linux/drivers/gpu/drm/tegra/sor.c
Stephen Warren ef70728c7a drm/tegra: add MODULE_DEVICE_TABLEs
When tegra-drm.ko is built as a module, these MODULE_DEVICE_TABLEs allow
the module to be auto-loaded since the module will match the devices
instantiated from device tree.

(Notes for stable: in 3.14+, just git rm any conflicting file, since they
are added in later kernels. For 3.13 and below, manual merging will be
needed)

Cc: <stable@vger.kernel.org>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2014-08-04 10:07:39 +02:00

1478 lines
36 KiB
C

/*
* Copyright (C) 2013 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/tegra-powergate.h>
#include <drm/drm_dp_helper.h>
#include "dc.h"
#include "drm.h"
#include "sor.h"
struct tegra_sor {
struct host1x_client client;
struct tegra_output output;
struct device *dev;
void __iomem *regs;
struct reset_control *rst;
struct clk *clk_parent;
struct clk *clk_safe;
struct clk *clk_dp;
struct clk *clk;
struct tegra_dpaux *dpaux;
struct mutex lock;
bool enabled;
struct dentry *debugfs;
};
struct tegra_sor_config {
u32 bits_per_pixel;
u32 active_polarity;
u32 active_count;
u32 tu_size;
u32 active_frac;
u32 watermark;
u32 hblank_symbols;
u32 vblank_symbols;
};
static inline struct tegra_sor *
host1x_client_to_sor(struct host1x_client *client)
{
return container_of(client, struct tegra_sor, client);
}
static inline struct tegra_sor *to_sor(struct tegra_output *output)
{
return container_of(output, struct tegra_sor, output);
}
static inline unsigned long tegra_sor_readl(struct tegra_sor *sor,
unsigned long offset)
{
return readl(sor->regs + (offset << 2));
}
static inline void tegra_sor_writel(struct tegra_sor *sor, unsigned long value,
unsigned long offset)
{
writel(value, sor->regs + (offset << 2));
}
static int tegra_sor_dp_train_fast(struct tegra_sor *sor,
struct drm_dp_link *link)
{
unsigned long value;
unsigned int i;
u8 pattern;
int err;
/* setup lane parameters */
value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE2(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE1(0x40) |
SOR_LANE_DRIVE_CURRENT_LANE0(0x40);
tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT_0);
value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) |
SOR_LANE_PREEMPHASIS_LANE2(0x0f) |
SOR_LANE_PREEMPHASIS_LANE1(0x0f) |
SOR_LANE_PREEMPHASIS_LANE0(0x0f);
tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS_0);
value = SOR_LANE_POST_CURSOR_LANE3(0x00) |
SOR_LANE_POST_CURSOR_LANE2(0x00) |
SOR_LANE_POST_CURSOR_LANE1(0x00) |
SOR_LANE_POST_CURSOR_LANE0(0x00);
tegra_sor_writel(sor, value, SOR_LANE_POST_CURSOR_0);
/* disable LVDS mode */
tegra_sor_writel(sor, 0, SOR_LVDS);
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value |= SOR_DP_PADCTL_TX_PU_ENABLE;
value &= ~SOR_DP_PADCTL_TX_PU_MASK;
value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0;
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
usleep_range(10, 100);
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
err = tegra_dpaux_prepare(sor->dpaux, DP_SET_ANSI_8B10B);
if (err < 0)
return err;
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_NONE |
SOR_DP_TPG_PATTERN_TRAIN1;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_TRAINING_PATTERN_1;
err = tegra_dpaux_train(sor->dpaux, link, pattern);
if (err < 0)
return err;
value = tegra_sor_readl(sor, SOR_DP_SPARE_0);
value |= SOR_DP_SPARE_SEQ_ENABLE;
value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
value |= SOR_DP_SPARE_MACRO_SOR_CLK;
tegra_sor_writel(sor, value, SOR_DP_SPARE_0);
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_NONE |
SOR_DP_TPG_PATTERN_TRAIN2;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2;
err = tegra_dpaux_train(sor->dpaux, link, pattern);
if (err < 0)
return err;
for (i = 0, value = 0; i < link->num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
pattern = DP_TRAINING_PATTERN_DISABLE;
err = tegra_dpaux_train(sor->dpaux, link, pattern);
if (err < 0)
return err;
return 0;
}
static void tegra_sor_super_update(struct tegra_sor *sor)
{
tegra_sor_writel(sor, 0, SOR_SUPER_STATE_0);
tegra_sor_writel(sor, 1, SOR_SUPER_STATE_0);
tegra_sor_writel(sor, 0, SOR_SUPER_STATE_0);
}
static void tegra_sor_update(struct tegra_sor *sor)
{
tegra_sor_writel(sor, 0, SOR_STATE_0);
tegra_sor_writel(sor, 1, SOR_STATE_0);
tegra_sor_writel(sor, 0, SOR_STATE_0);
}
static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
{
unsigned long value;
value = tegra_sor_readl(sor, SOR_PWM_DIV);
value &= ~SOR_PWM_DIV_MASK;
value |= 0x400; /* period */
tegra_sor_writel(sor, value, SOR_PWM_DIV);
value = tegra_sor_readl(sor, SOR_PWM_CTL);
value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
value |= 0x400; /* duty cycle */
value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
value |= SOR_PWM_CTL_TRIGGER;
tegra_sor_writel(sor, value, SOR_PWM_CTL);
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWM_CTL);
if ((value & SOR_PWM_CTL_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_attach(struct tegra_sor *sor)
{
unsigned long value, timeout;
/* wake up in normal mode */
value = tegra_sor_readl(sor, SOR_SUPER_STATE_1);
value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
value |= SOR_SUPER_STATE_MODE_NORMAL;
tegra_sor_writel(sor, value, SOR_SUPER_STATE_1);
tegra_sor_super_update(sor);
/* attach */
value = tegra_sor_readl(sor, SOR_SUPER_STATE_1);
value |= SOR_SUPER_STATE_ATTACHED;
tegra_sor_writel(sor, value, SOR_SUPER_STATE_1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
if ((value & SOR_TEST_ATTACHED) != 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_wakeup(struct tegra_sor *sor)
{
struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
unsigned long value, timeout;
/* enable display controller outputs */
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
timeout = jiffies + msecs_to_jiffies(250);
/* wait for head to wake up */
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
value &= SOR_TEST_HEAD_MODE_MASK;
if (value == SOR_TEST_HEAD_MODE_AWAKE)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
{
unsigned long value;
value = tegra_sor_readl(sor, SOR_PWR);
value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
tegra_sor_writel(sor, value, SOR_PWR);
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if ((value & SOR_PWR_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
return -ETIMEDOUT;
}
struct tegra_sor_params {
/* number of link clocks per line */
unsigned int num_clocks;
/* ratio between input and output */
u64 ratio;
/* precision factor */
u64 precision;
unsigned int active_polarity;
unsigned int active_count;
unsigned int active_frac;
unsigned int tu_size;
unsigned int error;
};
static int tegra_sor_compute_params(struct tegra_sor *sor,
struct tegra_sor_params *params,
unsigned int tu_size)
{
u64 active_sym, active_count, frac, approx;
u32 active_polarity, active_frac = 0;
const u64 f = params->precision;
s64 error;
active_sym = params->ratio * tu_size;
active_count = div_u64(active_sym, f) * f;
frac = active_sym - active_count;
/* fraction < 0.5 */
if (frac >= (f / 2)) {
active_polarity = 1;
frac = f - frac;
} else {
active_polarity = 0;
}
if (frac != 0) {
frac = div_u64(f * f, frac); /* 1/fraction */
if (frac <= (15 * f)) {
active_frac = div_u64(frac, f);
/* round up */
if (active_polarity)
active_frac++;
} else {
active_frac = active_polarity ? 1 : 15;
}
}
if (active_frac == 1)
active_polarity = 0;
if (active_polarity == 1) {
if (active_frac) {
approx = active_count + (active_frac * (f - 1)) * f;
approx = div_u64(approx, active_frac * f);
} else {
approx = active_count + f;
}
} else {
if (active_frac)
approx = active_count + div_u64(f, active_frac);
else
approx = active_count;
}
error = div_s64(active_sym - approx, tu_size);
error *= params->num_clocks;
if (error <= 0 && abs64(error) < params->error) {
params->active_count = div_u64(active_count, f);
params->active_polarity = active_polarity;
params->active_frac = active_frac;
params->error = abs64(error);
params->tu_size = tu_size;
if (error == 0)
return true;
}
return false;
}
static int tegra_sor_calc_config(struct tegra_sor *sor,
struct drm_display_mode *mode,
struct tegra_sor_config *config,
struct drm_dp_link *link)
{
const u64 f = 100000, link_rate = link->rate * 1000;
const u64 pclk = mode->clock * 1000;
u64 input, output, watermark, num;
struct tegra_sor_params params;
u32 num_syms_per_line;
unsigned int i;
if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel)
return -EINVAL;
output = link_rate * 8 * link->num_lanes;
input = pclk * config->bits_per_pixel;
if (input >= output)
return -ERANGE;
memset(&params, 0, sizeof(params));
params.ratio = div64_u64(input * f, output);
params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
params.precision = f;
params.error = 64 * f;
params.tu_size = 64;
for (i = params.tu_size; i >= 32; i--)
if (tegra_sor_compute_params(sor, &params, i))
break;
if (params.active_frac == 0) {
config->active_polarity = 0;
config->active_count = params.active_count;
if (!params.active_polarity)
config->active_count--;
config->tu_size = params.tu_size;
config->active_frac = 1;
} else {
config->active_polarity = params.active_polarity;
config->active_count = params.active_count;
config->active_frac = params.active_frac;
config->tu_size = params.tu_size;
}
dev_dbg(sor->dev,
"polarity: %d active count: %d tu size: %d active frac: %d\n",
config->active_polarity, config->active_count,
config->tu_size, config->active_frac);
watermark = params.ratio * config->tu_size * (f - params.ratio);
watermark = div_u64(watermark, f);
watermark = div_u64(watermark + params.error, f);
config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
(link->num_lanes * 8);
if (config->watermark > 30) {
config->watermark = 30;
dev_err(sor->dev,
"unable to compute TU size, forcing watermark to %u\n",
config->watermark);
} else if (config->watermark > num_syms_per_line) {
config->watermark = num_syms_per_line;
dev_err(sor->dev, "watermark too high, forcing to %u\n",
config->watermark);
}
/* compute the number of symbols per horizontal blanking interval */
num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
config->hblank_symbols = div_u64(num, pclk);
if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
config->hblank_symbols -= 3;
config->hblank_symbols -= 12 / link->num_lanes;
/* compute the number of symbols per vertical blanking interval */
num = (mode->hdisplay - 25) * link_rate;
config->vblank_symbols = div_u64(num, pclk);
config->vblank_symbols -= 36 / link->num_lanes + 4;
dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
config->vblank_symbols);
return 0;
}
static int tegra_output_sor_enable(struct tegra_output *output)
{
struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc);
struct drm_display_mode *mode = &dc->base.mode;
unsigned int vbe, vse, hbe, hse, vbs, hbs, i;
struct tegra_sor *sor = to_sor(output);
struct tegra_sor_config config;
struct drm_dp_link link;
struct drm_dp_aux *aux;
unsigned long value;
int err = 0;
mutex_lock(&sor->lock);
if (sor->enabled)
goto unlock;
err = clk_prepare_enable(sor->clk);
if (err < 0)
goto unlock;
reset_control_deassert(sor->rst);
/* FIXME: properly convert to struct drm_dp_aux */
aux = (struct drm_dp_aux *)sor->dpaux;
if (sor->dpaux) {
err = tegra_dpaux_enable(sor->dpaux);
if (err < 0)
dev_err(sor->dev, "failed to enable DP: %d\n", err);
err = drm_dp_link_probe(aux, &link);
if (err < 0) {
dev_err(sor->dev, "failed to probe eDP link: %d\n",
err);
goto unlock;
}
}
err = clk_set_parent(sor->clk, sor->clk_safe);
if (err < 0)
dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
memset(&config, 0, sizeof(config));
config.bits_per_pixel = output->connector.display_info.bpc * 3;
err = tegra_sor_calc_config(sor, mode, &config, &link);
if (err < 0)
dev_err(sor->dev, "failed to compute link configuration: %d\n",
err);
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
value = tegra_sor_readl(sor, SOR_PLL_2);
value &= ~SOR_PLL_2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, SOR_PLL_3);
value |= SOR_PLL_3_PLL_VDD_MODE_V3_3;
tegra_sor_writel(sor, value, SOR_PLL_3);
value = SOR_PLL_0_ICHPMP(0xf) | SOR_PLL_0_VCOCAP_RST |
SOR_PLL_0_PLLREG_LEVEL_V45 | SOR_PLL_0_RESISTOR_EXT;
tegra_sor_writel(sor, value, SOR_PLL_0);
value = tegra_sor_readl(sor, SOR_PLL_2);
value |= SOR_PLL_2_SEQ_PLLCAPPD;
value &= ~SOR_PLL_2_SEQ_PLLCAPPD_ENFORCE;
value |= SOR_PLL_2_LVDS_ENABLE;
tegra_sor_writel(sor, value, SOR_PLL_2);
value = SOR_PLL_1_TERM_COMPOUT | SOR_PLL_1_TMDS_TERM;
tegra_sor_writel(sor, value, SOR_PLL_1);
while (true) {
value = tegra_sor_readl(sor, SOR_PLL_2);
if ((value & SOR_PLL_2_SEQ_PLLCAPPD_ENFORCE) == 0)
break;
usleep_range(250, 1000);
}
value = tegra_sor_readl(sor, SOR_PLL_2);
value &= ~SOR_PLL_2_POWERDOWN_OVERRIDE;
value &= ~SOR_PLL_2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
/*
* power up
*/
/* set safe link bandwidth (1.62 Gbps) */
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
/* step 1 */
value = tegra_sor_readl(sor, SOR_PLL_2);
value |= SOR_PLL_2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL_2_PORT_POWERDOWN |
SOR_PLL_2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
value = tegra_sor_readl(sor, SOR_PLL_0);
value |= SOR_PLL_0_VCOPD | SOR_PLL_0_POWER_OFF;
tegra_sor_writel(sor, value, SOR_PLL_0);
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
/* step 2 */
err = tegra_io_rail_power_on(TEGRA_IO_RAIL_LVDS);
if (err < 0) {
dev_err(sor->dev, "failed to power on I/O rail: %d\n", err);
goto unlock;
}
usleep_range(5, 100);
/* step 3 */
value = tegra_sor_readl(sor, SOR_PLL_2);
value &= ~SOR_PLL_2_BANDGAP_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
usleep_range(20, 100);
/* step 4 */
value = tegra_sor_readl(sor, SOR_PLL_0);
value &= ~SOR_PLL_0_POWER_OFF;
value &= ~SOR_PLL_0_VCOPD;
tegra_sor_writel(sor, value, SOR_PLL_0);
value = tegra_sor_readl(sor, SOR_PLL_2);
value &= ~SOR_PLL_2_SEQ_PLLCAPPD_ENFORCE;
tegra_sor_writel(sor, value, SOR_PLL_2);
usleep_range(200, 1000);
/* step 5 */
value = tegra_sor_readl(sor, SOR_PLL_2);
value &= ~SOR_PLL_2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
/* switch to DP clock */
err = clk_set_parent(sor->clk, sor->clk_dp);
if (err < 0)
dev_err(sor->dev, "failed to set DP parent clock: %d\n", err);
/* power DP lanes */
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
if (link.num_lanes <= 2)
value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2);
else
value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2;
if (link.num_lanes <= 1)
value &= ~SOR_DP_PADCTL_PD_TXD_1;
else
value |= SOR_DP_PADCTL_PD_TXD_1;
if (link.num_lanes == 0)
value &= ~SOR_DP_PADCTL_PD_TXD_0;
else
value |= SOR_DP_PADCTL_PD_TXD_0;
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
value = tegra_sor_readl(sor, SOR_DP_LINKCTL_0);
value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes);
tegra_sor_writel(sor, value, SOR_DP_LINKCTL_0);
/* start lane sequencer */
value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
SOR_LANE_SEQ_CTL_POWER_STATE_UP;
tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
while (true) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
break;
usleep_range(250, 1000);
}
/* set link bandwidth */
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= drm_dp_link_rate_to_bw_code(link.rate) << 2;
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
/* set linkctl */
value = tegra_sor_readl(sor, SOR_DP_LINKCTL_0);
value |= SOR_DP_LINKCTL_ENABLE;
value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
value |= SOR_DP_LINKCTL_TU_SIZE(config.tu_size);
value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
tegra_sor_writel(sor, value, SOR_DP_LINKCTL_0);
for (i = 0, value = 0; i < 4; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
value = tegra_sor_readl(sor, SOR_DP_CONFIG_0);
value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
value |= SOR_DP_CONFIG_WATERMARK(config.watermark);
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config.active_count);
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config.active_frac);
if (config.active_polarity)
value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
else
value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
tegra_sor_writel(sor, value, SOR_DP_CONFIG_0);
value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
value |= config.hblank_symbols & 0xffff;
tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
value |= config.vblank_symbols & 0xffff;
tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
/* enable pad calibration logic */
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value |= SOR_DP_PADCTL_PAD_CAL_PD;
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
if (sor->dpaux) {
u8 rate, lanes;
err = drm_dp_link_probe(aux, &link);
if (err < 0) {
dev_err(sor->dev, "failed to probe eDP link: %d\n",
err);
goto unlock;
}
err = drm_dp_link_power_up(aux, &link);
if (err < 0) {
dev_err(sor->dev, "failed to power up eDP link: %d\n",
err);
goto unlock;
}
err = drm_dp_link_configure(aux, &link);
if (err < 0) {
dev_err(sor->dev, "failed to configure eDP link: %d\n",
err);
goto unlock;
}
rate = drm_dp_link_rate_to_bw_code(link.rate);
lanes = link.num_lanes;
value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
value = tegra_sor_readl(sor, SOR_DP_LINKCTL_0);
value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
tegra_sor_writel(sor, value, SOR_DP_LINKCTL_0);
/* disable training pattern generator */
for (i = 0; i < link.num_lanes; i++) {
unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
SOR_DP_TPG_SCRAMBLER_GALIOS |
SOR_DP_TPG_PATTERN_NONE;
value = (value << 8) | lane;
}
tegra_sor_writel(sor, value, SOR_DP_TPG);
err = tegra_sor_dp_train_fast(sor, &link);
if (err < 0) {
dev_err(sor->dev, "DP fast link training failed: %d\n",
err);
goto unlock;
}
dev_dbg(sor->dev, "fast link training succeeded\n");
}
err = tegra_sor_power_up(sor, 250);
if (err < 0) {
dev_err(sor->dev, "failed to power up SOR: %d\n", err);
goto unlock;
}
/* start display controller in continuous mode */
value = tegra_dc_readl(dc, DC_CMD_STATE_ACCESS);
value |= WRITE_MUX;
tegra_dc_writel(dc, value, DC_CMD_STATE_ACCESS);
tegra_dc_writel(dc, VSYNC_H_POSITION(1), DC_DISP_DISP_TIMING_OPTIONS);
tegra_dc_writel(dc, DISP_CTRL_MODE_C_DISPLAY, DC_CMD_DISPLAY_COMMAND);
value = tegra_dc_readl(dc, DC_CMD_STATE_ACCESS);
value &= ~WRITE_MUX;
tegra_dc_writel(dc, value, DC_CMD_STATE_ACCESS);
/*
* configure panel (24bpp, vsync-, hsync-, DP-A protocol, complete
* raster, associate with display controller)
*/
value = SOR_STATE_ASY_PROTOCOL_DP_A |
SOR_STATE_ASY_CRC_MODE_COMPLETE |
SOR_STATE_ASY_OWNER(dc->pipe + 1);
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
value &= ~SOR_STATE_ASY_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
value |= SOR_STATE_ASY_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
value &= ~SOR_STATE_ASY_VSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
value |= SOR_STATE_ASY_VSYNCPOL;
switch (config.bits_per_pixel) {
case 24:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
break;
case 18:
value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
break;
default:
BUG();
break;
}
tegra_sor_writel(sor, value, SOR_STATE_1);
/*
* TODO: The video timing programming below doesn't seem to match the
* register definitions.
*/
value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
tegra_sor_writel(sor, value, SOR_HEAD_STATE_1(0));
vse = mode->vsync_end - mode->vsync_start - 1;
hse = mode->hsync_end - mode->hsync_start - 1;
value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
tegra_sor_writel(sor, value, SOR_HEAD_STATE_2(0));
vbe = vse + (mode->vsync_start - mode->vdisplay);
hbe = hse + (mode->hsync_start - mode->hdisplay);
value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
tegra_sor_writel(sor, value, SOR_HEAD_STATE_3(0));
vbs = vbe + mode->vdisplay;
hbs = hbe + mode->hdisplay;
value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
tegra_sor_writel(sor, value, SOR_HEAD_STATE_4(0));
/* CSTM (LVDS, link A/B, upper) */
value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
SOR_CSTM_UPPER;
tegra_sor_writel(sor, value, SOR_CSTM);
/* PWM setup */
err = tegra_sor_setup_pwm(sor, 250);
if (err < 0) {
dev_err(sor->dev, "failed to setup PWM: %d\n", err);
goto unlock;
}
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= SOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_sor_update(sor);
err = tegra_sor_attach(sor);
if (err < 0) {
dev_err(sor->dev, "failed to attach SOR: %d\n", err);
goto unlock;
}
err = tegra_sor_wakeup(sor);
if (err < 0) {
dev_err(sor->dev, "failed to enable DC: %d\n", err);
goto unlock;
}
sor->enabled = true;
unlock:
mutex_unlock(&sor->lock);
return err;
}
static int tegra_sor_detach(struct tegra_sor *sor)
{
unsigned long value, timeout;
/* switch to safe mode */
value = tegra_sor_readl(sor, SOR_SUPER_STATE_1);
value &= ~SOR_SUPER_STATE_MODE_NORMAL;
tegra_sor_writel(sor, value, SOR_SUPER_STATE_1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if (value & SOR_PWR_MODE_SAFE)
break;
}
if ((value & SOR_PWR_MODE_SAFE) == 0)
return -ETIMEDOUT;
/* go to sleep */
value = tegra_sor_readl(sor, SOR_SUPER_STATE_1);
value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
tegra_sor_writel(sor, value, SOR_SUPER_STATE_1);
tegra_sor_super_update(sor);
/* detach */
value = tegra_sor_readl(sor, SOR_SUPER_STATE_1);
value &= ~SOR_SUPER_STATE_ATTACHED;
tegra_sor_writel(sor, value, SOR_SUPER_STATE_1);
tegra_sor_super_update(sor);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_TEST);
if ((value & SOR_TEST_ATTACHED) == 0)
break;
usleep_range(25, 100);
}
if ((value & SOR_TEST_ATTACHED) != 0)
return -ETIMEDOUT;
return 0;
}
static int tegra_sor_power_down(struct tegra_sor *sor)
{
unsigned long value, timeout;
int err;
value = tegra_sor_readl(sor, SOR_PWR);
value &= ~SOR_PWR_NORMAL_STATE_PU;
value |= SOR_PWR_TRIGGER;
tegra_sor_writel(sor, value, SOR_PWR);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_PWR);
if ((value & SOR_PWR_TRIGGER) == 0)
return 0;
usleep_range(25, 100);
}
if ((value & SOR_PWR_TRIGGER) != 0)
return -ETIMEDOUT;
err = clk_set_parent(sor->clk, sor->clk_safe);
if (err < 0)
dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
value = tegra_sor_readl(sor, SOR_DP_PADCTL_0);
value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
tegra_sor_writel(sor, value, SOR_DP_PADCTL_0);
/* stop lane sequencer */
value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
break;
usleep_range(25, 100);
}
if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
return -ETIMEDOUT;
value = tegra_sor_readl(sor, SOR_PLL_2);
value |= SOR_PLL_2_PORT_POWERDOWN;
tegra_sor_writel(sor, value, SOR_PLL_2);
usleep_range(20, 100);
value = tegra_sor_readl(sor, SOR_PLL_0);
value |= SOR_PLL_0_POWER_OFF;
value |= SOR_PLL_0_VCOPD;
tegra_sor_writel(sor, value, SOR_PLL_0);
value = tegra_sor_readl(sor, SOR_PLL_2);
value |= SOR_PLL_2_SEQ_PLLCAPPD;
value |= SOR_PLL_2_SEQ_PLLCAPPD_ENFORCE;
tegra_sor_writel(sor, value, SOR_PLL_2);
usleep_range(20, 100);
return 0;
}
static int tegra_output_sor_disable(struct tegra_output *output)
{
struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc);
struct tegra_sor *sor = to_sor(output);
unsigned long value;
int err = 0;
mutex_lock(&sor->lock);
if (!sor->enabled)
goto unlock;
err = tegra_sor_detach(sor);
if (err < 0) {
dev_err(sor->dev, "failed to detach SOR: %d\n", err);
goto unlock;
}
tegra_sor_writel(sor, 0, SOR_STATE_1);
tegra_sor_update(sor);
/*
* The following accesses registers of the display controller, so make
* sure it's only executed when the output is attached to one.
*/
if (dc) {
/*
* XXX: We can't do this here because it causes the SOR to go
* into an erroneous state and the output will look scrambled
* the next time it is enabled. Presumably this is because we
* should be doing this only on the next VBLANK. A possible
* solution would be to queue a "power-off" event to trigger
* this code to be run during the next VBLANK.
*/
/*
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
*/
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~SOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
}
err = tegra_sor_power_down(sor);
if (err < 0) {
dev_err(sor->dev, "failed to power down SOR: %d\n", err);
goto unlock;
}
if (sor->dpaux) {
err = tegra_dpaux_disable(sor->dpaux);
if (err < 0) {
dev_err(sor->dev, "failed to disable DP: %d\n", err);
goto unlock;
}
}
err = tegra_io_rail_power_off(TEGRA_IO_RAIL_LVDS);
if (err < 0) {
dev_err(sor->dev, "failed to power off I/O rail: %d\n", err);
goto unlock;
}
reset_control_assert(sor->rst);
clk_disable_unprepare(sor->clk);
sor->enabled = false;
unlock:
mutex_unlock(&sor->lock);
return err;
}
static int tegra_output_sor_setup_clock(struct tegra_output *output,
struct clk *clk, unsigned long pclk,
unsigned int *div)
{
struct tegra_sor *sor = to_sor(output);
int err;
err = clk_set_parent(clk, sor->clk_parent);
if (err < 0) {
dev_err(sor->dev, "failed to set parent clock: %d\n", err);
return err;
}
err = clk_set_rate(sor->clk_parent, pclk);
if (err < 0) {
dev_err(sor->dev, "failed to set clock rate to %lu Hz\n", pclk);
return err;
}
*div = 0;
return 0;
}
static int tegra_output_sor_check_mode(struct tegra_output *output,
struct drm_display_mode *mode,
enum drm_mode_status *status)
{
/*
* FIXME: For now, always assume that the mode is okay.
*/
*status = MODE_OK;
return 0;
}
static enum drm_connector_status
tegra_output_sor_detect(struct tegra_output *output)
{
struct tegra_sor *sor = to_sor(output);
if (sor->dpaux)
return tegra_dpaux_detect(sor->dpaux);
return connector_status_unknown;
}
static const struct tegra_output_ops sor_ops = {
.enable = tegra_output_sor_enable,
.disable = tegra_output_sor_disable,
.setup_clock = tegra_output_sor_setup_clock,
.check_mode = tegra_output_sor_check_mode,
.detect = tegra_output_sor_detect,
};
static int tegra_sor_crc_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static int tegra_sor_crc_release(struct inode *inode, struct file *file)
{
return 0;
}
static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
{
u32 value;
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_sor_readl(sor, SOR_CRC_A);
if (value & SOR_CRC_A_VALID)
return 0;
usleep_range(100, 200);
}
return -ETIMEDOUT;
}
static ssize_t tegra_sor_crc_read(struct file *file, char __user *buffer,
size_t size, loff_t *ppos)
{
struct tegra_sor *sor = file->private_data;
ssize_t num, err;
char buf[10];
u32 value;
mutex_lock(&sor->lock);
if (!sor->enabled) {
err = -EAGAIN;
goto unlock;
}
value = tegra_sor_readl(sor, SOR_STATE_1);
value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
tegra_sor_writel(sor, value, SOR_STATE_1);
value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
value |= SOR_CRC_CNTRL_ENABLE;
tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
value = tegra_sor_readl(sor, SOR_TEST);
value &= ~SOR_TEST_CRC_POST_SERIALIZE;
tegra_sor_writel(sor, value, SOR_TEST);
err = tegra_sor_crc_wait(sor, 100);
if (err < 0)
goto unlock;
tegra_sor_writel(sor, SOR_CRC_A_RESET, SOR_CRC_A);
value = tegra_sor_readl(sor, SOR_CRC_B);
num = scnprintf(buf, sizeof(buf), "%08x\n", value);
err = simple_read_from_buffer(buffer, size, ppos, buf, num);
unlock:
mutex_unlock(&sor->lock);
return err;
}
static const struct file_operations tegra_sor_crc_fops = {
.owner = THIS_MODULE,
.open = tegra_sor_crc_open,
.read = tegra_sor_crc_read,
.release = tegra_sor_crc_release,
};
static int tegra_sor_debugfs_init(struct tegra_sor *sor,
struct drm_minor *minor)
{
struct dentry *entry;
int err = 0;
sor->debugfs = debugfs_create_dir("sor", minor->debugfs_root);
if (!sor->debugfs)
return -ENOMEM;
entry = debugfs_create_file("crc", 0644, sor->debugfs, sor,
&tegra_sor_crc_fops);
if (!entry) {
dev_err(sor->dev,
"cannot create /sys/kernel/debug/dri/%s/sor/crc\n",
minor->debugfs_root->d_name.name);
err = -ENOMEM;
goto remove;
}
return err;
remove:
debugfs_remove(sor->debugfs);
sor->debugfs = NULL;
return err;
}
static int tegra_sor_debugfs_exit(struct tegra_sor *sor)
{
debugfs_remove_recursive(sor->debugfs);
sor->debugfs = NULL;
return 0;
}
static int tegra_sor_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->parent);
struct tegra_sor *sor = host1x_client_to_sor(client);
int err;
if (!sor->dpaux)
return -ENODEV;
sor->output.type = TEGRA_OUTPUT_EDP;
sor->output.dev = sor->dev;
sor->output.ops = &sor_ops;
err = tegra_output_init(drm, &sor->output);
if (err < 0) {
dev_err(sor->dev, "output setup failed: %d\n", err);
return err;
}
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_sor_debugfs_init(sor, drm->primary);
if (err < 0)
dev_err(sor->dev, "debugfs setup failed: %d\n", err);
}
if (sor->dpaux) {
err = tegra_dpaux_attach(sor->dpaux, &sor->output);
if (err < 0) {
dev_err(sor->dev, "failed to attach DP: %d\n", err);
return err;
}
}
return 0;
}
static int tegra_sor_exit(struct host1x_client *client)
{
struct tegra_sor *sor = host1x_client_to_sor(client);
int err;
err = tegra_output_disable(&sor->output);
if (err < 0) {
dev_err(sor->dev, "output failed to disable: %d\n", err);
return err;
}
if (sor->dpaux) {
err = tegra_dpaux_detach(sor->dpaux);
if (err < 0) {
dev_err(sor->dev, "failed to detach DP: %d\n", err);
return err;
}
}
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_sor_debugfs_exit(sor);
if (err < 0)
dev_err(sor->dev, "debugfs cleanup failed: %d\n", err);
}
err = tegra_output_exit(&sor->output);
if (err < 0) {
dev_err(sor->dev, "output cleanup failed: %d\n", err);
return err;
}
return 0;
}
static const struct host1x_client_ops sor_client_ops = {
.init = tegra_sor_init,
.exit = tegra_sor_exit,
};
static int tegra_sor_probe(struct platform_device *pdev)
{
struct device_node *np;
struct tegra_sor *sor;
struct resource *regs;
int err;
sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
if (!sor)
return -ENOMEM;
sor->output.dev = sor->dev = &pdev->dev;
np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
if (np) {
sor->dpaux = tegra_dpaux_find_by_of_node(np);
of_node_put(np);
if (!sor->dpaux)
return -EPROBE_DEFER;
}
err = tegra_output_probe(&sor->output);
if (err < 0)
return err;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sor->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(sor->regs))
return PTR_ERR(sor->regs);
sor->rst = devm_reset_control_get(&pdev->dev, "sor");
if (IS_ERR(sor->rst))
return PTR_ERR(sor->rst);
sor->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sor->clk))
return PTR_ERR(sor->clk);
sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
if (IS_ERR(sor->clk_parent))
return PTR_ERR(sor->clk_parent);
err = clk_prepare_enable(sor->clk_parent);
if (err < 0)
return err;
sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
if (IS_ERR(sor->clk_safe))
return PTR_ERR(sor->clk_safe);
err = clk_prepare_enable(sor->clk_safe);
if (err < 0)
return err;
sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
if (IS_ERR(sor->clk_dp))
return PTR_ERR(sor->clk_dp);
err = clk_prepare_enable(sor->clk_dp);
if (err < 0)
return err;
INIT_LIST_HEAD(&sor->client.list);
sor->client.ops = &sor_client_ops;
sor->client.dev = &pdev->dev;
mutex_init(&sor->lock);
err = host1x_client_register(&sor->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
return err;
}
platform_set_drvdata(pdev, sor);
return 0;
}
static int tegra_sor_remove(struct platform_device *pdev)
{
struct tegra_sor *sor = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&sor->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
clk_disable_unprepare(sor->clk_parent);
clk_disable_unprepare(sor->clk_safe);
clk_disable_unprepare(sor->clk_dp);
clk_disable_unprepare(sor->clk);
return 0;
}
static const struct of_device_id tegra_sor_of_match[] = {
{ .compatible = "nvidia,tegra124-sor", },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
struct platform_driver tegra_sor_driver = {
.driver = {
.name = "tegra-sor",
.of_match_table = tegra_sor_of_match,
},
.probe = tegra_sor_probe,
.remove = tegra_sor_remove,
};