linux/drivers/bluetooth/btmtkuart.c
Krzysztof Kozlowski a88ea43b73 Bluetooth: btmtkuart: mark OF related data as maybe unused
The driver can be compile tested with !CONFIG_OF making certain data
unused:

  drivers/bluetooth/btmtkuart.c:971:36: error: ‘mt7668_data’ defined
  but not used [-Werror=unused-const-variable=]
  drivers/bluetooth/btmtkuart.c:966:36: error: ‘mt7663_data’ defined
  but not used [-Werror=unused-const-variable=]
  drivers/bluetooth/btmtkuart.c:962:36: error: ‘mt7622_data’ defined
  but not used [-Werror=unused-const-variable=]

Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2023-04-23 21:49:47 -07:00

1001 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2018 MediaTek Inc.
/*
* Bluetooth support for MediaTek serial devices
*
* Author: Sean Wang <sean.wang@mediatek.com>
*
*/
#include <asm/unaligned.h>
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/serdev.h>
#include <linux/skbuff.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "h4_recv.h"
#include "btmtk.h"
#define VERSION "0.2"
#define MTK_STP_TLR_SIZE 2
#define BTMTKUART_TX_STATE_ACTIVE 1
#define BTMTKUART_TX_STATE_WAKEUP 2
#define BTMTKUART_TX_WAIT_VND_EVT 3
#define BTMTKUART_REQUIRED_WAKEUP 4
#define BTMTKUART_FLAG_STANDALONE_HW BIT(0)
struct mtk_stp_hdr {
u8 prefix;
__be16 dlen;
u8 cs;
} __packed;
struct btmtkuart_data {
unsigned int flags;
const char *fwname;
};
struct btmtkuart_dev {
struct hci_dev *hdev;
struct serdev_device *serdev;
struct clk *clk;
struct clk *osc;
struct regulator *vcc;
struct gpio_desc *reset;
struct gpio_desc *boot;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_runtime;
struct pinctrl_state *pins_boot;
speed_t desired_speed;
speed_t curr_speed;
struct work_struct tx_work;
unsigned long tx_state;
struct sk_buff_head txq;
struct sk_buff *rx_skb;
struct sk_buff *evt_skb;
u8 stp_pad[6];
u8 stp_cursor;
u16 stp_dlen;
const struct btmtkuart_data *data;
};
#define btmtkuart_is_standalone(bdev) \
((bdev)->data->flags & BTMTKUART_FLAG_STANDALONE_HW)
#define btmtkuart_is_builtin_soc(bdev) \
!((bdev)->data->flags & BTMTKUART_FLAG_STANDALONE_HW)
static int mtk_hci_wmt_sync(struct hci_dev *hdev,
struct btmtk_hci_wmt_params *wmt_params)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_evt_funcc *wmt_evt_funcc;
u32 hlen, status = BTMTK_WMT_INVALID;
struct btmtk_hci_wmt_evt *wmt_evt;
struct btmtk_hci_wmt_cmd *wc;
struct btmtk_wmt_hdr *hdr;
int err;
/* Send the WMT command and wait until the WMT event returns */
hlen = sizeof(*hdr) + wmt_params->dlen;
if (hlen > 255) {
err = -EINVAL;
goto err_free_skb;
}
wc = kzalloc(hlen, GFP_KERNEL);
if (!wc) {
err = -ENOMEM;
goto err_free_skb;
}
hdr = &wc->hdr;
hdr->dir = 1;
hdr->op = wmt_params->op;
hdr->dlen = cpu_to_le16(wmt_params->dlen + 1);
hdr->flag = wmt_params->flag;
memcpy(wc->data, wmt_params->data, wmt_params->dlen);
set_bit(BTMTKUART_TX_WAIT_VND_EVT, &bdev->tx_state);
err = __hci_cmd_send(hdev, 0xfc6f, hlen, wc);
if (err < 0) {
clear_bit(BTMTKUART_TX_WAIT_VND_EVT, &bdev->tx_state);
goto err_free_wc;
}
/* The vendor specific WMT commands are all answered by a vendor
* specific event and will not have the Command Status or Command
* Complete as with usual HCI command flow control.
*
* After sending the command, wait for BTMTKUART_TX_WAIT_VND_EVT
* state to be cleared. The driver specific event receive routine
* will clear that state and with that indicate completion of the
* WMT command.
*/
err = wait_on_bit_timeout(&bdev->tx_state, BTMTKUART_TX_WAIT_VND_EVT,
TASK_INTERRUPTIBLE, HCI_INIT_TIMEOUT);
if (err == -EINTR) {
bt_dev_err(hdev, "Execution of wmt command interrupted");
clear_bit(BTMTKUART_TX_WAIT_VND_EVT, &bdev->tx_state);
goto err_free_wc;
}
if (err) {
bt_dev_err(hdev, "Execution of wmt command timed out");
clear_bit(BTMTKUART_TX_WAIT_VND_EVT, &bdev->tx_state);
err = -ETIMEDOUT;
goto err_free_wc;
}
/* Parse and handle the return WMT event */
wmt_evt = (struct btmtk_hci_wmt_evt *)bdev->evt_skb->data;
if (wmt_evt->whdr.op != hdr->op) {
bt_dev_err(hdev, "Wrong op received %d expected %d",
wmt_evt->whdr.op, hdr->op);
err = -EIO;
goto err_free_wc;
}
switch (wmt_evt->whdr.op) {
case BTMTK_WMT_SEMAPHORE:
if (wmt_evt->whdr.flag == 2)
status = BTMTK_WMT_PATCH_UNDONE;
else
status = BTMTK_WMT_PATCH_DONE;
break;
case BTMTK_WMT_FUNC_CTRL:
wmt_evt_funcc = (struct btmtk_hci_wmt_evt_funcc *)wmt_evt;
if (be16_to_cpu(wmt_evt_funcc->status) == 0x404)
status = BTMTK_WMT_ON_DONE;
else if (be16_to_cpu(wmt_evt_funcc->status) == 0x420)
status = BTMTK_WMT_ON_PROGRESS;
else
status = BTMTK_WMT_ON_UNDONE;
break;
}
if (wmt_params->status)
*wmt_params->status = status;
err_free_wc:
kfree(wc);
err_free_skb:
kfree_skb(bdev->evt_skb);
bdev->evt_skb = NULL;
return err;
}
static int btmtkuart_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct hci_event_hdr *hdr = (void *)skb->data;
int err;
/* When someone waits for the WMT event, the skb is being cloned
* and being processed the events from there then.
*/
if (test_bit(BTMTKUART_TX_WAIT_VND_EVT, &bdev->tx_state)) {
bdev->evt_skb = skb_clone(skb, GFP_KERNEL);
if (!bdev->evt_skb) {
err = -ENOMEM;
goto err_out;
}
}
err = hci_recv_frame(hdev, skb);
if (err < 0)
goto err_free_skb;
if (hdr->evt == HCI_EV_WMT) {
if (test_and_clear_bit(BTMTKUART_TX_WAIT_VND_EVT,
&bdev->tx_state)) {
/* Barrier to sync with other CPUs */
smp_mb__after_atomic();
wake_up_bit(&bdev->tx_state, BTMTKUART_TX_WAIT_VND_EVT);
}
}
return 0;
err_free_skb:
kfree_skb(bdev->evt_skb);
bdev->evt_skb = NULL;
err_out:
return err;
}
static const struct h4_recv_pkt mtk_recv_pkts[] = {
{ H4_RECV_ACL, .recv = hci_recv_frame },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = btmtkuart_recv_event },
};
static void btmtkuart_tx_work(struct work_struct *work)
{
struct btmtkuart_dev *bdev = container_of(work, struct btmtkuart_dev,
tx_work);
struct serdev_device *serdev = bdev->serdev;
struct hci_dev *hdev = bdev->hdev;
while (1) {
clear_bit(BTMTKUART_TX_STATE_WAKEUP, &bdev->tx_state);
while (1) {
struct sk_buff *skb = skb_dequeue(&bdev->txq);
int len;
if (!skb)
break;
len = serdev_device_write_buf(serdev, skb->data,
skb->len);
hdev->stat.byte_tx += len;
skb_pull(skb, len);
if (skb->len > 0) {
skb_queue_head(&bdev->txq, skb);
break;
}
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
break;
}
kfree_skb(skb);
}
if (!test_bit(BTMTKUART_TX_STATE_WAKEUP, &bdev->tx_state))
break;
}
clear_bit(BTMTKUART_TX_STATE_ACTIVE, &bdev->tx_state);
}
static void btmtkuart_tx_wakeup(struct btmtkuart_dev *bdev)
{
if (test_and_set_bit(BTMTKUART_TX_STATE_ACTIVE, &bdev->tx_state))
set_bit(BTMTKUART_TX_STATE_WAKEUP, &bdev->tx_state);
schedule_work(&bdev->tx_work);
}
static const unsigned char *
mtk_stp_split(struct btmtkuart_dev *bdev, const unsigned char *data, int count,
int *sz_h4)
{
struct mtk_stp_hdr *shdr;
/* The cursor is reset when all the data of STP is consumed out */
if (!bdev->stp_dlen && bdev->stp_cursor >= 6)
bdev->stp_cursor = 0;
/* Filling pad until all STP info is obtained */
while (bdev->stp_cursor < 6 && count > 0) {
bdev->stp_pad[bdev->stp_cursor] = *data;
bdev->stp_cursor++;
data++;
count--;
}
/* Retrieve STP info and have a sanity check */
if (!bdev->stp_dlen && bdev->stp_cursor >= 6) {
shdr = (struct mtk_stp_hdr *)&bdev->stp_pad[2];
bdev->stp_dlen = be16_to_cpu(shdr->dlen) & 0x0fff;
/* Resync STP when unexpected data is being read */
if (shdr->prefix != 0x80 || bdev->stp_dlen > 2048) {
bt_dev_err(bdev->hdev, "stp format unexpect (%d, %d)",
shdr->prefix, bdev->stp_dlen);
bdev->stp_cursor = 2;
bdev->stp_dlen = 0;
}
}
/* Directly quit when there's no data found for H4 can process */
if (count <= 0)
return NULL;
/* Tranlate to how much the size of data H4 can handle so far */
*sz_h4 = min_t(int, count, bdev->stp_dlen);
/* Update the remaining size of STP packet */
bdev->stp_dlen -= *sz_h4;
/* Data points to STP payload which can be handled by H4 */
return data;
}
static int btmtkuart_recv(struct hci_dev *hdev, const u8 *data, size_t count)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
const unsigned char *p_left = data, *p_h4;
int sz_left = count, sz_h4, adv;
int err;
while (sz_left > 0) {
/* The serial data received from MT7622 BT controller is
* at all time padded around with the STP header and tailer.
*
* A full STP packet is looking like
* -----------------------------------
* | STP header | H:4 | STP tailer |
* -----------------------------------
* but it doesn't guarantee to contain a full H:4 packet which
* means that it's possible for multiple STP packets forms a
* full H:4 packet that means extra STP header + length doesn't
* indicate a full H:4 frame, things can fragment. Whose length
* recorded in STP header just shows up the most length the
* H:4 engine can handle currently.
*/
p_h4 = mtk_stp_split(bdev, p_left, sz_left, &sz_h4);
if (!p_h4)
break;
adv = p_h4 - p_left;
sz_left -= adv;
p_left += adv;
bdev->rx_skb = h4_recv_buf(bdev->hdev, bdev->rx_skb, p_h4,
sz_h4, mtk_recv_pkts,
ARRAY_SIZE(mtk_recv_pkts));
if (IS_ERR(bdev->rx_skb)) {
err = PTR_ERR(bdev->rx_skb);
bt_dev_err(bdev->hdev,
"Frame reassembly failed (%d)", err);
bdev->rx_skb = NULL;
return err;
}
sz_left -= sz_h4;
p_left += sz_h4;
}
return 0;
}
static int btmtkuart_receive_buf(struct serdev_device *serdev, const u8 *data,
size_t count)
{
struct btmtkuart_dev *bdev = serdev_device_get_drvdata(serdev);
int err;
err = btmtkuart_recv(bdev->hdev, data, count);
if (err < 0)
return err;
bdev->hdev->stat.byte_rx += count;
return count;
}
static void btmtkuart_write_wakeup(struct serdev_device *serdev)
{
struct btmtkuart_dev *bdev = serdev_device_get_drvdata(serdev);
btmtkuart_tx_wakeup(bdev);
}
static const struct serdev_device_ops btmtkuart_client_ops = {
.receive_buf = btmtkuart_receive_buf,
.write_wakeup = btmtkuart_write_wakeup,
};
static int btmtkuart_open(struct hci_dev *hdev)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct device *dev;
int err;
err = serdev_device_open(bdev->serdev);
if (err) {
bt_dev_err(hdev, "Unable to open UART device %s",
dev_name(&bdev->serdev->dev));
goto err_open;
}
if (btmtkuart_is_standalone(bdev)) {
if (bdev->curr_speed != bdev->desired_speed)
err = serdev_device_set_baudrate(bdev->serdev,
115200);
else
err = serdev_device_set_baudrate(bdev->serdev,
bdev->desired_speed);
if (err < 0) {
bt_dev_err(hdev, "Unable to set baudrate UART device %s",
dev_name(&bdev->serdev->dev));
goto err_serdev_close;
}
serdev_device_set_flow_control(bdev->serdev, false);
}
bdev->stp_cursor = 2;
bdev->stp_dlen = 0;
dev = &bdev->serdev->dev;
/* Enable the power domain and clock the device requires */
pm_runtime_enable(dev);
err = pm_runtime_resume_and_get(dev);
if (err < 0)
goto err_disable_rpm;
err = clk_prepare_enable(bdev->clk);
if (err < 0)
goto err_put_rpm;
return 0;
err_put_rpm:
pm_runtime_put_sync(dev);
err_disable_rpm:
pm_runtime_disable(dev);
err_serdev_close:
serdev_device_close(bdev->serdev);
err_open:
return err;
}
static int btmtkuart_close(struct hci_dev *hdev)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct device *dev = &bdev->serdev->dev;
/* Shutdown the clock and power domain the device requires */
clk_disable_unprepare(bdev->clk);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
serdev_device_close(bdev->serdev);
return 0;
}
static int btmtkuart_flush(struct hci_dev *hdev)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
/* Flush any pending characters */
serdev_device_write_flush(bdev->serdev);
skb_queue_purge(&bdev->txq);
cancel_work_sync(&bdev->tx_work);
kfree_skb(bdev->rx_skb);
bdev->rx_skb = NULL;
bdev->stp_cursor = 2;
bdev->stp_dlen = 0;
return 0;
}
static int btmtkuart_func_query(struct hci_dev *hdev)
{
struct btmtk_hci_wmt_params wmt_params;
int status, err;
u8 param = 0;
/* Query whether the function is enabled */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 4;
wmt_params.dlen = sizeof(param);
wmt_params.data = &param;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to query function status (%d)", err);
return err;
}
return status;
}
static int btmtkuart_change_baudrate(struct hci_dev *hdev)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_params wmt_params;
__le32 baudrate;
u8 param;
int err;
/* Indicate the device to enter the probe state the host is
* ready to change a new baudrate.
*/
baudrate = cpu_to_le32(bdev->desired_speed);
wmt_params.op = BTMTK_WMT_HIF;
wmt_params.flag = 1;
wmt_params.dlen = 4;
wmt_params.data = &baudrate;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to device baudrate (%d)", err);
return err;
}
err = serdev_device_set_baudrate(bdev->serdev,
bdev->desired_speed);
if (err < 0) {
bt_dev_err(hdev, "Failed to set up host baudrate (%d)",
err);
return err;
}
serdev_device_set_flow_control(bdev->serdev, false);
/* Send a dummy byte 0xff to activate the new baudrate */
param = 0xff;
err = serdev_device_write_buf(bdev->serdev, &param, sizeof(param));
if (err < 0 || err < sizeof(param))
return err;
serdev_device_wait_until_sent(bdev->serdev, 0);
/* Wait some time for the device changing baudrate done */
usleep_range(20000, 22000);
/* Test the new baudrate */
wmt_params.op = BTMTK_WMT_TEST;
wmt_params.flag = 7;
wmt_params.dlen = 0;
wmt_params.data = NULL;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to test new baudrate (%d)",
err);
return err;
}
bdev->curr_speed = bdev->desired_speed;
return 0;
}
static int btmtkuart_setup(struct hci_dev *hdev)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct btmtk_hci_wmt_params wmt_params;
ktime_t calltime, delta, rettime;
struct btmtk_tci_sleep tci_sleep;
unsigned long long duration;
struct sk_buff *skb;
int err, status;
u8 param = 0x1;
calltime = ktime_get();
/* Wakeup MCUSYS is required for certain devices before we start to
* do any setups.
*/
if (test_bit(BTMTKUART_REQUIRED_WAKEUP, &bdev->tx_state)) {
wmt_params.op = BTMTK_WMT_WAKEUP;
wmt_params.flag = 3;
wmt_params.dlen = 0;
wmt_params.data = NULL;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to wakeup the chip (%d)", err);
return err;
}
clear_bit(BTMTKUART_REQUIRED_WAKEUP, &bdev->tx_state);
}
if (btmtkuart_is_standalone(bdev))
btmtkuart_change_baudrate(hdev);
/* Query whether the firmware is already download */
wmt_params.op = BTMTK_WMT_SEMAPHORE;
wmt_params.flag = 1;
wmt_params.dlen = 0;
wmt_params.data = NULL;
wmt_params.status = &status;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to query firmware status (%d)", err);
return err;
}
if (status == BTMTK_WMT_PATCH_DONE) {
bt_dev_info(hdev, "Firmware already downloaded");
goto ignore_setup_fw;
}
/* Setup a firmware which the device definitely requires */
err = btmtk_setup_firmware(hdev, bdev->data->fwname, mtk_hci_wmt_sync);
if (err < 0)
return err;
ignore_setup_fw:
/* Query whether the device is already enabled */
err = readx_poll_timeout(btmtkuart_func_query, hdev, status,
status < 0 || status != BTMTK_WMT_ON_PROGRESS,
2000, 5000000);
/* -ETIMEDOUT happens */
if (err < 0)
return err;
/* The other errors happen in btusb_mtk_func_query */
if (status < 0)
return status;
if (status == BTMTK_WMT_ON_DONE) {
bt_dev_info(hdev, "function already on");
goto ignore_func_on;
}
/* Enable Bluetooth protocol */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 0;
wmt_params.dlen = sizeof(param);
wmt_params.data = &param;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err);
return err;
}
ignore_func_on:
/* Apply the low power environment setup */
tci_sleep.mode = 0x5;
tci_sleep.duration = cpu_to_le16(0x640);
tci_sleep.host_duration = cpu_to_le16(0x640);
tci_sleep.host_wakeup_pin = 0;
tci_sleep.time_compensation = 0;
skb = __hci_cmd_sync(hdev, 0xfc7a, sizeof(tci_sleep), &tci_sleep,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(hdev, "Failed to apply low power setting (%d)", err);
return err;
}
kfree_skb(skb);
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
bt_dev_info(hdev, "Device setup in %llu usecs", duration);
return 0;
}
static int btmtkuart_shutdown(struct hci_dev *hdev)
{
struct btmtk_hci_wmt_params wmt_params;
u8 param = 0x0;
int err;
/* Disable the device */
wmt_params.op = BTMTK_WMT_FUNC_CTRL;
wmt_params.flag = 0;
wmt_params.dlen = sizeof(param);
wmt_params.data = &param;
wmt_params.status = NULL;
err = mtk_hci_wmt_sync(hdev, &wmt_params);
if (err < 0) {
bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err);
return err;
}
return 0;
}
static int btmtkuart_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct btmtkuart_dev *bdev = hci_get_drvdata(hdev);
struct mtk_stp_hdr *shdr;
int err, dlen, type = 0;
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
/* Make sure that there is enough rooms for STP header and trailer */
if (unlikely(skb_headroom(skb) < sizeof(*shdr)) ||
(skb_tailroom(skb) < MTK_STP_TLR_SIZE)) {
err = pskb_expand_head(skb, sizeof(*shdr), MTK_STP_TLR_SIZE,
GFP_ATOMIC);
if (err < 0)
return err;
}
/* Add the STP header */
dlen = skb->len;
shdr = skb_push(skb, sizeof(*shdr));
shdr->prefix = 0x80;
shdr->dlen = cpu_to_be16((dlen & 0x0fff) | (type << 12));
shdr->cs = 0; /* MT7622 doesn't care about checksum value */
/* Add the STP trailer */
skb_put_zero(skb, MTK_STP_TLR_SIZE);
skb_queue_tail(&bdev->txq, skb);
btmtkuart_tx_wakeup(bdev);
return 0;
}
static int btmtkuart_parse_dt(struct serdev_device *serdev)
{
struct btmtkuart_dev *bdev = serdev_device_get_drvdata(serdev);
struct device_node *node = serdev->dev.of_node;
u32 speed = 921600;
int err;
if (btmtkuart_is_standalone(bdev)) {
of_property_read_u32(node, "current-speed", &speed);
bdev->desired_speed = speed;
bdev->vcc = devm_regulator_get(&serdev->dev, "vcc");
if (IS_ERR(bdev->vcc)) {
err = PTR_ERR(bdev->vcc);
return err;
}
bdev->osc = devm_clk_get_optional(&serdev->dev, "osc");
if (IS_ERR(bdev->osc)) {
err = PTR_ERR(bdev->osc);
return err;
}
bdev->boot = devm_gpiod_get_optional(&serdev->dev, "boot",
GPIOD_OUT_LOW);
if (IS_ERR(bdev->boot)) {
err = PTR_ERR(bdev->boot);
return err;
}
bdev->pinctrl = devm_pinctrl_get(&serdev->dev);
if (IS_ERR(bdev->pinctrl)) {
err = PTR_ERR(bdev->pinctrl);
return err;
}
bdev->pins_boot = pinctrl_lookup_state(bdev->pinctrl,
"default");
if (IS_ERR(bdev->pins_boot) && !bdev->boot) {
err = PTR_ERR(bdev->pins_boot);
dev_err(&serdev->dev,
"Should assign RXD to LOW at boot stage\n");
return err;
}
bdev->pins_runtime = pinctrl_lookup_state(bdev->pinctrl,
"runtime");
if (IS_ERR(bdev->pins_runtime)) {
err = PTR_ERR(bdev->pins_runtime);
return err;
}
bdev->reset = devm_gpiod_get_optional(&serdev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(bdev->reset)) {
err = PTR_ERR(bdev->reset);
return err;
}
} else if (btmtkuart_is_builtin_soc(bdev)) {
bdev->clk = devm_clk_get(&serdev->dev, "ref");
if (IS_ERR(bdev->clk))
return PTR_ERR(bdev->clk);
}
return 0;
}
static int btmtkuart_probe(struct serdev_device *serdev)
{
struct btmtkuart_dev *bdev;
struct hci_dev *hdev;
int err;
bdev = devm_kzalloc(&serdev->dev, sizeof(*bdev), GFP_KERNEL);
if (!bdev)
return -ENOMEM;
bdev->data = of_device_get_match_data(&serdev->dev);
if (!bdev->data)
return -ENODEV;
bdev->serdev = serdev;
serdev_device_set_drvdata(serdev, bdev);
serdev_device_set_client_ops(serdev, &btmtkuart_client_ops);
err = btmtkuart_parse_dt(serdev);
if (err < 0)
return err;
INIT_WORK(&bdev->tx_work, btmtkuart_tx_work);
skb_queue_head_init(&bdev->txq);
/* Initialize and register HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
dev_err(&serdev->dev, "Can't allocate HCI device\n");
return -ENOMEM;
}
bdev->hdev = hdev;
hdev->bus = HCI_UART;
hci_set_drvdata(hdev, bdev);
hdev->open = btmtkuart_open;
hdev->close = btmtkuart_close;
hdev->flush = btmtkuart_flush;
hdev->setup = btmtkuart_setup;
hdev->shutdown = btmtkuart_shutdown;
hdev->send = btmtkuart_send_frame;
hdev->set_bdaddr = btmtk_set_bdaddr;
SET_HCIDEV_DEV(hdev, &serdev->dev);
hdev->manufacturer = 70;
set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
if (btmtkuart_is_standalone(bdev)) {
err = clk_prepare_enable(bdev->osc);
if (err < 0)
goto err_hci_free_dev;
if (bdev->boot) {
gpiod_set_value_cansleep(bdev->boot, 1);
} else {
/* Switch to the specific pin state for the booting
* requires.
*/
pinctrl_select_state(bdev->pinctrl, bdev->pins_boot);
}
/* Power on */
err = regulator_enable(bdev->vcc);
if (err < 0)
goto err_clk_disable_unprepare;
/* Reset if the reset-gpios is available otherwise the board
* -level design should be guaranteed.
*/
if (bdev->reset) {
gpiod_set_value_cansleep(bdev->reset, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(bdev->reset, 0);
}
/* Wait some time until device got ready and switch to the pin
* mode the device requires for UART transfers.
*/
msleep(50);
if (bdev->boot)
devm_gpiod_put(&serdev->dev, bdev->boot);
pinctrl_select_state(bdev->pinctrl, bdev->pins_runtime);
/* A standalone device doesn't depends on power domain on SoC,
* so mark it as no callbacks.
*/
pm_runtime_no_callbacks(&serdev->dev);
set_bit(BTMTKUART_REQUIRED_WAKEUP, &bdev->tx_state);
}
err = hci_register_dev(hdev);
if (err < 0) {
dev_err(&serdev->dev, "Can't register HCI device\n");
goto err_regulator_disable;
}
return 0;
err_regulator_disable:
if (btmtkuart_is_standalone(bdev))
regulator_disable(bdev->vcc);
err_clk_disable_unprepare:
if (btmtkuart_is_standalone(bdev))
clk_disable_unprepare(bdev->osc);
err_hci_free_dev:
hci_free_dev(hdev);
return err;
}
static void btmtkuart_remove(struct serdev_device *serdev)
{
struct btmtkuart_dev *bdev = serdev_device_get_drvdata(serdev);
struct hci_dev *hdev = bdev->hdev;
if (btmtkuart_is_standalone(bdev)) {
regulator_disable(bdev->vcc);
clk_disable_unprepare(bdev->osc);
}
hci_unregister_dev(hdev);
hci_free_dev(hdev);
}
static const struct btmtkuart_data mt7622_data __maybe_unused = {
.fwname = FIRMWARE_MT7622,
};
static const struct btmtkuart_data mt7663_data __maybe_unused = {
.flags = BTMTKUART_FLAG_STANDALONE_HW,
.fwname = FIRMWARE_MT7663,
};
static const struct btmtkuart_data mt7668_data __maybe_unused = {
.flags = BTMTKUART_FLAG_STANDALONE_HW,
.fwname = FIRMWARE_MT7668,
};
#ifdef CONFIG_OF
static const struct of_device_id mtk_of_match_table[] = {
{ .compatible = "mediatek,mt7622-bluetooth", .data = &mt7622_data},
{ .compatible = "mediatek,mt7663u-bluetooth", .data = &mt7663_data},
{ .compatible = "mediatek,mt7668u-bluetooth", .data = &mt7668_data},
{ }
};
MODULE_DEVICE_TABLE(of, mtk_of_match_table);
#endif
static struct serdev_device_driver btmtkuart_driver = {
.probe = btmtkuart_probe,
.remove = btmtkuart_remove,
.driver = {
.name = "btmtkuart",
.of_match_table = of_match_ptr(mtk_of_match_table),
},
};
module_serdev_device_driver(btmtkuart_driver);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("MediaTek Bluetooth Serial driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");