct mmc_card *card)
{
return __mmc_switch_status(card, true);
}
static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
bool send_status, bool retry_crc_err)
{
struct mmc_host *host = card->host;
int err;
unsigned long timeout;
u32 status = 0;
bool expired = false;
bool busy = false;
/* We have an unspecified cmd timeout, use the fallback value. */
if (!timeout_ms)
timeout_ms = MMC_OPS_TIMEOUT_MS;
/*
* In cases when not allowed to poll by using CMD13 or because we aren't
* capable of polling by using ->card_busy(), then rely on waiting the
* stated timeout to be sufficient.
*/
if (!send_status && !host->ops->card_busy) {
mmc_delay(timeout_ms);
return 0;
}
timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
do {
/*
* Due to the possibility of being preempted while polling,
* check the expiration time first.
*/
expired = time_after(jiffies, timeout);
if (host->ops->card_busy) {
busy = host->ops->card_busy(host);
} else {
err = mmc_send_status(card, &status);
if (retry_crc_err && err == -EILSEQ) {
busy = true;
} else if (err) {
return err;
} else {
err = mmc_switch_status_error(host, status);
if (err)
return err;
busy = R1_CURRENT_STATE(status) == R1_STATE_PRG;
}
}
/* Timeout if the device still remains busy. */
if (expired && busy) {
pr_err("%s: Card stuck being busy! %s\n",
mmc_hostname(host), __func__);
return -ETIMEDOUT;
}
} while (busy);
return 0;
}
/**
* __mmc_switch - modify EXT_CSD register
* @card: the MMC card associated with the data transfer
* @set: cmd set values
* @index: EXT_CSD register index
* @value: value to program into EXT_CSD register
* @timeout_ms: timeout (ms) for operation performed by register write,
* timeout of zero implies maximum possible timeout
* @timing: new timing to change to
* @use_busy_signal: use the busy signal as response type
* @send_status: send status cmd to poll for busy
* @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
*
* Modifies the EXT_CSD register for selected card.
*/
int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
unsigned int timeout_ms, unsigned char timing,
bool use_busy_signal, bool send_status, bool retry_crc_err)
{
struct mmc_host *host = card->host;
int err;
struct mmc_command cmd = {};
bool use_r1b_resp = use_busy_signal;
unsigned char old_timing = host->ios.timing;
mmc_retune_hold(host);
/*
* If the cmd timeout and the max_busy_timeout of the host are both
* specified, let's validate them. A failure means we need to prevent
* the host from doing hw busy detection, which is done by converting
* to a R1 response instead of a R1B.
*/
if (timeout_ms && host->max_busy_timeout &&
(timeout_ms > host->max_busy_timeout))
use_r1b_resp = false;
cmd.opcode = MMC_SWITCH;
cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8) |
set;
cmd.flags = MMC_CMD_AC;
if (use_r1b_resp) {
cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
/*
* A busy_timeout of zero means the host can decide to use
* whatever value it finds suitable.
*/
cmd.busy_timeout = timeout_ms;
} else {
cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
}
if (index == EXT_CSD_SANITIZE_START)
cmd.sanitize_busy = true;
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
if (err)
goto out;
/* No need to check card status in case of unblocking command */
if (!use_busy_signal)
goto out;
/*If SPI or used HW busy detection above, then we don't need to poll. */
if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
mmc_host_is_spi(host))
goto out_tim;
/* Let's try to poll to find out when the command is completed. */
err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err);
if (err)
goto out;
out_tim:
/* Switch to new timing before check switch status. */
if (timing)
mmc_set_timing(host, timing);
if (send_status) {
err = mmc_switch_status(card);
if (err && timing)
mmc_set_timing(host, old_timing);
}
out:
mmc_retune_release(host);
return err;
}
int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
unsigned int timeout_ms)
{
return __mmc_switch(card, set, index, value, timeout_ms, 0,
true, true, false);
}
EXPORT_SYMBOL_GPL(mmc_switch);
int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
struct mmc_ios *ios = &host->ios;
const u8 *tuning_block_pattern;
int size, err = 0;
u8 *data_buf;
if (ios->bus_width == MMC_BUS_WIDTH_8) {
tuning_block_pattern = tuning_blk_pattern_8bit;
size = sizeof(tuning_blk_pattern_8bit);
} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
tuning_block_pattern = tuning_blk_pattern_4bit;
size = sizeof(tuning_blk_pattern_4bit);
} else
return -EINVAL;
data_buf = kzalloc(size, GFP_KERNEL);
if (!data_buf)
return -ENOMEM;
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = size;
data.blocks = 1;
data.flags = MMC_DATA_READ;
/*
* According to the tuning specs, Tuning process
* is normally shorter 40 executions of CMD19,
* and timeout value should be shorter than 150 ms
*/
data.timeout_ns = 150 * NSEC_PER_MSEC;
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, data_buf, size);
mmc_wait_for_req(host, &mrq);
if (cmd_error)
*cmd_error = cmd.error;
if (cmd.error) {
err = cmd.error;
goto out;
}
if (data.error) {
err = data.error;
goto out;
}
if (memcmp(data_buf, tuning_block_pattern, size))
err = -EIO;
out:
kfree(data_buf);
return err;
}
EXPORT_SYMBOL_GPL(mmc_send_tuning);
int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
{
struct mmc_command cmd = {};
/*
* eMMC specification specifies that CMD12 can be used to stop a tuning
* command, but SD specification does not, so do nothing unless it is
* eMMC.
*/
if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
return 0;
cmd.opcode = MMC_STOP_TRANSMISSION;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
/*
* For drivers that override R1 to R1b, set an arbitrary timeout based
* on the tuning timeout i.e. 150ms.
*/
cmd.busy_timeout = 150;
return mmc_wait_for_cmd(host, &cmd, 0);
}
EXPORT_SYMBOL_GPL(mmc_abort_tuning);
static int
mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
u8 len)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
u8 *data_buf;
u8 *test_buf;
int i, err;
static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
/* dma onto stack is unsafe/nonportable, but callers to this
* routine normally provide temporary on-stack buffers ...
*/
data_buf = kmalloc(len, GFP_KERNEL);
if (!data_buf)
return -ENOMEM;
if (len == 8)
test_buf = testdata_8bit;
else if (len == 4)
test_buf = testdata_4bit;
else {
pr_err("%s: Invalid bus_width %d\n",
mmc_hostname(host), len);
kfree(data_buf);
return -EINVAL;
}
if (opcode == MMC_BUS_TEST_W)
memcpy(data_buf, test_buf, len);
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.arg = 0;
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = len;
data.blocks = 1;
if (opcode == MMC_BUS_TEST_R)
data.flags = MMC_DATA_READ;
else
data.flags = MMC_DATA_WRITE;
data.sg = &sg;
data.sg_len = 1;
mmc_set_data_timeout(&data, card);
sg_init_one(&sg, data_buf, len);
mmc_wait_for_req(host, &mrq);
err = 0;
if (opcode == MMC_BUS_TEST_R) {
for (i = 0; i < len / 4; i++)
if ((test_buf[i] ^ data_buf[i]) != 0xff) {
err = -EIO;
break;
}
}
kfree(data_buf);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return err;
}
int mmc_bus_test(struct mmc_card *card, u8 bus_width)
{
int width;
if (bus_width == MMC_BUS_WIDTH_8)
width = 8;
else if (bus_width == MMC_BUS_WIDTH_4)
width = 4;
else if (bus_width == MMC_BUS_WIDTH_1)
return 0; /* no need for test */
else
return -EINVAL;
/*
* Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
* is a problem. This improves chances that the test will work.
*/
mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
}
int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
{
struct mmc_command cmd = {};
unsigned int opcode;
int err;
if (!card->ext_csd.hpi) {
pr_warn("%s: Card didn't support HPI command\n",
mmc_hostname(card->host));
return -EINVAL;
}
opcode = card->ext_csd.hpi_cmd;
if (opcode == MMC_STOP_TRANSMISSION)
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
else if (opcode == MMC_SEND_STATUS)
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
cmd.opcode = opcode;
cmd.arg = card->rca << 16 | 1;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_warn("%s: error %d interrupting operation. "
"HPI command response %#x\n", mmc_hostname(card->host),
err, cmd.resp[0]);
return err;
}
if (status)
*status = cmd.resp[0];
return 0;
}
int mmc_can_ext_csd(struct mmc_card *card)
{
return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
}