linux/tools/testing/selftests/kvm/kvm_binary_stats_test.c
Ben Gardon ed6b53ec90 KVM: selftests: Read binary stat data in lib
Move the code to read the binary stats data to the KVM selftests
library. It will be re-used by other tests to check KVM behavior.

Also opportunistically remove an unnecessary calculation with
"size_data" in stats_test.

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:47 -04:00

239 lines
6.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kvm_binary_stats_test
*
* Copyright (C) 2021, Google LLC.
*
* Test the fd-based interface for KVM statistics.
*/
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "test_util.h"
#include "kvm_util.h"
#include "asm/kvm.h"
#include "linux/kvm.h"
static void stats_test(int stats_fd)
{
ssize_t ret;
int i;
size_t size_desc;
size_t size_data = 0;
struct kvm_stats_header header;
char *id;
struct kvm_stats_desc *stats_desc;
u64 *stats_data;
struct kvm_stats_desc *pdesc;
/* Read kvm stats header */
read_stats_header(stats_fd, &header);
size_desc = get_stats_descriptor_size(&header);
/* Read kvm stats id string */
id = malloc(header.name_size);
TEST_ASSERT(id, "Allocate memory for id string");
ret = read(stats_fd, id, header.name_size);
TEST_ASSERT(ret == header.name_size, "Read id string");
/* Check id string, that should start with "kvm" */
TEST_ASSERT(!strncmp(id, "kvm", 3) && strlen(id) < header.name_size,
"Invalid KVM stats type, id: %s", id);
/* Sanity check for other fields in header */
if (header.num_desc == 0) {
printf("No KVM stats defined!");
return;
}
/*
* The descriptor and data offsets must be valid, they must not overlap
* the header, and the descriptor and data blocks must not overlap each
* other. Note, the data block is rechecked after its size is known.
*/
TEST_ASSERT(header.desc_offset && header.desc_offset >= sizeof(header) &&
header.data_offset && header.data_offset >= sizeof(header),
"Invalid offset fields in header");
TEST_ASSERT(header.desc_offset > header.data_offset ||
(header.desc_offset + size_desc * header.num_desc <= header.data_offset),
"Descriptor block is overlapped with data block");
/* Read kvm stats descriptors */
stats_desc = read_stats_descriptors(stats_fd, &header);
/* Sanity check for fields in descriptors */
for (i = 0; i < header.num_desc; ++i) {
pdesc = get_stats_descriptor(stats_desc, i, &header);
/* Check type,unit,base boundaries */
TEST_ASSERT((pdesc->flags & KVM_STATS_TYPE_MASK) <= KVM_STATS_TYPE_MAX,
"Unknown KVM stats type");
TEST_ASSERT((pdesc->flags & KVM_STATS_UNIT_MASK) <= KVM_STATS_UNIT_MAX,
"Unknown KVM stats unit");
TEST_ASSERT((pdesc->flags & KVM_STATS_BASE_MASK) <= KVM_STATS_BASE_MAX,
"Unknown KVM stats base");
/*
* Check exponent for stats unit
* Exponent for counter should be greater than or equal to 0
* Exponent for unit bytes should be greater than or equal to 0
* Exponent for unit seconds should be less than or equal to 0
* Exponent for unit clock cycles should be greater than or
* equal to 0
*/
switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
case KVM_STATS_UNIT_NONE:
case KVM_STATS_UNIT_BYTES:
case KVM_STATS_UNIT_CYCLES:
TEST_ASSERT(pdesc->exponent >= 0, "Unsupported KVM stats unit");
break;
case KVM_STATS_UNIT_SECONDS:
TEST_ASSERT(pdesc->exponent <= 0, "Unsupported KVM stats unit");
break;
}
/* Check name string */
TEST_ASSERT(strlen(pdesc->name) < header.name_size,
"KVM stats name(%s) too long", pdesc->name);
/* Check size field, which should not be zero */
TEST_ASSERT(pdesc->size,
"KVM descriptor(%s) with size of 0", pdesc->name);
/* Check bucket_size field */
switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
case KVM_STATS_TYPE_LINEAR_HIST:
TEST_ASSERT(pdesc->bucket_size,
"Bucket size of Linear Histogram stats (%s) is zero",
pdesc->name);
break;
default:
TEST_ASSERT(!pdesc->bucket_size,
"Bucket size of stats (%s) is not zero",
pdesc->name);
}
size_data += pdesc->size * sizeof(*stats_data);
}
/*
* Now that the size of the data block is known, verify the data block
* doesn't overlap the descriptor block.
*/
TEST_ASSERT(header.data_offset >= header.desc_offset ||
header.data_offset + size_data <= header.desc_offset,
"Data block is overlapped with Descriptor block");
/* Check validity of all stats data size */
TEST_ASSERT(size_data >= header.num_desc * sizeof(*stats_data),
"Data size is not correct");
/* Check stats offset */
for (i = 0; i < header.num_desc; ++i) {
pdesc = get_stats_descriptor(stats_desc, i, &header);
TEST_ASSERT(pdesc->offset < size_data,
"Invalid offset (%u) for stats: %s",
pdesc->offset, pdesc->name);
}
/* Allocate memory for stats data */
stats_data = malloc(size_data);
TEST_ASSERT(stats_data, "Allocate memory for stats data");
/* Read kvm stats data as a bulk */
ret = pread(stats_fd, stats_data, size_data, header.data_offset);
TEST_ASSERT(ret == size_data, "Read KVM stats data");
/* Read kvm stats data one by one */
for (i = 0; i < header.num_desc; ++i) {
pdesc = get_stats_descriptor(stats_desc, i, &header);
read_stat_data(stats_fd, &header, pdesc, stats_data,
pdesc->size);
}
free(stats_data);
free(stats_desc);
free(id);
}
static void vm_stats_test(struct kvm_vm *vm)
{
int stats_fd = vm_get_stats_fd(vm);
stats_test(stats_fd);
close(stats_fd);
TEST_ASSERT(fcntl(stats_fd, F_GETFD) == -1, "Stats fd not freed");
}
static void vcpu_stats_test(struct kvm_vcpu *vcpu)
{
int stats_fd = vcpu_get_stats_fd(vcpu);
stats_test(stats_fd);
close(stats_fd);
TEST_ASSERT(fcntl(stats_fd, F_GETFD) == -1, "Stats fd not freed");
}
#define DEFAULT_NUM_VM 4
#define DEFAULT_NUM_VCPU 4
/*
* Usage: kvm_bin_form_stats [#vm] [#vcpu]
* The first parameter #vm set the number of VMs being created.
* The second parameter #vcpu set the number of VCPUs being created.
* By default, DEFAULT_NUM_VM VM and DEFAULT_NUM_VCPU VCPU for the VM would be
* created for testing.
*/
int main(int argc, char *argv[])
{
int i, j;
struct kvm_vcpu **vcpus;
struct kvm_vm **vms;
int max_vm = DEFAULT_NUM_VM;
int max_vcpu = DEFAULT_NUM_VCPU;
/* Get the number of VMs and VCPUs that would be created for testing. */
if (argc > 1) {
max_vm = strtol(argv[1], NULL, 0);
if (max_vm <= 0)
max_vm = DEFAULT_NUM_VM;
}
if (argc > 2) {
max_vcpu = strtol(argv[2], NULL, 0);
if (max_vcpu <= 0)
max_vcpu = DEFAULT_NUM_VCPU;
}
/* Check the extension for binary stats */
TEST_REQUIRE(kvm_has_cap(KVM_CAP_BINARY_STATS_FD));
/* Create VMs and VCPUs */
vms = malloc(sizeof(vms[0]) * max_vm);
TEST_ASSERT(vms, "Allocate memory for storing VM pointers");
vcpus = malloc(sizeof(struct kvm_vcpu *) * max_vm * max_vcpu);
TEST_ASSERT(vcpus, "Allocate memory for storing vCPU pointers");
for (i = 0; i < max_vm; ++i) {
vms[i] = vm_create_barebones();
for (j = 0; j < max_vcpu; ++j)
vcpus[i * max_vcpu + j] = __vm_vcpu_add(vms[i], j);
}
/* Check stats read for every VM and VCPU */
for (i = 0; i < max_vm; ++i) {
vm_stats_test(vms[i]);
for (j = 0; j < max_vcpu; ++j)
vcpu_stats_test(vcpus[i * max_vcpu + j]);
}
for (i = 0; i < max_vm; ++i)
kvm_vm_free(vms[i]);
free(vms);
return 0;
}