linux/arch/arc/kernel/perf_event.c
Alexey Brodkin ca295ffb91 arc: perf: Move static structs to where they're really used
It is all well described by Stephen Rothwell who initially spotted that:
----------------------------->8----------------------------
After merging the origin tree, today's linux-next build (arc
haps_hs_smp_defconfig+kselftest) produced these warnings:

arch/arc/include/asm/perf_event.h:126:27: warning: 'arc_pmu_cache_map' defined but not used [-Wunused-const-variable=]
arch/arc/include/asm/perf_event.h:91:27: warning: 'arc_pmu_ev_hw_map' defined but not used [-Wunused-const-variable=]

Introduced by commit 0dd450fe13 ("ARC: Add perf support for ARC700 cores")

The 2 static arrays should be moved into arch/arc/kernel/perf_event.c
(the only place that uses them). We get the warning because perf_event.h
is also included by arch/arc/kernel/unaligned.c.
----------------------------->8----------------------------

Could be easily reproduced by running make with "W=1" on any up-to-date
sources, when extra warnings get enabled (in particular
"-Wunused-const-variable"), otherwise disabled by default in the top-level
Makefile as "These warnings generated too much noise in a regular build".

Cc: Mischa Jonker <mjonker@synopsys.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@kernel.org>
2021-12-28 19:48:49 -08:00

851 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Linux performance counter support for ARC CPUs.
// This code is inspired by the perf support of various other architectures.
//
// Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com)
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include <asm/arcregs.h>
#include <asm/stacktrace.h>
/* HW holds 8 symbols + one for null terminator */
#define ARCPMU_EVENT_NAME_LEN 9
/*
* Some ARC pct quirks:
*
* PERF_COUNT_HW_STALLED_CYCLES_BACKEND
* PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
* The ARC 700 can either measure stalls per pipeline stage, or all stalls
* combined; for now we assign all stalls to STALLED_CYCLES_BACKEND
* and all pipeline flushes (e.g. caused by mispredicts, etc.) to
* STALLED_CYCLES_FRONTEND.
*
* We could start multiple performance counters and combine everything
* afterwards, but that makes it complicated.
*
* Note that I$ cache misses aren't counted by either of the two!
*/
/*
* ARC PCT has hardware conditions with fixed "names" but variable "indexes"
* (based on a specific RTL build)
* Below is the static map between perf generic/arc specific event_id and
* h/w condition names.
* At the time of probe, we loop thru each index and find it's name to
* complete the mapping of perf event_id to h/w index as latter is needed
* to program the counter really
*/
static const char * const arc_pmu_ev_hw_map[] = {
/* count cycles */
[PERF_COUNT_HW_CPU_CYCLES] = "crun",
[PERF_COUNT_HW_REF_CPU_CYCLES] = "crun",
[PERF_COUNT_HW_BUS_CYCLES] = "crun",
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush",
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall",
/* counts condition */
[PERF_COUNT_HW_INSTRUCTIONS] = "iall",
/* All jump instructions that are taken */
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak",
#ifdef CONFIG_ISA_ARCV2
[PERF_COUNT_HW_BRANCH_MISSES] = "bpmp",
#else
[PERF_COUNT_ARC_BPOK] = "bpok", /* NP-NT, PT-T, PNT-NT */
[PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */
#endif
[PERF_COUNT_ARC_LDC] = "imemrdc", /* Instr: mem read cached */
[PERF_COUNT_ARC_STC] = "imemwrc", /* Instr: mem write cached */
[PERF_COUNT_ARC_DCLM] = "dclm", /* D-cache Load Miss */
[PERF_COUNT_ARC_DCSM] = "dcsm", /* D-cache Store Miss */
[PERF_COUNT_ARC_ICM] = "icm", /* I-cache Miss */
[PERF_COUNT_ARC_EDTLB] = "edtlb", /* D-TLB Miss */
[PERF_COUNT_ARC_EITLB] = "eitlb", /* I-TLB Miss */
[PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc", /* Instr: mem read cached */
[PERF_COUNT_HW_CACHE_MISSES] = "dclm", /* D-cache Load Miss */
};
#define C(_x) PERF_COUNT_HW_CACHE_##_x
#define CACHE_OP_UNSUPPORTED 0xffff
static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_STC,
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_HW_INSTRUCTIONS,
[C(RESULT_MISS)] = PERF_COUNT_ARC_ICM,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
[C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB,
},
/* DTLB LD/ST Miss not segregated by h/w*/
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
[C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(NODE)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
enum arc_pmu_attr_groups {
ARCPMU_ATTR_GR_EVENTS,
ARCPMU_ATTR_GR_FORMATS,
ARCPMU_NR_ATTR_GR
};
struct arc_pmu_raw_event_entry {
char name[ARCPMU_EVENT_NAME_LEN];
};
struct arc_pmu {
struct pmu pmu;
unsigned int irq;
int n_counters;
int n_events;
u64 max_period;
int ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
struct arc_pmu_raw_event_entry *raw_entry;
struct attribute **attrs;
struct perf_pmu_events_attr *attr;
const struct attribute_group *attr_groups[ARCPMU_NR_ATTR_GR + 1];
};
struct arc_pmu_cpu {
/*
* A 1 bit for an index indicates that the counter is being used for
* an event. A 0 means that the counter can be used.
*/
unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
/*
* The events that are active on the PMU for the given index.
*/
struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
};
struct arc_callchain_trace {
int depth;
void *perf_stuff;
};
static int callchain_trace(unsigned int addr, void *data)
{
struct arc_callchain_trace *ctrl = data;
struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
perf_callchain_store(entry, addr);
if (ctrl->depth++ < 3)
return 0;
return -1;
}
void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
struct pt_regs *regs)
{
struct arc_callchain_trace ctrl = {
.depth = 0,
.perf_stuff = entry,
};
arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
}
void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
struct pt_regs *regs)
{
/*
* User stack can't be unwound trivially with kernel dwarf unwinder
* So for now just record the user PC
*/
perf_callchain_store(entry, instruction_pointer(regs));
}
static struct arc_pmu *arc_pmu;
static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
/* read counter #idx; note that counter# != event# on ARC! */
static u64 arc_pmu_read_counter(int idx)
{
u32 tmp;
u64 result;
/*
* ARC supports making 'snapshots' of the counters, so we don't
* need to care about counters wrapping to 0 underneath our feet
*/
write_aux_reg(ARC_REG_PCT_INDEX, idx);
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
result |= read_aux_reg(ARC_REG_PCT_SNAPL);
return result;
}
static void arc_perf_event_update(struct perf_event *event,
struct hw_perf_event *hwc, int idx)
{
u64 prev_raw_count = local64_read(&hwc->prev_count);
u64 new_raw_count = arc_pmu_read_counter(idx);
s64 delta = new_raw_count - prev_raw_count;
/*
* We aren't afraid of hwc->prev_count changing beneath our feet
* because there's no way for us to re-enter this function anytime.
*/
local64_set(&hwc->prev_count, new_raw_count);
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
}
static void arc_pmu_read(struct perf_event *event)
{
arc_perf_event_update(event, &event->hw, event->hw.idx);
}
static int arc_pmu_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
int ret;
cache_type = (config >> 0) & 0xff;
cache_op = (config >> 8) & 0xff;
cache_result = (config >> 16) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
if (ret == CACHE_OP_UNSUPPORTED)
return -ENOENT;
pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
cache_type, cache_op, cache_result, ret,
arc_pmu_ev_hw_map[ret]);
return ret;
}
/* initializes hw_perf_event structure if event is supported */
static int arc_pmu_event_init(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int ret;
if (!is_sampling_event(event)) {
hwc->sample_period = arc_pmu->max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
hwc->config = 0;
if (is_isa_arcv2()) {
/* "exclude user" means "count only kernel" */
if (event->attr.exclude_user)
hwc->config |= ARC_REG_PCT_CONFIG_KERN;
/* "exclude kernel" means "count only user" */
if (event->attr.exclude_kernel)
hwc->config |= ARC_REG_PCT_CONFIG_USER;
}
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
if (event->attr.config >= PERF_COUNT_HW_MAX)
return -ENOENT;
if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
return -ENOENT;
hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
pr_debug("init event %d with h/w %08x \'%s\'\n",
(int)event->attr.config, (int)hwc->config,
arc_pmu_ev_hw_map[event->attr.config]);
return 0;
case PERF_TYPE_HW_CACHE:
ret = arc_pmu_cache_event(event->attr.config);
if (ret < 0)
return ret;
hwc->config |= arc_pmu->ev_hw_idx[ret];
pr_debug("init cache event with h/w %08x \'%s\'\n",
(int)hwc->config, arc_pmu_ev_hw_map[ret]);
return 0;
case PERF_TYPE_RAW:
if (event->attr.config >= arc_pmu->n_events)
return -ENOENT;
hwc->config |= event->attr.config;
pr_debug("init raw event with idx %lld \'%s\'\n",
event->attr.config,
arc_pmu->raw_entry[event->attr.config].name);
return 0;
default:
return -ENOENT;
}
}
/* starts all counters */
static void arc_pmu_enable(struct pmu *pmu)
{
u32 tmp;
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
}
/* stops all counters */
static void arc_pmu_disable(struct pmu *pmu)
{
u32 tmp;
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
}
static int arc_pmu_event_set_period(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int idx = hwc->idx;
int overflow = 0;
u64 value;
if (unlikely(left <= -period)) {
/* left underflowed by more than period. */
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
overflow = 1;
} else if (unlikely(left <= 0)) {
/* left underflowed by less than period. */
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
overflow = 1;
}
if (left > arc_pmu->max_period)
left = arc_pmu->max_period;
value = arc_pmu->max_period - left;
local64_set(&hwc->prev_count, value);
/* Select counter */
write_aux_reg(ARC_REG_PCT_INDEX, idx);
/* Write value */
write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value));
write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value));
perf_event_update_userpage(event);
return overflow;
}
/*
* Assigns hardware counter to hardware condition.
* Note that there is no separate start/stop mechanism;
* stopping is achieved by assigning the 'never' condition
*/
static void arc_pmu_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
if (WARN_ON_ONCE(idx == -1))
return;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
arc_pmu_event_set_period(event);
/* Enable interrupt for this counter */
if (is_sampling_event(event))
write_aux_reg(ARC_REG_PCT_INT_CTRL,
read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
/* enable ARC pmu here */
write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */
write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
}
static void arc_pmu_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
/* Disable interrupt for this counter */
if (is_sampling_event(event)) {
/*
* Reset interrupt flag by writing of 1. This is required
* to make sure pending interrupt was not left.
*/
write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
write_aux_reg(ARC_REG_PCT_INT_CTRL,
read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx));
}
if (!(event->hw.state & PERF_HES_STOPPED)) {
/* stop hw counter here */
write_aux_reg(ARC_REG_PCT_INDEX, idx);
/* condition code #0 is always "never" */
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
event->hw.state |= PERF_HES_STOPPED;
}
if ((flags & PERF_EF_UPDATE) &&
!(event->hw.state & PERF_HES_UPTODATE)) {
arc_perf_event_update(event, &event->hw, idx);
event->hw.state |= PERF_HES_UPTODATE;
}
}
static void arc_pmu_del(struct perf_event *event, int flags)
{
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
arc_pmu_stop(event, PERF_EF_UPDATE);
__clear_bit(event->hw.idx, pmu_cpu->used_mask);
pmu_cpu->act_counter[event->hw.idx] = 0;
perf_event_update_userpage(event);
}
/* allocate hardware counter and optionally start counting */
static int arc_pmu_add(struct perf_event *event, int flags)
{
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
struct hw_perf_event *hwc = &event->hw;
int idx;
idx = ffz(pmu_cpu->used_mask[0]);
if (idx == arc_pmu->n_counters)
return -EAGAIN;
__set_bit(idx, pmu_cpu->used_mask);
hwc->idx = idx;
write_aux_reg(ARC_REG_PCT_INDEX, idx);
pmu_cpu->act_counter[idx] = event;
if (is_sampling_event(event)) {
/* Mimic full counter overflow as other arches do */
write_aux_reg(ARC_REG_PCT_INT_CNTL,
lower_32_bits(arc_pmu->max_period));
write_aux_reg(ARC_REG_PCT_INT_CNTH,
upper_32_bits(arc_pmu->max_period));
}
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
write_aux_reg(ARC_REG_PCT_COUNTL, 0);
write_aux_reg(ARC_REG_PCT_COUNTH, 0);
local64_set(&hwc->prev_count, 0);
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (flags & PERF_EF_START)
arc_pmu_start(event, PERF_EF_RELOAD);
perf_event_update_userpage(event);
return 0;
}
#ifdef CONFIG_ISA_ARCV2
static irqreturn_t arc_pmu_intr(int irq, void *dev)
{
struct perf_sample_data data;
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
struct pt_regs *regs;
unsigned int active_ints;
int idx;
arc_pmu_disable(&arc_pmu->pmu);
active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
if (!active_ints)
goto done;
regs = get_irq_regs();
do {
struct perf_event *event;
struct hw_perf_event *hwc;
idx = __ffs(active_ints);
/* Reset interrupt flag by writing of 1 */
write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
/*
* On reset of "interrupt active" bit corresponding
* "interrupt enable" bit gets automatically reset as well.
* Now we need to re-enable interrupt for the counter.
*/
write_aux_reg(ARC_REG_PCT_INT_CTRL,
read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
event = pmu_cpu->act_counter[idx];
hwc = &event->hw;
WARN_ON_ONCE(hwc->idx != idx);
arc_perf_event_update(event, &event->hw, event->hw.idx);
perf_sample_data_init(&data, 0, hwc->last_period);
if (arc_pmu_event_set_period(event)) {
if (perf_event_overflow(event, &data, regs))
arc_pmu_stop(event, 0);
}
active_ints &= ~BIT(idx);
} while (active_ints);
done:
arc_pmu_enable(&arc_pmu->pmu);
return IRQ_HANDLED;
}
#else
static irqreturn_t arc_pmu_intr(int irq, void *dev)
{
return IRQ_NONE;
}
#endif /* CONFIG_ISA_ARCV2 */
static void arc_cpu_pmu_irq_init(void *data)
{
int irq = *(int *)data;
enable_percpu_irq(irq, IRQ_TYPE_NONE);
/* Clear all pending interrupt flags */
write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
}
/* Event field occupies the bottom 15 bits of our config field */
PMU_FORMAT_ATTR(event, "config:0-14");
static struct attribute *arc_pmu_format_attrs[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group arc_pmu_format_attr_gr = {
.name = "format",
.attrs = arc_pmu_format_attrs,
};
static ssize_t arc_pmu_events_sysfs_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
}
/*
* We don't add attrs here as we don't have pre-defined list of perf events.
* We will generate and add attrs dynamically in probe() after we read HW
* configuration.
*/
static struct attribute_group arc_pmu_events_attr_gr = {
.name = "events",
};
static void arc_pmu_add_raw_event_attr(int j, char *str)
{
memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1);
arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name;
arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444);
arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show;
arc_pmu->attr[j].id = j;
arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr);
}
static int arc_pmu_raw_alloc(struct device *dev)
{
arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO);
if (!arc_pmu->attr)
return -ENOMEM;
arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO);
if (!arc_pmu->attrs)
return -ENOMEM;
arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events,
sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO);
if (!arc_pmu->raw_entry)
return -ENOMEM;
return 0;
}
static inline bool event_in_hw_event_map(int i, char *name)
{
if (!arc_pmu_ev_hw_map[i])
return false;
if (!strlen(arc_pmu_ev_hw_map[i]))
return false;
if (strcmp(arc_pmu_ev_hw_map[i], name))
return false;
return true;
}
static void arc_pmu_map_hw_event(int j, char *str)
{
int i;
/* See if HW condition has been mapped to a perf event_id */
for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
if (event_in_hw_event_map(i, str)) {
pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
i, str, j);
arc_pmu->ev_hw_idx[i] = j;
}
}
}
static int arc_pmu_device_probe(struct platform_device *pdev)
{
struct arc_reg_pct_build pct_bcr;
struct arc_reg_cc_build cc_bcr;
int i, has_interrupts, irq = -1;
int counter_size; /* in bits */
union cc_name {
struct {
u32 word0, word1;
char sentinel;
} indiv;
char str[ARCPMU_EVENT_NAME_LEN];
} cc_name;
READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
if (!pct_bcr.v) {
pr_err("This core does not have performance counters!\n");
return -ENODEV;
}
BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32);
if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS))
return -EINVAL;
READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?"))
return -EINVAL;
arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
if (!arc_pmu)
return -ENOMEM;
arc_pmu->n_events = cc_bcr.c;
if (arc_pmu_raw_alloc(&pdev->dev))
return -ENOMEM;
has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
arc_pmu->n_counters = pct_bcr.c;
counter_size = 32 + (pct_bcr.s << 4);
arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
arc_pmu->n_counters, counter_size, cc_bcr.c,
has_interrupts ? ", [overflow IRQ support]" : "");
cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0;
for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
arc_pmu->ev_hw_idx[i] = -1;
/* loop thru all available h/w condition indexes */
for (i = 0; i < cc_bcr.c; i++) {
write_aux_reg(ARC_REG_CC_INDEX, i);
cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0));
cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1));
arc_pmu_map_hw_event(i, cc_name.str);
arc_pmu_add_raw_event_attr(i, cc_name.str);
}
arc_pmu_events_attr_gr.attrs = arc_pmu->attrs;
arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr;
arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr;
arc_pmu->pmu = (struct pmu) {
.pmu_enable = arc_pmu_enable,
.pmu_disable = arc_pmu_disable,
.event_init = arc_pmu_event_init,
.add = arc_pmu_add,
.del = arc_pmu_del,
.start = arc_pmu_start,
.stop = arc_pmu_stop,
.read = arc_pmu_read,
.attr_groups = arc_pmu->attr_groups,
};
if (has_interrupts) {
irq = platform_get_irq(pdev, 0);
if (irq >= 0) {
int ret;
arc_pmu->irq = irq;
/* intc map function ensures irq_set_percpu_devid() called */
ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
this_cpu_ptr(&arc_pmu_cpu));
if (!ret)
on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
else
irq = -1;
}
}
if (irq == -1)
arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
/*
* perf parser doesn't really like '-' symbol in events name, so let's
* use '_' in arc pct name as it goes to kernel PMU event prefix.
*/
return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW);
}
static const struct of_device_id arc_pmu_match[] = {
{ .compatible = "snps,arc700-pct" },
{ .compatible = "snps,archs-pct" },
{},
};
MODULE_DEVICE_TABLE(of, arc_pmu_match);
static struct platform_driver arc_pmu_driver = {
.driver = {
.name = "arc-pct",
.of_match_table = of_match_ptr(arc_pmu_match),
},
.probe = arc_pmu_device_probe,
};
module_platform_driver(arc_pmu_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
MODULE_DESCRIPTION("ARC PMU driver");