mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 16:44:10 +08:00
af033b2aa8
For journalled quota mode, let checkpoint to flush dquot dirty data and quota file data to guarntee persistence of all quota sysfile in last checkpoint, by this way, we can avoid corrupting quota sysfile when encountering SPO. The implementation is as below: 1. add a global state SBI_QUOTA_NEED_FLUSH to indicate that there is cached dquot metadata changes in quota subsystem, and later checkpoint should: a) flush dquot metadata into quota file. b) flush quota file to storage to keep file usage be consistent. 2. add a global state SBI_QUOTA_NEED_REPAIR to indicate that quota operation failed due to -EIO or -ENOSPC, so later, a) checkpoint will skip syncing dquot metadata. b) CP_QUOTA_NEED_FSCK_FLAG will be set in last cp pack to give a hint for fsck repairing. 3. add a global state SBI_QUOTA_SKIP_FLUSH, in checkpoint, if quota data updating is very heavy, it may cause hungtask in block_operation(). To avoid this, if our retry time exceed threshold, let's just skip flushing and retry in next checkpoint(). Signed-off-by: Weichao Guo <guoweichao@huawei.com> Signed-off-by: Chao Yu <yuchao0@huawei.com> [Jaegeuk Kim: avoid warnings and set fsck flag] Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
3600 lines
90 KiB
C
3600 lines
90 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/super.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/random.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/quota.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *f2fs_inode_cachep;
|
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
|
|
char *f2fs_fault_name[FAULT_MAX] = {
|
|
[FAULT_KMALLOC] = "kmalloc",
|
|
[FAULT_KVMALLOC] = "kvmalloc",
|
|
[FAULT_PAGE_ALLOC] = "page alloc",
|
|
[FAULT_PAGE_GET] = "page get",
|
|
[FAULT_ALLOC_BIO] = "alloc bio",
|
|
[FAULT_ALLOC_NID] = "alloc nid",
|
|
[FAULT_ORPHAN] = "orphan",
|
|
[FAULT_BLOCK] = "no more block",
|
|
[FAULT_DIR_DEPTH] = "too big dir depth",
|
|
[FAULT_EVICT_INODE] = "evict_inode fail",
|
|
[FAULT_TRUNCATE] = "truncate fail",
|
|
[FAULT_READ_IO] = "read IO error",
|
|
[FAULT_CHECKPOINT] = "checkpoint error",
|
|
[FAULT_DISCARD] = "discard error",
|
|
[FAULT_WRITE_IO] = "write IO error",
|
|
};
|
|
|
|
void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
|
|
unsigned int type)
|
|
{
|
|
struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
|
|
|
|
if (rate) {
|
|
atomic_set(&ffi->inject_ops, 0);
|
|
ffi->inject_rate = rate;
|
|
}
|
|
|
|
if (type)
|
|
ffi->inject_type = type;
|
|
|
|
if (!rate && !type)
|
|
memset(ffi, 0, sizeof(struct f2fs_fault_info));
|
|
}
|
|
#endif
|
|
|
|
/* f2fs-wide shrinker description */
|
|
static struct shrinker f2fs_shrinker_info = {
|
|
.scan_objects = f2fs_shrink_scan,
|
|
.count_objects = f2fs_shrink_count,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
enum {
|
|
Opt_gc_background,
|
|
Opt_disable_roll_forward,
|
|
Opt_norecovery,
|
|
Opt_discard,
|
|
Opt_nodiscard,
|
|
Opt_noheap,
|
|
Opt_heap,
|
|
Opt_user_xattr,
|
|
Opt_nouser_xattr,
|
|
Opt_acl,
|
|
Opt_noacl,
|
|
Opt_active_logs,
|
|
Opt_disable_ext_identify,
|
|
Opt_inline_xattr,
|
|
Opt_noinline_xattr,
|
|
Opt_inline_xattr_size,
|
|
Opt_inline_data,
|
|
Opt_inline_dentry,
|
|
Opt_noinline_dentry,
|
|
Opt_flush_merge,
|
|
Opt_noflush_merge,
|
|
Opt_nobarrier,
|
|
Opt_fastboot,
|
|
Opt_extent_cache,
|
|
Opt_noextent_cache,
|
|
Opt_noinline_data,
|
|
Opt_data_flush,
|
|
Opt_reserve_root,
|
|
Opt_resgid,
|
|
Opt_resuid,
|
|
Opt_mode,
|
|
Opt_io_size_bits,
|
|
Opt_fault_injection,
|
|
Opt_fault_type,
|
|
Opt_lazytime,
|
|
Opt_nolazytime,
|
|
Opt_quota,
|
|
Opt_noquota,
|
|
Opt_usrquota,
|
|
Opt_grpquota,
|
|
Opt_prjquota,
|
|
Opt_usrjquota,
|
|
Opt_grpjquota,
|
|
Opt_prjjquota,
|
|
Opt_offusrjquota,
|
|
Opt_offgrpjquota,
|
|
Opt_offprjjquota,
|
|
Opt_jqfmt_vfsold,
|
|
Opt_jqfmt_vfsv0,
|
|
Opt_jqfmt_vfsv1,
|
|
Opt_whint,
|
|
Opt_alloc,
|
|
Opt_fsync,
|
|
Opt_test_dummy_encryption,
|
|
Opt_checkpoint,
|
|
Opt_err,
|
|
};
|
|
|
|
static match_table_t f2fs_tokens = {
|
|
{Opt_gc_background, "background_gc=%s"},
|
|
{Opt_disable_roll_forward, "disable_roll_forward"},
|
|
{Opt_norecovery, "norecovery"},
|
|
{Opt_discard, "discard"},
|
|
{Opt_nodiscard, "nodiscard"},
|
|
{Opt_noheap, "no_heap"},
|
|
{Opt_heap, "heap"},
|
|
{Opt_user_xattr, "user_xattr"},
|
|
{Opt_nouser_xattr, "nouser_xattr"},
|
|
{Opt_acl, "acl"},
|
|
{Opt_noacl, "noacl"},
|
|
{Opt_active_logs, "active_logs=%u"},
|
|
{Opt_disable_ext_identify, "disable_ext_identify"},
|
|
{Opt_inline_xattr, "inline_xattr"},
|
|
{Opt_noinline_xattr, "noinline_xattr"},
|
|
{Opt_inline_xattr_size, "inline_xattr_size=%u"},
|
|
{Opt_inline_data, "inline_data"},
|
|
{Opt_inline_dentry, "inline_dentry"},
|
|
{Opt_noinline_dentry, "noinline_dentry"},
|
|
{Opt_flush_merge, "flush_merge"},
|
|
{Opt_noflush_merge, "noflush_merge"},
|
|
{Opt_nobarrier, "nobarrier"},
|
|
{Opt_fastboot, "fastboot"},
|
|
{Opt_extent_cache, "extent_cache"},
|
|
{Opt_noextent_cache, "noextent_cache"},
|
|
{Opt_noinline_data, "noinline_data"},
|
|
{Opt_data_flush, "data_flush"},
|
|
{Opt_reserve_root, "reserve_root=%u"},
|
|
{Opt_resgid, "resgid=%u"},
|
|
{Opt_resuid, "resuid=%u"},
|
|
{Opt_mode, "mode=%s"},
|
|
{Opt_io_size_bits, "io_bits=%u"},
|
|
{Opt_fault_injection, "fault_injection=%u"},
|
|
{Opt_fault_type, "fault_type=%u"},
|
|
{Opt_lazytime, "lazytime"},
|
|
{Opt_nolazytime, "nolazytime"},
|
|
{Opt_quota, "quota"},
|
|
{Opt_noquota, "noquota"},
|
|
{Opt_usrquota, "usrquota"},
|
|
{Opt_grpquota, "grpquota"},
|
|
{Opt_prjquota, "prjquota"},
|
|
{Opt_usrjquota, "usrjquota=%s"},
|
|
{Opt_grpjquota, "grpjquota=%s"},
|
|
{Opt_prjjquota, "prjjquota=%s"},
|
|
{Opt_offusrjquota, "usrjquota="},
|
|
{Opt_offgrpjquota, "grpjquota="},
|
|
{Opt_offprjjquota, "prjjquota="},
|
|
{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
|
|
{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
|
|
{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
|
|
{Opt_whint, "whint_mode=%s"},
|
|
{Opt_alloc, "alloc_mode=%s"},
|
|
{Opt_fsync, "fsync_mode=%s"},
|
|
{Opt_test_dummy_encryption, "test_dummy_encryption"},
|
|
{Opt_checkpoint, "checkpoint=%s"},
|
|
{Opt_err, NULL},
|
|
};
|
|
|
|
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
|
|
{
|
|
block_t limit = (sbi->user_block_count << 1) / 1000;
|
|
|
|
/* limit is 0.2% */
|
|
if (test_opt(sbi, RESERVE_ROOT) &&
|
|
F2FS_OPTION(sbi).root_reserved_blocks > limit) {
|
|
F2FS_OPTION(sbi).root_reserved_blocks = limit;
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Reduce reserved blocks for root = %u",
|
|
F2FS_OPTION(sbi).root_reserved_blocks);
|
|
}
|
|
if (!test_opt(sbi, RESERVE_ROOT) &&
|
|
(!uid_eq(F2FS_OPTION(sbi).s_resuid,
|
|
make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
|
|
!gid_eq(F2FS_OPTION(sbi).s_resgid,
|
|
make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
|
|
from_kuid_munged(&init_user_ns,
|
|
F2FS_OPTION(sbi).s_resuid),
|
|
from_kgid_munged(&init_user_ns,
|
|
F2FS_OPTION(sbi).s_resgid));
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
|
|
|
|
inode_init_once(&fi->vfs_inode);
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
static const char * const quotatypes[] = INITQFNAMES;
|
|
#define QTYPE2NAME(t) (quotatypes[t])
|
|
static int f2fs_set_qf_name(struct super_block *sb, int qtype,
|
|
substring_t *args)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
char *qname;
|
|
int ret = -EINVAL;
|
|
|
|
if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Cannot change journaled "
|
|
"quota options when quota turned on");
|
|
return -EINVAL;
|
|
}
|
|
if (f2fs_sb_has_quota_ino(sb)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"QUOTA feature is enabled, so ignore qf_name");
|
|
return 0;
|
|
}
|
|
|
|
qname = match_strdup(args);
|
|
if (!qname) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Not enough memory for storing quotafile name");
|
|
return -EINVAL;
|
|
}
|
|
if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
|
|
if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
|
|
ret = 0;
|
|
else
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"%s quota file already specified",
|
|
QTYPE2NAME(qtype));
|
|
goto errout;
|
|
}
|
|
if (strchr(qname, '/')) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"quotafile must be on filesystem root");
|
|
goto errout;
|
|
}
|
|
F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
|
|
set_opt(sbi, QUOTA);
|
|
return 0;
|
|
errout:
|
|
kfree(qname);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
|
|
f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
|
|
" when quota turned on");
|
|
return -EINVAL;
|
|
}
|
|
kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
|
|
F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
|
|
{
|
|
/*
|
|
* We do the test below only for project quotas. 'usrquota' and
|
|
* 'grpquota' mount options are allowed even without quota feature
|
|
* to support legacy quotas in quota files.
|
|
*/
|
|
if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
|
|
"Cannot enable project quota enforcement.");
|
|
return -1;
|
|
}
|
|
if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
|
|
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
|
|
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
|
|
if (test_opt(sbi, USRQUOTA) &&
|
|
F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
|
|
clear_opt(sbi, USRQUOTA);
|
|
|
|
if (test_opt(sbi, GRPQUOTA) &&
|
|
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
|
|
clear_opt(sbi, GRPQUOTA);
|
|
|
|
if (test_opt(sbi, PRJQUOTA) &&
|
|
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
|
|
clear_opt(sbi, PRJQUOTA);
|
|
|
|
if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
|
|
test_opt(sbi, PRJQUOTA)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
|
|
"format mixing");
|
|
return -1;
|
|
}
|
|
|
|
if (!F2FS_OPTION(sbi).s_jquota_fmt) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
|
|
"not specified");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"QUOTA feature is enabled, so ignore jquota_fmt");
|
|
F2FS_OPTION(sbi).s_jquota_fmt = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int parse_options(struct super_block *sb, char *options)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
substring_t args[MAX_OPT_ARGS];
|
|
char *p, *name;
|
|
int arg = 0;
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
#ifdef CONFIG_QUOTA
|
|
int ret;
|
|
#endif
|
|
|
|
if (!options)
|
|
return 0;
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
int token;
|
|
if (!*p)
|
|
continue;
|
|
/*
|
|
* Initialize args struct so we know whether arg was
|
|
* found; some options take optional arguments.
|
|
*/
|
|
args[0].to = args[0].from = NULL;
|
|
token = match_token(p, f2fs_tokens, args);
|
|
|
|
switch (token) {
|
|
case Opt_gc_background:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
|
|
set_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
|
|
clear_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, FORCE_FG_GC);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_disable_roll_forward:
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
break;
|
|
case Opt_norecovery:
|
|
/* this option mounts f2fs with ro */
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
if (!f2fs_readonly(sb))
|
|
return -EINVAL;
|
|
break;
|
|
case Opt_discard:
|
|
set_opt(sbi, DISCARD);
|
|
break;
|
|
case Opt_nodiscard:
|
|
if (f2fs_sb_has_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"discard is required for zoned block devices");
|
|
return -EINVAL;
|
|
}
|
|
clear_opt(sbi, DISCARD);
|
|
break;
|
|
case Opt_noheap:
|
|
set_opt(sbi, NOHEAP);
|
|
break;
|
|
case Opt_heap:
|
|
clear_opt(sbi, NOHEAP);
|
|
break;
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
case Opt_user_xattr:
|
|
set_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
clear_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_inline_xattr:
|
|
set_opt(sbi, INLINE_XATTR);
|
|
break;
|
|
case Opt_noinline_xattr:
|
|
clear_opt(sbi, INLINE_XATTR);
|
|
break;
|
|
case Opt_inline_xattr_size:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
set_opt(sbi, INLINE_XATTR_SIZE);
|
|
F2FS_OPTION(sbi).inline_xattr_size = arg;
|
|
break;
|
|
#else
|
|
case Opt_user_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"user_xattr options not supported");
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"nouser_xattr options not supported");
|
|
break;
|
|
case Opt_inline_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"inline_xattr options not supported");
|
|
break;
|
|
case Opt_noinline_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"noinline_xattr options not supported");
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
case Opt_acl:
|
|
set_opt(sbi, POSIX_ACL);
|
|
break;
|
|
case Opt_noacl:
|
|
clear_opt(sbi, POSIX_ACL);
|
|
break;
|
|
#else
|
|
case Opt_acl:
|
|
f2fs_msg(sb, KERN_INFO, "acl options not supported");
|
|
break;
|
|
case Opt_noacl:
|
|
f2fs_msg(sb, KERN_INFO, "noacl options not supported");
|
|
break;
|
|
#endif
|
|
case Opt_active_logs:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
|
|
return -EINVAL;
|
|
F2FS_OPTION(sbi).active_logs = arg;
|
|
break;
|
|
case Opt_disable_ext_identify:
|
|
set_opt(sbi, DISABLE_EXT_IDENTIFY);
|
|
break;
|
|
case Opt_inline_data:
|
|
set_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_inline_dentry:
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_noinline_dentry:
|
|
clear_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_flush_merge:
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_noflush_merge:
|
|
clear_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_nobarrier:
|
|
set_opt(sbi, NOBARRIER);
|
|
break;
|
|
case Opt_fastboot:
|
|
set_opt(sbi, FASTBOOT);
|
|
break;
|
|
case Opt_extent_cache:
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noextent_cache:
|
|
clear_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noinline_data:
|
|
clear_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_data_flush:
|
|
set_opt(sbi, DATA_FLUSH);
|
|
break;
|
|
case Opt_reserve_root:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (test_opt(sbi, RESERVE_ROOT)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Preserve previous reserve_root=%u",
|
|
F2FS_OPTION(sbi).root_reserved_blocks);
|
|
} else {
|
|
F2FS_OPTION(sbi).root_reserved_blocks = arg;
|
|
set_opt(sbi, RESERVE_ROOT);
|
|
}
|
|
break;
|
|
case Opt_resuid:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
uid = make_kuid(current_user_ns(), arg);
|
|
if (!uid_valid(uid)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Invalid uid value %d", arg);
|
|
return -EINVAL;
|
|
}
|
|
F2FS_OPTION(sbi).s_resuid = uid;
|
|
break;
|
|
case Opt_resgid:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
gid = make_kgid(current_user_ns(), arg);
|
|
if (!gid_valid(gid)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Invalid gid value %d", arg);
|
|
return -EINVAL;
|
|
}
|
|
F2FS_OPTION(sbi).s_resgid = gid;
|
|
break;
|
|
case Opt_mode:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 8 &&
|
|
!strncmp(name, "adaptive", 8)) {
|
|
if (f2fs_sb_has_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"adaptive mode is not allowed with "
|
|
"zoned block device feature");
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
} else if (strlen(name) == 3 &&
|
|
!strncmp(name, "lfs", 3)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_io_size_bits:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"Not support %d, larger than %d",
|
|
1 << arg, BIO_MAX_PAGES);
|
|
return -EINVAL;
|
|
}
|
|
F2FS_OPTION(sbi).write_io_size_bits = arg;
|
|
break;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
case Opt_fault_injection:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
|
|
set_opt(sbi, FAULT_INJECTION);
|
|
break;
|
|
|
|
case Opt_fault_type:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
f2fs_build_fault_attr(sbi, 0, arg);
|
|
set_opt(sbi, FAULT_INJECTION);
|
|
break;
|
|
#else
|
|
case Opt_fault_injection:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"fault_injection options not supported");
|
|
break;
|
|
|
|
case Opt_fault_type:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"fault_type options not supported");
|
|
break;
|
|
#endif
|
|
case Opt_lazytime:
|
|
sb->s_flags |= SB_LAZYTIME;
|
|
break;
|
|
case Opt_nolazytime:
|
|
sb->s_flags &= ~SB_LAZYTIME;
|
|
break;
|
|
#ifdef CONFIG_QUOTA
|
|
case Opt_quota:
|
|
case Opt_usrquota:
|
|
set_opt(sbi, USRQUOTA);
|
|
break;
|
|
case Opt_grpquota:
|
|
set_opt(sbi, GRPQUOTA);
|
|
break;
|
|
case Opt_prjquota:
|
|
set_opt(sbi, PRJQUOTA);
|
|
break;
|
|
case Opt_usrjquota:
|
|
ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_grpjquota:
|
|
ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_prjjquota:
|
|
ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_offusrjquota:
|
|
ret = f2fs_clear_qf_name(sb, USRQUOTA);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_offgrpjquota:
|
|
ret = f2fs_clear_qf_name(sb, GRPQUOTA);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_offprjjquota:
|
|
ret = f2fs_clear_qf_name(sb, PRJQUOTA);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case Opt_jqfmt_vfsold:
|
|
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
|
|
break;
|
|
case Opt_jqfmt_vfsv0:
|
|
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
|
|
break;
|
|
case Opt_jqfmt_vfsv1:
|
|
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
|
|
break;
|
|
case Opt_noquota:
|
|
clear_opt(sbi, QUOTA);
|
|
clear_opt(sbi, USRQUOTA);
|
|
clear_opt(sbi, GRPQUOTA);
|
|
clear_opt(sbi, PRJQUOTA);
|
|
break;
|
|
#else
|
|
case Opt_quota:
|
|
case Opt_usrquota:
|
|
case Opt_grpquota:
|
|
case Opt_prjquota:
|
|
case Opt_usrjquota:
|
|
case Opt_grpjquota:
|
|
case Opt_prjjquota:
|
|
case Opt_offusrjquota:
|
|
case Opt_offgrpjquota:
|
|
case Opt_offprjjquota:
|
|
case Opt_jqfmt_vfsold:
|
|
case Opt_jqfmt_vfsv0:
|
|
case Opt_jqfmt_vfsv1:
|
|
case Opt_noquota:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"quota operations not supported");
|
|
break;
|
|
#endif
|
|
case Opt_whint:
|
|
name = match_strdup(&args[0]);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 10 &&
|
|
!strncmp(name, "user-based", 10)) {
|
|
F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
|
|
} else if (strlen(name) == 3 &&
|
|
!strncmp(name, "off", 3)) {
|
|
F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
|
|
} else if (strlen(name) == 8 &&
|
|
!strncmp(name, "fs-based", 8)) {
|
|
F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_alloc:
|
|
name = match_strdup(&args[0]);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
if (strlen(name) == 7 &&
|
|
!strncmp(name, "default", 7)) {
|
|
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
|
|
} else if (strlen(name) == 5 &&
|
|
!strncmp(name, "reuse", 5)) {
|
|
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_fsync:
|
|
name = match_strdup(&args[0]);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 5 &&
|
|
!strncmp(name, "posix", 5)) {
|
|
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
|
|
} else if (strlen(name) == 6 &&
|
|
!strncmp(name, "strict", 6)) {
|
|
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
|
|
} else if (strlen(name) == 9 &&
|
|
!strncmp(name, "nobarrier", 9)) {
|
|
F2FS_OPTION(sbi).fsync_mode =
|
|
FSYNC_MODE_NOBARRIER;
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_test_dummy_encryption:
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
if (!f2fs_sb_has_encrypt(sb)) {
|
|
f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
|
|
return -EINVAL;
|
|
}
|
|
|
|
F2FS_OPTION(sbi).test_dummy_encryption = true;
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Test dummy encryption mode enabled");
|
|
#else
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Test dummy encryption mount option ignored");
|
|
#endif
|
|
break;
|
|
case Opt_checkpoint:
|
|
name = match_strdup(&args[0]);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
if (strlen(name) == 6 &&
|
|
!strncmp(name, "enable", 6)) {
|
|
clear_opt(sbi, DISABLE_CHECKPOINT);
|
|
} else if (strlen(name) == 7 &&
|
|
!strncmp(name, "disable", 7)) {
|
|
set_opt(sbi, DISABLE_CHECKPOINT);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
default:
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Unrecognized mount option \"%s\" or missing value",
|
|
p);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
#ifdef CONFIG_QUOTA
|
|
if (f2fs_check_quota_options(sbi))
|
|
return -EINVAL;
|
|
#else
|
|
if (f2fs_sb_has_quota_ino(sbi->sb) && !f2fs_readonly(sbi->sb)) {
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Filesystem with quota feature cannot be mounted RDWR "
|
|
"without CONFIG_QUOTA");
|
|
return -EINVAL;
|
|
}
|
|
if (f2fs_sb_has_project_quota(sbi->sb) && !f2fs_readonly(sbi->sb)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Filesystem with project quota feature cannot be "
|
|
"mounted RDWR without CONFIG_QUOTA");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Should set mode=lfs with %uKB-sized IO",
|
|
F2FS_IO_SIZE_KB(sbi));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_opt(sbi, INLINE_XATTR_SIZE)) {
|
|
if (!f2fs_sb_has_extra_attr(sb) ||
|
|
!f2fs_sb_has_flexible_inline_xattr(sb)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"extra_attr or flexible_inline_xattr "
|
|
"feature is off");
|
|
return -EINVAL;
|
|
}
|
|
if (!test_opt(sbi, INLINE_XATTR)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"inline_xattr_size option should be "
|
|
"set with inline_xattr option");
|
|
return -EINVAL;
|
|
}
|
|
if (!F2FS_OPTION(sbi).inline_xattr_size ||
|
|
F2FS_OPTION(sbi).inline_xattr_size >=
|
|
DEF_ADDRS_PER_INODE -
|
|
F2FS_TOTAL_EXTRA_ATTR_SIZE -
|
|
DEF_INLINE_RESERVED_SIZE -
|
|
DEF_MIN_INLINE_SIZE) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"inline xattr size is out of range");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"LFS not compatible with checkpoint=disable\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Not pass down write hints if the number of active logs is lesser
|
|
* than NR_CURSEG_TYPE.
|
|
*/
|
|
if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
|
|
F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
|
|
return 0;
|
|
}
|
|
|
|
static struct inode *f2fs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct f2fs_inode_info *fi;
|
|
|
|
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
|
|
if (!fi)
|
|
return NULL;
|
|
|
|
init_once((void *) fi);
|
|
|
|
/* Initialize f2fs-specific inode info */
|
|
atomic_set(&fi->dirty_pages, 0);
|
|
init_rwsem(&fi->i_sem);
|
|
INIT_LIST_HEAD(&fi->dirty_list);
|
|
INIT_LIST_HEAD(&fi->gdirty_list);
|
|
INIT_LIST_HEAD(&fi->inmem_ilist);
|
|
INIT_LIST_HEAD(&fi->inmem_pages);
|
|
mutex_init(&fi->inmem_lock);
|
|
init_rwsem(&fi->i_gc_rwsem[READ]);
|
|
init_rwsem(&fi->i_gc_rwsem[WRITE]);
|
|
init_rwsem(&fi->i_mmap_sem);
|
|
init_rwsem(&fi->i_xattr_sem);
|
|
|
|
/* Will be used by directory only */
|
|
fi->i_dir_level = F2FS_SB(sb)->dir_level;
|
|
|
|
return &fi->vfs_inode;
|
|
}
|
|
|
|
static int f2fs_drop_inode(struct inode *inode)
|
|
{
|
|
int ret;
|
|
/*
|
|
* This is to avoid a deadlock condition like below.
|
|
* writeback_single_inode(inode)
|
|
* - f2fs_write_data_page
|
|
* - f2fs_gc -> iput -> evict
|
|
* - inode_wait_for_writeback(inode)
|
|
*/
|
|
if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
|
|
if (!inode->i_nlink && !is_bad_inode(inode)) {
|
|
/* to avoid evict_inode call simultaneously */
|
|
atomic_inc(&inode->i_count);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
/* some remained atomic pages should discarded */
|
|
if (f2fs_is_atomic_file(inode))
|
|
f2fs_drop_inmem_pages(inode);
|
|
|
|
/* should remain fi->extent_tree for writepage */
|
|
f2fs_destroy_extent_node(inode);
|
|
|
|
sb_start_intwrite(inode->i_sb);
|
|
f2fs_i_size_write(inode, 0);
|
|
|
|
if (F2FS_HAS_BLOCKS(inode))
|
|
f2fs_truncate(inode);
|
|
|
|
sb_end_intwrite(inode->i_sb);
|
|
|
|
spin_lock(&inode->i_lock);
|
|
atomic_dec(&inode->i_count);
|
|
}
|
|
trace_f2fs_drop_inode(inode, 0);
|
|
return 0;
|
|
}
|
|
ret = generic_drop_inode(inode);
|
|
trace_f2fs_drop_inode(inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_inode_dirtied(struct inode *inode, bool sync)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int ret = 0;
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
ret = 1;
|
|
} else {
|
|
set_inode_flag(inode, FI_DIRTY_INODE);
|
|
stat_inc_dirty_inode(sbi, DIRTY_META);
|
|
}
|
|
if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
|
|
list_add_tail(&F2FS_I(inode)->gdirty_list,
|
|
&sbi->inode_list[DIRTY_META]);
|
|
inc_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
}
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return ret;
|
|
}
|
|
|
|
void f2fs_inode_synced(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return;
|
|
}
|
|
if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
|
|
list_del_init(&F2FS_I(inode)->gdirty_list);
|
|
dec_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
}
|
|
clear_inode_flag(inode, FI_DIRTY_INODE);
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
}
|
|
|
|
/*
|
|
* f2fs_dirty_inode() is called from __mark_inode_dirty()
|
|
*
|
|
* We should call set_dirty_inode to write the dirty inode through write_inode.
|
|
*/
|
|
static void f2fs_dirty_inode(struct inode *inode, int flags)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
|
|
inode->i_ino == F2FS_META_INO(sbi))
|
|
return;
|
|
|
|
if (flags == I_DIRTY_TIME)
|
|
return;
|
|
|
|
if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
|
|
f2fs_inode_dirtied(inode, false);
|
|
}
|
|
|
|
static void f2fs_i_callback(struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
|
|
}
|
|
|
|
static void f2fs_destroy_inode(struct inode *inode)
|
|
{
|
|
call_rcu(&inode->i_rcu, f2fs_i_callback);
|
|
}
|
|
|
|
static void destroy_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
percpu_counter_destroy(&sbi->alloc_valid_block_count);
|
|
percpu_counter_destroy(&sbi->total_valid_inode_count);
|
|
}
|
|
|
|
static void destroy_device_list(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
blkdev_put(FDEV(i).bdev, FMODE_EXCL);
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
kfree(FDEV(i).blkz_type);
|
|
#endif
|
|
}
|
|
kfree(sbi->devs);
|
|
}
|
|
|
|
static void f2fs_put_super(struct super_block *sb)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int i;
|
|
bool dropped;
|
|
|
|
f2fs_quota_off_umount(sb);
|
|
|
|
/* prevent remaining shrinker jobs */
|
|
mutex_lock(&sbi->umount_mutex);
|
|
|
|
/*
|
|
* We don't need to do checkpoint when superblock is clean.
|
|
* But, the previous checkpoint was not done by umount, it needs to do
|
|
* clean checkpoint again.
|
|
*/
|
|
if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT,
|
|
};
|
|
f2fs_write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
/* be sure to wait for any on-going discard commands */
|
|
dropped = f2fs_wait_discard_bios(sbi);
|
|
|
|
if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
|
|
!sbi->discard_blks && !dropped) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT | CP_TRIMMED,
|
|
};
|
|
f2fs_write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
/* f2fs_write_checkpoint can update stat informaion */
|
|
f2fs_destroy_stats(sbi);
|
|
|
|
/*
|
|
* normally superblock is clean, so we need to release this.
|
|
* In addition, EIO will skip do checkpoint, we need this as well.
|
|
*/
|
|
f2fs_release_ino_entry(sbi, true);
|
|
|
|
f2fs_leave_shrinker(sbi);
|
|
mutex_unlock(&sbi->umount_mutex);
|
|
|
|
/* our cp_error case, we can wait for any writeback page */
|
|
f2fs_flush_merged_writes(sbi);
|
|
|
|
f2fs_wait_on_all_pages_writeback(sbi);
|
|
|
|
f2fs_bug_on(sbi, sbi->fsync_node_num);
|
|
|
|
iput(sbi->node_inode);
|
|
iput(sbi->meta_inode);
|
|
|
|
/* destroy f2fs internal modules */
|
|
f2fs_destroy_node_manager(sbi);
|
|
f2fs_destroy_segment_manager(sbi);
|
|
|
|
kfree(sbi->ckpt);
|
|
|
|
f2fs_unregister_sysfs(sbi);
|
|
|
|
sb->s_fs_info = NULL;
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi->raw_super);
|
|
|
|
destroy_device_list(sbi);
|
|
mempool_destroy(sbi->write_io_dummy);
|
|
#ifdef CONFIG_QUOTA
|
|
for (i = 0; i < MAXQUOTAS; i++)
|
|
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
|
|
#endif
|
|
destroy_percpu_info(sbi);
|
|
for (i = 0; i < NR_PAGE_TYPE; i++)
|
|
kfree(sbi->write_io[i]);
|
|
kfree(sbi);
|
|
}
|
|
|
|
int f2fs_sync_fs(struct super_block *sb, int sync)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int err = 0;
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return 0;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
|
|
return 0;
|
|
|
|
trace_f2fs_sync_fs(sb, sync);
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
return -EAGAIN;
|
|
|
|
if (sync) {
|
|
struct cp_control cpc;
|
|
|
|
cpc.reason = __get_cp_reason(sbi);
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
err = f2fs_write_checkpoint(sbi, &cpc);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
}
|
|
f2fs_trace_ios(NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_freeze(struct super_block *sb)
|
|
{
|
|
if (f2fs_readonly(sb))
|
|
return 0;
|
|
|
|
/* IO error happened before */
|
|
if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
|
|
return -EIO;
|
|
|
|
/* must be clean, since sync_filesystem() was already called */
|
|
if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_unfreeze(struct super_block *sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
static int f2fs_statfs_project(struct super_block *sb,
|
|
kprojid_t projid, struct kstatfs *buf)
|
|
{
|
|
struct kqid qid;
|
|
struct dquot *dquot;
|
|
u64 limit;
|
|
u64 curblock;
|
|
|
|
qid = make_kqid_projid(projid);
|
|
dquot = dqget(sb, qid);
|
|
if (IS_ERR(dquot))
|
|
return PTR_ERR(dquot);
|
|
spin_lock(&dquot->dq_dqb_lock);
|
|
|
|
limit = (dquot->dq_dqb.dqb_bsoftlimit ?
|
|
dquot->dq_dqb.dqb_bsoftlimit :
|
|
dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
|
|
if (limit && buf->f_blocks > limit) {
|
|
curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
|
|
buf->f_blocks = limit;
|
|
buf->f_bfree = buf->f_bavail =
|
|
(buf->f_blocks > curblock) ?
|
|
(buf->f_blocks - curblock) : 0;
|
|
}
|
|
|
|
limit = dquot->dq_dqb.dqb_isoftlimit ?
|
|
dquot->dq_dqb.dqb_isoftlimit :
|
|
dquot->dq_dqb.dqb_ihardlimit;
|
|
if (limit && buf->f_files > limit) {
|
|
buf->f_files = limit;
|
|
buf->f_ffree =
|
|
(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
|
|
(buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
|
|
}
|
|
|
|
spin_unlock(&dquot->dq_dqb_lock);
|
|
dqput(dquot);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
|
|
block_t total_count, user_block_count, start_count;
|
|
u64 avail_node_count;
|
|
|
|
total_count = le64_to_cpu(sbi->raw_super->block_count);
|
|
user_block_count = sbi->user_block_count;
|
|
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
|
|
buf->f_type = F2FS_SUPER_MAGIC;
|
|
buf->f_bsize = sbi->blocksize;
|
|
|
|
buf->f_blocks = total_count - start_count;
|
|
buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
|
|
sbi->current_reserved_blocks;
|
|
if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
|
|
buf->f_bfree = 0;
|
|
else
|
|
buf->f_bfree -= sbi->unusable_block_count;
|
|
|
|
if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
|
|
buf->f_bavail = buf->f_bfree -
|
|
F2FS_OPTION(sbi).root_reserved_blocks;
|
|
else
|
|
buf->f_bavail = 0;
|
|
|
|
avail_node_count = sbi->total_node_count - sbi->nquota_files -
|
|
F2FS_RESERVED_NODE_NUM;
|
|
|
|
if (avail_node_count > user_block_count) {
|
|
buf->f_files = user_block_count;
|
|
buf->f_ffree = buf->f_bavail;
|
|
} else {
|
|
buf->f_files = avail_node_count;
|
|
buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
|
|
buf->f_bavail);
|
|
}
|
|
|
|
buf->f_namelen = F2FS_NAME_LEN;
|
|
buf->f_fsid.val[0] = (u32)id;
|
|
buf->f_fsid.val[1] = (u32)(id >> 32);
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
|
|
sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
|
|
f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline void f2fs_show_quota_options(struct seq_file *seq,
|
|
struct super_block *sb)
|
|
{
|
|
#ifdef CONFIG_QUOTA
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
if (F2FS_OPTION(sbi).s_jquota_fmt) {
|
|
char *fmtname = "";
|
|
|
|
switch (F2FS_OPTION(sbi).s_jquota_fmt) {
|
|
case QFMT_VFS_OLD:
|
|
fmtname = "vfsold";
|
|
break;
|
|
case QFMT_VFS_V0:
|
|
fmtname = "vfsv0";
|
|
break;
|
|
case QFMT_VFS_V1:
|
|
fmtname = "vfsv1";
|
|
break;
|
|
}
|
|
seq_printf(seq, ",jqfmt=%s", fmtname);
|
|
}
|
|
|
|
if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
|
|
seq_show_option(seq, "usrjquota",
|
|
F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
|
|
|
|
if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
|
|
seq_show_option(seq, "grpjquota",
|
|
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
|
|
|
|
if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
|
|
seq_show_option(seq, "prjjquota",
|
|
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
|
|
#endif
|
|
}
|
|
|
|
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
|
|
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
|
|
if (test_opt(sbi, FORCE_FG_GC))
|
|
seq_printf(seq, ",background_gc=%s", "sync");
|
|
else
|
|
seq_printf(seq, ",background_gc=%s", "on");
|
|
} else {
|
|
seq_printf(seq, ",background_gc=%s", "off");
|
|
}
|
|
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
|
|
seq_puts(seq, ",disable_roll_forward");
|
|
if (test_opt(sbi, DISCARD))
|
|
seq_puts(seq, ",discard");
|
|
if (test_opt(sbi, NOHEAP))
|
|
seq_puts(seq, ",no_heap");
|
|
else
|
|
seq_puts(seq, ",heap");
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
if (test_opt(sbi, XATTR_USER))
|
|
seq_puts(seq, ",user_xattr");
|
|
else
|
|
seq_puts(seq, ",nouser_xattr");
|
|
if (test_opt(sbi, INLINE_XATTR))
|
|
seq_puts(seq, ",inline_xattr");
|
|
else
|
|
seq_puts(seq, ",noinline_xattr");
|
|
if (test_opt(sbi, INLINE_XATTR_SIZE))
|
|
seq_printf(seq, ",inline_xattr_size=%u",
|
|
F2FS_OPTION(sbi).inline_xattr_size);
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
if (test_opt(sbi, POSIX_ACL))
|
|
seq_puts(seq, ",acl");
|
|
else
|
|
seq_puts(seq, ",noacl");
|
|
#endif
|
|
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
|
seq_puts(seq, ",disable_ext_identify");
|
|
if (test_opt(sbi, INLINE_DATA))
|
|
seq_puts(seq, ",inline_data");
|
|
else
|
|
seq_puts(seq, ",noinline_data");
|
|
if (test_opt(sbi, INLINE_DENTRY))
|
|
seq_puts(seq, ",inline_dentry");
|
|
else
|
|
seq_puts(seq, ",noinline_dentry");
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
|
|
seq_puts(seq, ",flush_merge");
|
|
if (test_opt(sbi, NOBARRIER))
|
|
seq_puts(seq, ",nobarrier");
|
|
if (test_opt(sbi, FASTBOOT))
|
|
seq_puts(seq, ",fastboot");
|
|
if (test_opt(sbi, EXTENT_CACHE))
|
|
seq_puts(seq, ",extent_cache");
|
|
else
|
|
seq_puts(seq, ",noextent_cache");
|
|
if (test_opt(sbi, DATA_FLUSH))
|
|
seq_puts(seq, ",data_flush");
|
|
|
|
seq_puts(seq, ",mode=");
|
|
if (test_opt(sbi, ADAPTIVE))
|
|
seq_puts(seq, "adaptive");
|
|
else if (test_opt(sbi, LFS))
|
|
seq_puts(seq, "lfs");
|
|
seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
|
|
if (test_opt(sbi, RESERVE_ROOT))
|
|
seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
|
|
F2FS_OPTION(sbi).root_reserved_blocks,
|
|
from_kuid_munged(&init_user_ns,
|
|
F2FS_OPTION(sbi).s_resuid),
|
|
from_kgid_munged(&init_user_ns,
|
|
F2FS_OPTION(sbi).s_resgid));
|
|
if (F2FS_IO_SIZE_BITS(sbi))
|
|
seq_printf(seq, ",io_bits=%u",
|
|
F2FS_OPTION(sbi).write_io_size_bits);
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
if (test_opt(sbi, FAULT_INJECTION)) {
|
|
seq_printf(seq, ",fault_injection=%u",
|
|
F2FS_OPTION(sbi).fault_info.inject_rate);
|
|
seq_printf(seq, ",fault_type=%u",
|
|
F2FS_OPTION(sbi).fault_info.inject_type);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_QUOTA
|
|
if (test_opt(sbi, QUOTA))
|
|
seq_puts(seq, ",quota");
|
|
if (test_opt(sbi, USRQUOTA))
|
|
seq_puts(seq, ",usrquota");
|
|
if (test_opt(sbi, GRPQUOTA))
|
|
seq_puts(seq, ",grpquota");
|
|
if (test_opt(sbi, PRJQUOTA))
|
|
seq_puts(seq, ",prjquota");
|
|
#endif
|
|
f2fs_show_quota_options(seq, sbi->sb);
|
|
if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
|
|
seq_printf(seq, ",whint_mode=%s", "user-based");
|
|
else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
|
|
seq_printf(seq, ",whint_mode=%s", "fs-based");
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
if (F2FS_OPTION(sbi).test_dummy_encryption)
|
|
seq_puts(seq, ",test_dummy_encryption");
|
|
#endif
|
|
|
|
if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
|
|
seq_printf(seq, ",alloc_mode=%s", "default");
|
|
else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
|
|
seq_printf(seq, ",alloc_mode=%s", "reuse");
|
|
|
|
if (test_opt(sbi, DISABLE_CHECKPOINT))
|
|
seq_puts(seq, ",checkpoint=disable");
|
|
|
|
if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
|
|
seq_printf(seq, ",fsync_mode=%s", "posix");
|
|
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
|
|
seq_printf(seq, ",fsync_mode=%s", "strict");
|
|
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
|
|
seq_printf(seq, ",fsync_mode=%s", "nobarrier");
|
|
return 0;
|
|
}
|
|
|
|
static void default_options(struct f2fs_sb_info *sbi)
|
|
{
|
|
/* init some FS parameters */
|
|
F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
|
|
F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
|
|
F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
|
|
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
|
|
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
|
|
F2FS_OPTION(sbi).test_dummy_encryption = false;
|
|
F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
|
|
F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
|
|
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, INLINE_XATTR);
|
|
set_opt(sbi, INLINE_DATA);
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
set_opt(sbi, NOHEAP);
|
|
clear_opt(sbi, DISABLE_CHECKPOINT);
|
|
sbi->sb->s_flags |= SB_LAZYTIME;
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
set_opt(sbi, DISCARD);
|
|
if (f2fs_sb_has_blkzoned(sbi->sb))
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
else
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
set_opt(sbi, XATTR_USER);
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
set_opt(sbi, POSIX_ACL);
|
|
#endif
|
|
|
|
f2fs_build_fault_attr(sbi, 0, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
static int f2fs_enable_quotas(struct super_block *sb);
|
|
#endif
|
|
|
|
static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct cp_control cpc;
|
|
int err;
|
|
|
|
sbi->sb->s_flags |= SB_ACTIVE;
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
f2fs_update_time(sbi, DISABLE_TIME);
|
|
|
|
while (!f2fs_time_over(sbi, DISABLE_TIME)) {
|
|
err = f2fs_gc(sbi, true, false, NULL_SEGNO);
|
|
if (err == -ENODATA)
|
|
break;
|
|
if (err && err != -EAGAIN) {
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
return err;
|
|
}
|
|
}
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
|
|
err = sync_filesystem(sbi->sb);
|
|
if (err)
|
|
return err;
|
|
|
|
if (f2fs_disable_cp_again(sbi))
|
|
return -EAGAIN;
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
cpc.reason = CP_PAUSE;
|
|
set_sbi_flag(sbi, SBI_CP_DISABLED);
|
|
f2fs_write_checkpoint(sbi, &cpc);
|
|
|
|
sbi->unusable_block_count = 0;
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
mutex_lock(&sbi->gc_mutex);
|
|
f2fs_dirty_to_prefree(sbi);
|
|
|
|
clear_sbi_flag(sbi, SBI_CP_DISABLED);
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
|
|
f2fs_sync_fs(sbi->sb, 1);
|
|
}
|
|
|
|
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct f2fs_mount_info org_mount_opt;
|
|
unsigned long old_sb_flags;
|
|
int err;
|
|
bool need_restart_gc = false;
|
|
bool need_stop_gc = false;
|
|
bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
|
|
bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
|
|
bool checkpoint_changed;
|
|
#ifdef CONFIG_QUOTA
|
|
int i, j;
|
|
#endif
|
|
|
|
/*
|
|
* Save the old mount options in case we
|
|
* need to restore them.
|
|
*/
|
|
org_mount_opt = sbi->mount_opt;
|
|
old_sb_flags = sb->s_flags;
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
|
|
for (i = 0; i < MAXQUOTAS; i++) {
|
|
if (F2FS_OPTION(sbi).s_qf_names[i]) {
|
|
org_mount_opt.s_qf_names[i] =
|
|
kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
|
|
GFP_KERNEL);
|
|
if (!org_mount_opt.s_qf_names[i]) {
|
|
for (j = 0; j < i; j++)
|
|
kfree(org_mount_opt.s_qf_names[j]);
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
org_mount_opt.s_qf_names[i] = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* recover superblocks we couldn't write due to previous RO mount */
|
|
if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
|
|
err = f2fs_commit_super(sbi, false);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover all the superblocks, ret: %d", err);
|
|
if (!err)
|
|
clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
}
|
|
|
|
default_options(sbi);
|
|
|
|
/* parse mount options */
|
|
err = parse_options(sb, data);
|
|
if (err)
|
|
goto restore_opts;
|
|
checkpoint_changed =
|
|
disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
|
|
|
|
/*
|
|
* Previous and new state of filesystem is RO,
|
|
* so skip checking GC and FLUSH_MERGE conditions.
|
|
*/
|
|
if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
|
|
goto skip;
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
|
|
err = dquot_suspend(sb, -1);
|
|
if (err < 0)
|
|
goto restore_opts;
|
|
} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
|
|
/* dquot_resume needs RW */
|
|
sb->s_flags &= ~SB_RDONLY;
|
|
if (sb_any_quota_suspended(sb)) {
|
|
dquot_resume(sb, -1);
|
|
} else if (f2fs_sb_has_quota_ino(sb)) {
|
|
err = f2fs_enable_quotas(sb);
|
|
if (err)
|
|
goto restore_opts;
|
|
}
|
|
}
|
|
#endif
|
|
/* disallow enable/disable extent_cache dynamically */
|
|
if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"switch extent_cache option is not allowed");
|
|
goto restore_opts;
|
|
}
|
|
|
|
if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"disabling checkpoint not compatible with read-only");
|
|
goto restore_opts;
|
|
}
|
|
|
|
/*
|
|
* We stop the GC thread if FS is mounted as RO
|
|
* or if background_gc = off is passed in mount
|
|
* option. Also sync the filesystem.
|
|
*/
|
|
if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
|
|
if (sbi->gc_thread) {
|
|
f2fs_stop_gc_thread(sbi);
|
|
need_restart_gc = true;
|
|
}
|
|
} else if (!sbi->gc_thread) {
|
|
err = f2fs_start_gc_thread(sbi);
|
|
if (err)
|
|
goto restore_opts;
|
|
need_stop_gc = true;
|
|
}
|
|
|
|
if (*flags & SB_RDONLY ||
|
|
F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
|
|
writeback_inodes_sb(sb, WB_REASON_SYNC);
|
|
sync_inodes_sb(sb);
|
|
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
set_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
f2fs_sync_fs(sb, 1);
|
|
clear_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
}
|
|
|
|
if (checkpoint_changed) {
|
|
if (test_opt(sbi, DISABLE_CHECKPOINT)) {
|
|
err = f2fs_disable_checkpoint(sbi);
|
|
if (err)
|
|
goto restore_gc;
|
|
} else {
|
|
f2fs_enable_checkpoint(sbi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We stop issue flush thread if FS is mounted as RO
|
|
* or if flush_merge is not passed in mount option.
|
|
*/
|
|
if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
|
|
clear_opt(sbi, FLUSH_MERGE);
|
|
f2fs_destroy_flush_cmd_control(sbi, false);
|
|
} else {
|
|
err = f2fs_create_flush_cmd_control(sbi);
|
|
if (err)
|
|
goto restore_gc;
|
|
}
|
|
skip:
|
|
#ifdef CONFIG_QUOTA
|
|
/* Release old quota file names */
|
|
for (i = 0; i < MAXQUOTAS; i++)
|
|
kfree(org_mount_opt.s_qf_names[i]);
|
|
#endif
|
|
/* Update the POSIXACL Flag */
|
|
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
|
|
|
|
limit_reserve_root(sbi);
|
|
*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
|
|
return 0;
|
|
restore_gc:
|
|
if (need_restart_gc) {
|
|
if (f2fs_start_gc_thread(sbi))
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"background gc thread has stopped");
|
|
} else if (need_stop_gc) {
|
|
f2fs_stop_gc_thread(sbi);
|
|
}
|
|
restore_opts:
|
|
#ifdef CONFIG_QUOTA
|
|
F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
|
|
for (i = 0; i < MAXQUOTAS; i++) {
|
|
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
|
|
F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
|
|
}
|
|
#endif
|
|
sbi->mount_opt = org_mount_opt;
|
|
sb->s_flags = old_sb_flags;
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Read data from quotafile */
|
|
static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
|
|
size_t len, loff_t off)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
struct address_space *mapping = inode->i_mapping;
|
|
block_t blkidx = F2FS_BYTES_TO_BLK(off);
|
|
int offset = off & (sb->s_blocksize - 1);
|
|
int tocopy;
|
|
size_t toread;
|
|
loff_t i_size = i_size_read(inode);
|
|
struct page *page;
|
|
char *kaddr;
|
|
|
|
if (off > i_size)
|
|
return 0;
|
|
|
|
if (off + len > i_size)
|
|
len = i_size - off;
|
|
toread = len;
|
|
while (toread > 0) {
|
|
tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
|
|
repeat:
|
|
page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
|
|
if (IS_ERR(page)) {
|
|
if (PTR_ERR(page) == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto repeat;
|
|
}
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
return -EIO;
|
|
}
|
|
|
|
kaddr = kmap_atomic(page);
|
|
memcpy(data, kaddr + offset, tocopy);
|
|
kunmap_atomic(kaddr);
|
|
f2fs_put_page(page, 1);
|
|
|
|
offset = 0;
|
|
toread -= tocopy;
|
|
data += tocopy;
|
|
blkidx++;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* Write to quotafile */
|
|
static ssize_t f2fs_quota_write(struct super_block *sb, int type,
|
|
const char *data, size_t len, loff_t off)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
struct address_space *mapping = inode->i_mapping;
|
|
const struct address_space_operations *a_ops = mapping->a_ops;
|
|
int offset = off & (sb->s_blocksize - 1);
|
|
size_t towrite = len;
|
|
struct page *page;
|
|
char *kaddr;
|
|
int err = 0;
|
|
int tocopy;
|
|
|
|
while (towrite > 0) {
|
|
tocopy = min_t(unsigned long, sb->s_blocksize - offset,
|
|
towrite);
|
|
retry:
|
|
err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
|
|
&page, NULL);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
break;
|
|
}
|
|
|
|
kaddr = kmap_atomic(page);
|
|
memcpy(kaddr + offset, data, tocopy);
|
|
kunmap_atomic(kaddr);
|
|
flush_dcache_page(page);
|
|
|
|
a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
|
|
page, NULL);
|
|
offset = 0;
|
|
towrite -= tocopy;
|
|
off += tocopy;
|
|
data += tocopy;
|
|
cond_resched();
|
|
}
|
|
|
|
if (len == towrite)
|
|
return err;
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
return len - towrite;
|
|
}
|
|
|
|
static struct dquot **f2fs_get_dquots(struct inode *inode)
|
|
{
|
|
return F2FS_I(inode)->i_dquot;
|
|
}
|
|
|
|
static qsize_t *f2fs_get_reserved_space(struct inode *inode)
|
|
{
|
|
return &F2FS_I(inode)->i_reserved_quota;
|
|
}
|
|
|
|
static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"quota sysfile may be corrupted, skip loading it");
|
|
return 0;
|
|
}
|
|
|
|
return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
|
|
F2FS_OPTION(sbi).s_jquota_fmt, type);
|
|
}
|
|
|
|
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
|
|
{
|
|
int enabled = 0;
|
|
int i, err;
|
|
|
|
if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
|
|
err = f2fs_enable_quotas(sbi->sb);
|
|
if (err) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Cannot turn on quota_ino: %d", err);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < MAXQUOTAS; i++) {
|
|
if (F2FS_OPTION(sbi).s_qf_names[i]) {
|
|
err = f2fs_quota_on_mount(sbi, i);
|
|
if (!err) {
|
|
enabled = 1;
|
|
continue;
|
|
}
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Cannot turn on quotas: %d on %d", err, i);
|
|
}
|
|
}
|
|
return enabled;
|
|
}
|
|
|
|
static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *qf_inode;
|
|
unsigned long qf_inum;
|
|
int err;
|
|
|
|
BUG_ON(!f2fs_sb_has_quota_ino(sb));
|
|
|
|
qf_inum = f2fs_qf_ino(sb, type);
|
|
if (!qf_inum)
|
|
return -EPERM;
|
|
|
|
qf_inode = f2fs_iget(sb, qf_inum);
|
|
if (IS_ERR(qf_inode)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Bad quota inode %u:%lu", type, qf_inum);
|
|
return PTR_ERR(qf_inode);
|
|
}
|
|
|
|
/* Don't account quota for quota files to avoid recursion */
|
|
qf_inode->i_flags |= S_NOQUOTA;
|
|
err = dquot_enable(qf_inode, type, format_id, flags);
|
|
iput(qf_inode);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_enable_quotas(struct super_block *sb)
|
|
{
|
|
int type, err = 0;
|
|
unsigned long qf_inum;
|
|
bool quota_mopt[MAXQUOTAS] = {
|
|
test_opt(F2FS_SB(sb), USRQUOTA),
|
|
test_opt(F2FS_SB(sb), GRPQUOTA),
|
|
test_opt(F2FS_SB(sb), PRJQUOTA),
|
|
};
|
|
|
|
if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"quota file may be corrupted, skip loading it");
|
|
return 0;
|
|
}
|
|
|
|
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
|
|
|
|
for (type = 0; type < MAXQUOTAS; type++) {
|
|
qf_inum = f2fs_qf_ino(sb, type);
|
|
if (qf_inum) {
|
|
err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
|
|
DQUOT_USAGE_ENABLED |
|
|
(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to enable quota tracking "
|
|
"(type=%d, err=%d). Please run "
|
|
"fsck to fix.", type, err);
|
|
for (type--; type >= 0; type--)
|
|
dquot_quota_off(sb, type);
|
|
set_sbi_flag(F2FS_SB(sb),
|
|
SBI_QUOTA_NEED_REPAIR);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_quota_sync(struct super_block *sb, int type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct quota_info *dqopt = sb_dqopt(sb);
|
|
int cnt;
|
|
int ret;
|
|
|
|
ret = dquot_writeback_dquots(sb, type);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Now when everything is written we can discard the pagecache so
|
|
* that userspace sees the changes.
|
|
*/
|
|
for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
|
|
struct address_space *mapping;
|
|
|
|
if (type != -1 && cnt != type)
|
|
continue;
|
|
if (!sb_has_quota_active(sb, cnt))
|
|
continue;
|
|
|
|
mapping = dqopt->files[cnt]->i_mapping;
|
|
|
|
ret = filemap_fdatawrite(mapping);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* if we are using journalled quota */
|
|
if (is_journalled_quota(sbi))
|
|
continue;
|
|
|
|
ret = filemap_fdatawait(mapping);
|
|
if (ret)
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
|
|
inode_lock(dqopt->files[cnt]);
|
|
truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
|
|
inode_unlock(dqopt->files[cnt]);
|
|
}
|
|
out:
|
|
if (ret)
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
|
|
const struct path *path)
|
|
{
|
|
struct inode *inode;
|
|
int err;
|
|
|
|
err = f2fs_quota_sync(sb, type);
|
|
if (err)
|
|
return err;
|
|
|
|
err = dquot_quota_on(sb, type, format_id, path);
|
|
if (err)
|
|
return err;
|
|
|
|
inode = d_inode(path->dentry);
|
|
|
|
inode_lock(inode);
|
|
F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
|
|
f2fs_set_inode_flags(inode);
|
|
inode_unlock(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_quota_off(struct super_block *sb, int type)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
int err;
|
|
|
|
if (!inode || !igrab(inode))
|
|
return dquot_quota_off(sb, type);
|
|
|
|
err = f2fs_quota_sync(sb, type);
|
|
if (err)
|
|
goto out_put;
|
|
|
|
err = dquot_quota_off(sb, type);
|
|
if (err || f2fs_sb_has_quota_ino(sb))
|
|
goto out_put;
|
|
|
|
inode_lock(inode);
|
|
F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
|
|
f2fs_set_inode_flags(inode);
|
|
inode_unlock(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
out_put:
|
|
iput(inode);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_quota_off_umount(struct super_block *sb)
|
|
{
|
|
int type;
|
|
int err;
|
|
|
|
for (type = 0; type < MAXQUOTAS; type++) {
|
|
err = f2fs_quota_off(sb, type);
|
|
if (err) {
|
|
int ret = dquot_quota_off(sb, type);
|
|
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Fail to turn off disk quota "
|
|
"(type: %d, err: %d, ret:%d), Please "
|
|
"run fsck to fix it.", type, err, ret);
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
|
|
{
|
|
struct quota_info *dqopt = sb_dqopt(sb);
|
|
int type;
|
|
|
|
for (type = 0; type < MAXQUOTAS; type++) {
|
|
if (!dqopt->files[type])
|
|
continue;
|
|
f2fs_inode_synced(dqopt->files[type]);
|
|
}
|
|
}
|
|
|
|
static int f2fs_dquot_commit(struct dquot *dquot)
|
|
{
|
|
int ret;
|
|
|
|
ret = dquot_commit(dquot);
|
|
if (ret < 0)
|
|
set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_dquot_acquire(struct dquot *dquot)
|
|
{
|
|
int ret;
|
|
|
|
ret = dquot_acquire(dquot);
|
|
if (ret < 0)
|
|
set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_dquot_release(struct dquot *dquot)
|
|
{
|
|
int ret;
|
|
|
|
ret = dquot_release(dquot);
|
|
if (ret < 0)
|
|
set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
|
|
{
|
|
struct super_block *sb = dquot->dq_sb;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int ret;
|
|
|
|
ret = dquot_mark_dquot_dirty(dquot);
|
|
|
|
/* if we are using journalled quota */
|
|
if (is_journalled_quota(sbi))
|
|
set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_dquot_commit_info(struct super_block *sb, int type)
|
|
{
|
|
int ret;
|
|
|
|
ret = dquot_commit_info(sb, type);
|
|
if (ret < 0)
|
|
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
|
|
{
|
|
*projid = F2FS_I(inode)->i_projid;
|
|
return 0;
|
|
}
|
|
|
|
static const struct dquot_operations f2fs_quota_operations = {
|
|
.get_reserved_space = f2fs_get_reserved_space,
|
|
.write_dquot = f2fs_dquot_commit,
|
|
.acquire_dquot = f2fs_dquot_acquire,
|
|
.release_dquot = f2fs_dquot_release,
|
|
.mark_dirty = f2fs_dquot_mark_dquot_dirty,
|
|
.write_info = f2fs_dquot_commit_info,
|
|
.alloc_dquot = dquot_alloc,
|
|
.destroy_dquot = dquot_destroy,
|
|
.get_projid = f2fs_get_projid,
|
|
.get_next_id = dquot_get_next_id,
|
|
};
|
|
|
|
static const struct quotactl_ops f2fs_quotactl_ops = {
|
|
.quota_on = f2fs_quota_on,
|
|
.quota_off = f2fs_quota_off,
|
|
.quota_sync = f2fs_quota_sync,
|
|
.get_state = dquot_get_state,
|
|
.set_info = dquot_set_dqinfo,
|
|
.get_dqblk = dquot_get_dqblk,
|
|
.set_dqblk = dquot_set_dqblk,
|
|
.get_nextdqblk = dquot_get_next_dqblk,
|
|
};
|
|
#else
|
|
int f2fs_quota_sync(struct super_block *sb, int type)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_quota_off_umount(struct super_block *sb)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static const struct super_operations f2fs_sops = {
|
|
.alloc_inode = f2fs_alloc_inode,
|
|
.drop_inode = f2fs_drop_inode,
|
|
.destroy_inode = f2fs_destroy_inode,
|
|
.write_inode = f2fs_write_inode,
|
|
.dirty_inode = f2fs_dirty_inode,
|
|
.show_options = f2fs_show_options,
|
|
#ifdef CONFIG_QUOTA
|
|
.quota_read = f2fs_quota_read,
|
|
.quota_write = f2fs_quota_write,
|
|
.get_dquots = f2fs_get_dquots,
|
|
#endif
|
|
.evict_inode = f2fs_evict_inode,
|
|
.put_super = f2fs_put_super,
|
|
.sync_fs = f2fs_sync_fs,
|
|
.freeze_fs = f2fs_freeze,
|
|
.unfreeze_fs = f2fs_unfreeze,
|
|
.statfs = f2fs_statfs,
|
|
.remount_fs = f2fs_remount,
|
|
};
|
|
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
|
|
{
|
|
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, NULL);
|
|
}
|
|
|
|
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
|
|
void *fs_data)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
/*
|
|
* Encrypting the root directory is not allowed because fsck
|
|
* expects lost+found directory to exist and remain unencrypted
|
|
* if LOST_FOUND feature is enabled.
|
|
*
|
|
*/
|
|
if (f2fs_sb_has_lost_found(sbi->sb) &&
|
|
inode->i_ino == F2FS_ROOT_INO(sbi))
|
|
return -EPERM;
|
|
|
|
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, fs_data, XATTR_CREATE);
|
|
}
|
|
|
|
static bool f2fs_dummy_context(struct inode *inode)
|
|
{
|
|
return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
|
|
}
|
|
|
|
static const struct fscrypt_operations f2fs_cryptops = {
|
|
.key_prefix = "f2fs:",
|
|
.get_context = f2fs_get_context,
|
|
.set_context = f2fs_set_context,
|
|
.dummy_context = f2fs_dummy_context,
|
|
.empty_dir = f2fs_empty_dir,
|
|
.max_namelen = F2FS_NAME_LEN,
|
|
};
|
|
#endif
|
|
|
|
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
|
|
u64 ino, u32 generation)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct inode *inode;
|
|
|
|
if (f2fs_check_nid_range(sbi, ino))
|
|
return ERR_PTR(-ESTALE);
|
|
|
|
/*
|
|
* f2fs_iget isn't quite right if the inode is currently unallocated!
|
|
* However f2fs_iget currently does appropriate checks to handle stale
|
|
* inodes so everything is OK.
|
|
*/
|
|
inode = f2fs_iget(sb, ino);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
if (unlikely(generation && inode->i_generation != generation)) {
|
|
/* we didn't find the right inode.. */
|
|
iput(inode);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static const struct export_operations f2fs_export_ops = {
|
|
.fh_to_dentry = f2fs_fh_to_dentry,
|
|
.fh_to_parent = f2fs_fh_to_parent,
|
|
.get_parent = f2fs_get_parent,
|
|
};
|
|
|
|
static loff_t max_file_blocks(void)
|
|
{
|
|
loff_t result = 0;
|
|
loff_t leaf_count = ADDRS_PER_BLOCK;
|
|
|
|
/*
|
|
* note: previously, result is equal to (DEF_ADDRS_PER_INODE -
|
|
* DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
|
|
* space in inode.i_addr, it will be more safe to reassign
|
|
* result as zero.
|
|
*/
|
|
|
|
/* two direct node blocks */
|
|
result += (leaf_count * 2);
|
|
|
|
/* two indirect node blocks */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += (leaf_count * 2);
|
|
|
|
/* one double indirect node block */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += leaf_count;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int __f2fs_commit_super(struct buffer_head *bh,
|
|
struct f2fs_super_block *super)
|
|
{
|
|
lock_buffer(bh);
|
|
if (super)
|
|
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
|
|
set_buffer_dirty(bh);
|
|
unlock_buffer(bh);
|
|
|
|
/* it's rare case, we can do fua all the time */
|
|
return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
|
|
}
|
|
|
|
static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
|
|
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
|
|
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
|
|
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
|
|
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
|
|
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
|
|
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
|
|
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
|
|
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
|
|
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
|
|
u32 segment_count = le32_to_cpu(raw_super->segment_count);
|
|
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
u64 main_end_blkaddr = main_blkaddr +
|
|
(segment_count_main << log_blocks_per_seg);
|
|
u64 seg_end_blkaddr = segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg);
|
|
|
|
if (segment0_blkaddr != cp_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
|
|
segment0_blkaddr, cp_blkaddr);
|
|
return true;
|
|
}
|
|
|
|
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
|
|
sit_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
|
|
cp_blkaddr, sit_blkaddr,
|
|
segment_count_ckpt << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
|
|
nat_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
|
|
sit_blkaddr, nat_blkaddr,
|
|
segment_count_sit << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
|
|
ssa_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
|
|
nat_blkaddr, ssa_blkaddr,
|
|
segment_count_nat << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
|
|
main_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
|
|
ssa_blkaddr, main_blkaddr,
|
|
segment_count_ssa << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (main_end_blkaddr > seg_end_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
|
|
main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
return true;
|
|
} else if (main_end_blkaddr < seg_end_blkaddr) {
|
|
int err = 0;
|
|
char *res;
|
|
|
|
/* fix in-memory information all the time */
|
|
raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
|
|
segment0_blkaddr) >> log_blocks_per_seg);
|
|
|
|
if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
res = "internally";
|
|
} else {
|
|
err = __f2fs_commit_super(bh, NULL);
|
|
res = err ? "failed" : "done";
|
|
}
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Fix alignment : %s, start(%u) end(%u) block(%u)",
|
|
res, main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
if (err)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
block_t segment_count, segs_per_sec, secs_per_zone;
|
|
block_t total_sections, blocks_per_seg;
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
unsigned int blocksize;
|
|
size_t crc_offset = 0;
|
|
__u32 crc = 0;
|
|
|
|
/* Check checksum_offset and crc in superblock */
|
|
if (le32_to_cpu(raw_super->feature) & F2FS_FEATURE_SB_CHKSUM) {
|
|
crc_offset = le32_to_cpu(raw_super->checksum_offset);
|
|
if (crc_offset !=
|
|
offsetof(struct f2fs_super_block, crc)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid SB checksum offset: %zu",
|
|
crc_offset);
|
|
return 1;
|
|
}
|
|
crc = le32_to_cpu(raw_super->crc);
|
|
if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid SB checksum value: %u", crc);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Magic Mismatch, valid(0x%x) - read(0x%x)",
|
|
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB page cache size */
|
|
if (F2FS_BLKSIZE != PAGE_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid page_cache_size (%lu), supports only 4KB\n",
|
|
PAGE_SIZE);
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB block size */
|
|
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
|
|
if (blocksize != F2FS_BLKSIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid blocksize (%u), supports only 4KB\n",
|
|
blocksize);
|
|
return 1;
|
|
}
|
|
|
|
/* check log blocks per segment */
|
|
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log blocks per segment (%u)\n",
|
|
le32_to_cpu(raw_super->log_blocks_per_seg));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support 512/1024/2048/4096 bytes sector size */
|
|
if (le32_to_cpu(raw_super->log_sectorsize) >
|
|
F2FS_MAX_LOG_SECTOR_SIZE ||
|
|
le32_to_cpu(raw_super->log_sectorsize) <
|
|
F2FS_MIN_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
if (le32_to_cpu(raw_super->log_sectors_per_block) +
|
|
le32_to_cpu(raw_super->log_sectorsize) !=
|
|
F2FS_MAX_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log sectors per block(%u) log sectorsize(%u)",
|
|
le32_to_cpu(raw_super->log_sectors_per_block),
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
|
|
segment_count = le32_to_cpu(raw_super->segment_count);
|
|
segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
|
|
secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
|
|
total_sections = le32_to_cpu(raw_super->section_count);
|
|
|
|
/* blocks_per_seg should be 512, given the above check */
|
|
blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
|
|
if (segment_count > F2FS_MAX_SEGMENT ||
|
|
segment_count < F2FS_MIN_SEGMENTS) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid segment count (%u)",
|
|
segment_count);
|
|
return 1;
|
|
}
|
|
|
|
if (total_sections > segment_count ||
|
|
total_sections < F2FS_MIN_SEGMENTS ||
|
|
segs_per_sec > segment_count || !segs_per_sec) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid segment/section count (%u, %u x %u)",
|
|
segment_count, total_sections, segs_per_sec);
|
|
return 1;
|
|
}
|
|
|
|
if ((segment_count / segs_per_sec) < total_sections) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Small segment_count (%u < %u * %u)",
|
|
segment_count, segs_per_sec, total_sections);
|
|
return 1;
|
|
}
|
|
|
|
if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong segment_count / block_count (%u > %u)",
|
|
segment_count, le32_to_cpu(raw_super->block_count));
|
|
return 1;
|
|
}
|
|
|
|
if (secs_per_zone > total_sections || !secs_per_zone) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong secs_per_zone / total_sections (%u, %u)",
|
|
secs_per_zone, total_sections);
|
|
return 1;
|
|
}
|
|
if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
|
|
raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
|
|
(le32_to_cpu(raw_super->extension_count) +
|
|
raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Corrupted extension count (%u + %u > %u)",
|
|
le32_to_cpu(raw_super->extension_count),
|
|
raw_super->hot_ext_count,
|
|
F2FS_MAX_EXTENSION);
|
|
return 1;
|
|
}
|
|
|
|
if (le32_to_cpu(raw_super->cp_payload) >
|
|
(blocks_per_seg - F2FS_CP_PACKS)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Insane cp_payload (%u > %u)",
|
|
le32_to_cpu(raw_super->cp_payload),
|
|
blocks_per_seg - F2FS_CP_PACKS);
|
|
return 1;
|
|
}
|
|
|
|
/* check reserved ino info */
|
|
if (le32_to_cpu(raw_super->node_ino) != 1 ||
|
|
le32_to_cpu(raw_super->meta_ino) != 2 ||
|
|
le32_to_cpu(raw_super->root_ino) != 3) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
|
|
le32_to_cpu(raw_super->node_ino),
|
|
le32_to_cpu(raw_super->meta_ino),
|
|
le32_to_cpu(raw_super->root_ino));
|
|
return 1;
|
|
}
|
|
|
|
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
|
|
if (sanity_check_area_boundary(sbi, bh))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int total, fsmeta;
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned int ovp_segments, reserved_segments;
|
|
unsigned int main_segs, blocks_per_seg;
|
|
unsigned int sit_segs, nat_segs;
|
|
unsigned int sit_bitmap_size, nat_bitmap_size;
|
|
unsigned int log_blocks_per_seg;
|
|
unsigned int segment_count_main;
|
|
unsigned int cp_pack_start_sum, cp_payload;
|
|
block_t user_block_count;
|
|
int i, j;
|
|
|
|
total = le32_to_cpu(raw_super->segment_count);
|
|
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
sit_segs = le32_to_cpu(raw_super->segment_count_sit);
|
|
fsmeta += sit_segs;
|
|
nat_segs = le32_to_cpu(raw_super->segment_count_nat);
|
|
fsmeta += nat_segs;
|
|
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
|
|
|
|
if (unlikely(fsmeta >= total))
|
|
return 1;
|
|
|
|
ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
|
|
reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
|
|
|
|
if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
|
|
ovp_segments == 0 || reserved_segments == 0)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Wrong layout: check mkfs.f2fs version");
|
|
return 1;
|
|
}
|
|
|
|
user_block_count = le64_to_cpu(ckpt->user_block_count);
|
|
segment_count_main = le32_to_cpu(raw_super->segment_count_main);
|
|
log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
if (!user_block_count || user_block_count >=
|
|
segment_count_main << log_blocks_per_seg) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Wrong user_block_count: %u", user_block_count);
|
|
return 1;
|
|
}
|
|
|
|
main_segs = le32_to_cpu(raw_super->segment_count_main);
|
|
blocks_per_seg = sbi->blocks_per_seg;
|
|
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
|
|
le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
|
|
return 1;
|
|
for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
|
|
if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
|
|
le32_to_cpu(ckpt->cur_node_segno[j])) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Node segment (%u, %u) has the same "
|
|
"segno: %u", i, j,
|
|
le32_to_cpu(ckpt->cur_node_segno[i]));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
|
|
if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
|
|
le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
|
|
return 1;
|
|
for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
|
|
if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
|
|
le32_to_cpu(ckpt->cur_data_segno[j])) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Data segment (%u, %u) has the same "
|
|
"segno: %u", i, j,
|
|
le32_to_cpu(ckpt->cur_data_segno[i]));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
|
|
if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
|
|
le32_to_cpu(ckpt->cur_data_segno[j])) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Data segment (%u) and Data segment (%u)"
|
|
" has the same segno: %u", i, j,
|
|
le32_to_cpu(ckpt->cur_node_segno[i]));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
|
|
nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
|
|
|
|
if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
|
|
nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Wrong bitmap size: sit: %u, nat:%u",
|
|
sit_bitmap_size, nat_bitmap_size);
|
|
return 1;
|
|
}
|
|
|
|
cp_pack_start_sum = __start_sum_addr(sbi);
|
|
cp_payload = __cp_payload(sbi);
|
|
if (cp_pack_start_sum < cp_payload + 1 ||
|
|
cp_pack_start_sum > blocks_per_seg - 1 -
|
|
NR_CURSEG_TYPE) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Wrong cp_pack_start_sum: %u",
|
|
cp_pack_start_sum);
|
|
return 1;
|
|
}
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void init_sb_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = sbi->raw_super;
|
|
int i, j;
|
|
|
|
sbi->log_sectors_per_block =
|
|
le32_to_cpu(raw_super->log_sectors_per_block);
|
|
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
|
|
sbi->blocksize = 1 << sbi->log_blocksize;
|
|
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
|
|
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
|
|
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
|
|
sbi->total_sections = le32_to_cpu(raw_super->section_count);
|
|
sbi->total_node_count =
|
|
(le32_to_cpu(raw_super->segment_count_nat) / 2)
|
|
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
|
|
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
|
|
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
|
|
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
|
|
sbi->cur_victim_sec = NULL_SECNO;
|
|
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
|
|
|
|
sbi->dir_level = DEF_DIR_LEVEL;
|
|
sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
|
|
sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
|
|
sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
|
|
sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
|
|
sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
|
|
clear_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
for (i = 0; i < NR_COUNT_TYPE; i++)
|
|
atomic_set(&sbi->nr_pages[i], 0);
|
|
|
|
for (i = 0; i < META; i++)
|
|
atomic_set(&sbi->wb_sync_req[i], 0);
|
|
|
|
INIT_LIST_HEAD(&sbi->s_list);
|
|
mutex_init(&sbi->umount_mutex);
|
|
for (i = 0; i < NR_PAGE_TYPE - 1; i++)
|
|
for (j = HOT; j < NR_TEMP_TYPE; j++)
|
|
mutex_init(&sbi->wio_mutex[i][j]);
|
|
init_rwsem(&sbi->io_order_lock);
|
|
spin_lock_init(&sbi->cp_lock);
|
|
|
|
sbi->dirty_device = 0;
|
|
spin_lock_init(&sbi->dev_lock);
|
|
|
|
init_rwsem(&sbi->sb_lock);
|
|
}
|
|
|
|
static int init_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int err;
|
|
|
|
err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
|
|
err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
percpu_counter_destroy(&sbi->alloc_valid_block_count);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
|
|
{
|
|
struct block_device *bdev = FDEV(devi).bdev;
|
|
sector_t nr_sectors = bdev->bd_part->nr_sects;
|
|
sector_t sector = 0;
|
|
struct blk_zone *zones;
|
|
unsigned int i, nr_zones;
|
|
unsigned int n = 0;
|
|
int err = -EIO;
|
|
|
|
if (!f2fs_sb_has_blkzoned(sbi->sb))
|
|
return 0;
|
|
|
|
if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
|
|
SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
|
|
return -EINVAL;
|
|
sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
|
|
if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
|
|
__ilog2_u32(sbi->blocks_per_blkz))
|
|
return -EINVAL;
|
|
sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
|
|
FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
|
|
sbi->log_blocks_per_blkz;
|
|
if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
|
|
FDEV(devi).nr_blkz++;
|
|
|
|
FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
|
|
GFP_KERNEL);
|
|
if (!FDEV(devi).blkz_type)
|
|
return -ENOMEM;
|
|
|
|
#define F2FS_REPORT_NR_ZONES 4096
|
|
|
|
zones = f2fs_kzalloc(sbi,
|
|
array_size(F2FS_REPORT_NR_ZONES,
|
|
sizeof(struct blk_zone)),
|
|
GFP_KERNEL);
|
|
if (!zones)
|
|
return -ENOMEM;
|
|
|
|
/* Get block zones type */
|
|
while (zones && sector < nr_sectors) {
|
|
|
|
nr_zones = F2FS_REPORT_NR_ZONES;
|
|
err = blkdev_report_zones(bdev, sector,
|
|
zones, &nr_zones,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
break;
|
|
if (!nr_zones) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < nr_zones; i++) {
|
|
FDEV(devi).blkz_type[n] = zones[i].type;
|
|
sector += zones[i].len;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
kfree(zones);
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read f2fs raw super block.
|
|
* Because we have two copies of super block, so read both of them
|
|
* to get the first valid one. If any one of them is broken, we pass
|
|
* them recovery flag back to the caller.
|
|
*/
|
|
static int read_raw_super_block(struct f2fs_sb_info *sbi,
|
|
struct f2fs_super_block **raw_super,
|
|
int *valid_super_block, int *recovery)
|
|
{
|
|
struct super_block *sb = sbi->sb;
|
|
int block;
|
|
struct buffer_head *bh;
|
|
struct f2fs_super_block *super;
|
|
int err = 0;
|
|
|
|
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
|
|
if (!super)
|
|
return -ENOMEM;
|
|
|
|
for (block = 0; block < 2; block++) {
|
|
bh = sb_bread(sb, block);
|
|
if (!bh) {
|
|
f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
|
|
block + 1);
|
|
err = -EIO;
|
|
continue;
|
|
}
|
|
|
|
/* sanity checking of raw super */
|
|
if (sanity_check_raw_super(sbi, bh)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Can't find valid F2FS filesystem in %dth superblock",
|
|
block + 1);
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
if (!*raw_super) {
|
|
memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
|
|
sizeof(*super));
|
|
*valid_super_block = block;
|
|
*raw_super = super;
|
|
}
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Fail to read any one of the superblocks*/
|
|
if (err < 0)
|
|
*recovery = 1;
|
|
|
|
/* No valid superblock */
|
|
if (!*raw_super)
|
|
kfree(super);
|
|
else
|
|
err = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
|
|
{
|
|
struct buffer_head *bh;
|
|
__u32 crc = 0;
|
|
int err;
|
|
|
|
if ((recover && f2fs_readonly(sbi->sb)) ||
|
|
bdev_read_only(sbi->sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
return -EROFS;
|
|
}
|
|
|
|
/* we should update superblock crc here */
|
|
if (!recover && f2fs_sb_has_sb_chksum(sbi->sb)) {
|
|
crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
|
|
offsetof(struct f2fs_super_block, crc));
|
|
F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
|
|
}
|
|
|
|
/* write back-up superblock first */
|
|
bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
|
|
/* if we are in recovery path, skip writing valid superblock */
|
|
if (recover || err)
|
|
return err;
|
|
|
|
/* write current valid superblock */
|
|
bh = sb_bread(sbi->sb, sbi->valid_super_block);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
unsigned int max_devices = MAX_DEVICES;
|
|
int i;
|
|
|
|
/* Initialize single device information */
|
|
if (!RDEV(0).path[0]) {
|
|
if (!bdev_is_zoned(sbi->sb->s_bdev))
|
|
return 0;
|
|
max_devices = 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize multiple devices information, or single
|
|
* zoned block device information.
|
|
*/
|
|
sbi->devs = f2fs_kzalloc(sbi,
|
|
array_size(max_devices,
|
|
sizeof(struct f2fs_dev_info)),
|
|
GFP_KERNEL);
|
|
if (!sbi->devs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < max_devices; i++) {
|
|
|
|
if (i > 0 && !RDEV(i).path[0])
|
|
break;
|
|
|
|
if (max_devices == 1) {
|
|
/* Single zoned block device mount */
|
|
FDEV(0).bdev =
|
|
blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
|
|
sbi->sb->s_mode, sbi->sb->s_type);
|
|
} else {
|
|
/* Multi-device mount */
|
|
memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
|
|
FDEV(i).total_segments =
|
|
le32_to_cpu(RDEV(i).total_segments);
|
|
if (i == 0) {
|
|
FDEV(i).start_blk = 0;
|
|
FDEV(i).end_blk = FDEV(i).start_blk +
|
|
(FDEV(i).total_segments <<
|
|
sbi->log_blocks_per_seg) - 1 +
|
|
le32_to_cpu(raw_super->segment0_blkaddr);
|
|
} else {
|
|
FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
|
|
FDEV(i).end_blk = FDEV(i).start_blk +
|
|
(FDEV(i).total_segments <<
|
|
sbi->log_blocks_per_seg) - 1;
|
|
}
|
|
FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
|
|
sbi->sb->s_mode, sbi->sb->s_type);
|
|
}
|
|
if (IS_ERR(FDEV(i).bdev))
|
|
return PTR_ERR(FDEV(i).bdev);
|
|
|
|
/* to release errored devices */
|
|
sbi->s_ndevs = i + 1;
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
|
|
!f2fs_sb_has_blkzoned(sbi->sb)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Zoned block device feature not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
|
|
if (init_blkz_info(sbi, i)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Failed to initialize F2FS blkzone information");
|
|
return -EINVAL;
|
|
}
|
|
if (max_devices == 1)
|
|
break;
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
|
|
i, FDEV(i).path,
|
|
FDEV(i).total_segments,
|
|
FDEV(i).start_blk, FDEV(i).end_blk,
|
|
bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
|
|
"Host-aware" : "Host-managed");
|
|
continue;
|
|
}
|
|
#endif
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Mount Device [%2d]: %20s, %8u, %8x - %8x",
|
|
i, FDEV(i).path,
|
|
FDEV(i).total_segments,
|
|
FDEV(i).start_blk, FDEV(i).end_blk);
|
|
}
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_sm_info *sm_i = SM_I(sbi);
|
|
|
|
/* adjust parameters according to the volume size */
|
|
if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
|
|
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
|
|
sm_i->dcc_info->discard_granularity = 1;
|
|
sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
|
|
}
|
|
|
|
sbi->readdir_ra = 1;
|
|
}
|
|
|
|
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
|
|
{
|
|
struct f2fs_sb_info *sbi;
|
|
struct f2fs_super_block *raw_super;
|
|
struct inode *root;
|
|
int err;
|
|
bool retry = true, need_fsck = false;
|
|
char *options = NULL;
|
|
int recovery, i, valid_super_block;
|
|
struct curseg_info *seg_i;
|
|
|
|
try_onemore:
|
|
err = -EINVAL;
|
|
raw_super = NULL;
|
|
valid_super_block = -1;
|
|
recovery = 0;
|
|
|
|
/* allocate memory for f2fs-specific super block info */
|
|
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
|
|
if (!sbi)
|
|
return -ENOMEM;
|
|
|
|
sbi->sb = sb;
|
|
|
|
/* Load the checksum driver */
|
|
sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
|
|
if (IS_ERR(sbi->s_chksum_driver)) {
|
|
f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
|
|
err = PTR_ERR(sbi->s_chksum_driver);
|
|
sbi->s_chksum_driver = NULL;
|
|
goto free_sbi;
|
|
}
|
|
|
|
/* set a block size */
|
|
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
|
|
f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
|
|
goto free_sbi;
|
|
}
|
|
|
|
err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
|
|
&recovery);
|
|
if (err)
|
|
goto free_sbi;
|
|
|
|
sb->s_fs_info = sbi;
|
|
sbi->raw_super = raw_super;
|
|
|
|
/* precompute checksum seed for metadata */
|
|
if (f2fs_sb_has_inode_chksum(sb))
|
|
sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
|
|
sizeof(raw_super->uuid));
|
|
|
|
/*
|
|
* The BLKZONED feature indicates that the drive was formatted with
|
|
* zone alignment optimization. This is optional for host-aware
|
|
* devices, but mandatory for host-managed zoned block devices.
|
|
*/
|
|
#ifndef CONFIG_BLK_DEV_ZONED
|
|
if (f2fs_sb_has_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Zoned block device support is not enabled\n");
|
|
err = -EOPNOTSUPP;
|
|
goto free_sb_buf;
|
|
}
|
|
#endif
|
|
default_options(sbi);
|
|
/* parse mount options */
|
|
options = kstrdup((const char *)data, GFP_KERNEL);
|
|
if (data && !options) {
|
|
err = -ENOMEM;
|
|
goto free_sb_buf;
|
|
}
|
|
|
|
err = parse_options(sb, options);
|
|
if (err)
|
|
goto free_options;
|
|
|
|
sbi->max_file_blocks = max_file_blocks();
|
|
sb->s_maxbytes = sbi->max_file_blocks <<
|
|
le32_to_cpu(raw_super->log_blocksize);
|
|
sb->s_max_links = F2FS_LINK_MAX;
|
|
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
sb->dq_op = &f2fs_quota_operations;
|
|
if (f2fs_sb_has_quota_ino(sb))
|
|
sb->s_qcop = &dquot_quotactl_sysfile_ops;
|
|
else
|
|
sb->s_qcop = &f2fs_quotactl_ops;
|
|
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
|
|
|
|
if (f2fs_sb_has_quota_ino(sbi->sb)) {
|
|
for (i = 0; i < MAXQUOTAS; i++) {
|
|
if (f2fs_qf_ino(sbi->sb, i))
|
|
sbi->nquota_files++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
sb->s_op = &f2fs_sops;
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
sb->s_cop = &f2fs_cryptops;
|
|
#endif
|
|
sb->s_xattr = f2fs_xattr_handlers;
|
|
sb->s_export_op = &f2fs_export_ops;
|
|
sb->s_magic = F2FS_SUPER_MAGIC;
|
|
sb->s_time_gran = 1;
|
|
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
|
|
memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
|
|
sb->s_iflags |= SB_I_CGROUPWB;
|
|
|
|
/* init f2fs-specific super block info */
|
|
sbi->valid_super_block = valid_super_block;
|
|
mutex_init(&sbi->gc_mutex);
|
|
mutex_init(&sbi->writepages);
|
|
mutex_init(&sbi->cp_mutex);
|
|
init_rwsem(&sbi->node_write);
|
|
init_rwsem(&sbi->node_change);
|
|
|
|
/* disallow all the data/node/meta page writes */
|
|
set_sbi_flag(sbi, SBI_POR_DOING);
|
|
spin_lock_init(&sbi->stat_lock);
|
|
|
|
/* init iostat info */
|
|
spin_lock_init(&sbi->iostat_lock);
|
|
sbi->iostat_enable = false;
|
|
|
|
for (i = 0; i < NR_PAGE_TYPE; i++) {
|
|
int n = (i == META) ? 1: NR_TEMP_TYPE;
|
|
int j;
|
|
|
|
sbi->write_io[i] =
|
|
f2fs_kmalloc(sbi,
|
|
array_size(n,
|
|
sizeof(struct f2fs_bio_info)),
|
|
GFP_KERNEL);
|
|
if (!sbi->write_io[i]) {
|
|
err = -ENOMEM;
|
|
goto free_bio_info;
|
|
}
|
|
|
|
for (j = HOT; j < n; j++) {
|
|
init_rwsem(&sbi->write_io[i][j].io_rwsem);
|
|
sbi->write_io[i][j].sbi = sbi;
|
|
sbi->write_io[i][j].bio = NULL;
|
|
spin_lock_init(&sbi->write_io[i][j].io_lock);
|
|
INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
|
|
}
|
|
}
|
|
|
|
init_rwsem(&sbi->cp_rwsem);
|
|
init_waitqueue_head(&sbi->cp_wait);
|
|
init_sb_info(sbi);
|
|
|
|
err = init_percpu_info(sbi);
|
|
if (err)
|
|
goto free_bio_info;
|
|
|
|
if (F2FS_IO_SIZE(sbi) > 1) {
|
|
sbi->write_io_dummy =
|
|
mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
|
|
if (!sbi->write_io_dummy) {
|
|
err = -ENOMEM;
|
|
goto free_percpu;
|
|
}
|
|
}
|
|
|
|
/* get an inode for meta space */
|
|
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
|
|
if (IS_ERR(sbi->meta_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
|
|
err = PTR_ERR(sbi->meta_inode);
|
|
goto free_io_dummy;
|
|
}
|
|
|
|
err = f2fs_get_valid_checkpoint(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
|
|
goto free_meta_inode;
|
|
}
|
|
|
|
if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
|
|
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
|
|
|
|
/* Initialize device list */
|
|
err = f2fs_scan_devices(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to find devices");
|
|
goto free_devices;
|
|
}
|
|
|
|
sbi->total_valid_node_count =
|
|
le32_to_cpu(sbi->ckpt->valid_node_count);
|
|
percpu_counter_set(&sbi->total_valid_inode_count,
|
|
le32_to_cpu(sbi->ckpt->valid_inode_count));
|
|
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
|
|
sbi->total_valid_block_count =
|
|
le64_to_cpu(sbi->ckpt->valid_block_count);
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
sbi->reserved_blocks = 0;
|
|
sbi->current_reserved_blocks = 0;
|
|
limit_reserve_root(sbi);
|
|
|
|
for (i = 0; i < NR_INODE_TYPE; i++) {
|
|
INIT_LIST_HEAD(&sbi->inode_list[i]);
|
|
spin_lock_init(&sbi->inode_lock[i]);
|
|
}
|
|
|
|
f2fs_init_extent_cache_info(sbi);
|
|
|
|
f2fs_init_ino_entry_info(sbi);
|
|
|
|
f2fs_init_fsync_node_info(sbi);
|
|
|
|
/* setup f2fs internal modules */
|
|
err = f2fs_build_segment_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS segment manager");
|
|
goto free_sm;
|
|
}
|
|
err = f2fs_build_node_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS node manager");
|
|
goto free_nm;
|
|
}
|
|
|
|
/* For write statistics */
|
|
if (sb->s_bdev->bd_part)
|
|
sbi->sectors_written_start =
|
|
(u64)part_stat_read(sb->s_bdev->bd_part,
|
|
sectors[STAT_WRITE]);
|
|
|
|
/* Read accumulated write IO statistics if exists */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
|
|
if (__exist_node_summaries(sbi))
|
|
sbi->kbytes_written =
|
|
le64_to_cpu(seg_i->journal->info.kbytes_written);
|
|
|
|
f2fs_build_gc_manager(sbi);
|
|
|
|
/* get an inode for node space */
|
|
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
|
|
if (IS_ERR(sbi->node_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
|
|
err = PTR_ERR(sbi->node_inode);
|
|
goto free_nm;
|
|
}
|
|
|
|
err = f2fs_build_stats(sbi);
|
|
if (err)
|
|
goto free_node_inode;
|
|
|
|
/* read root inode and dentry */
|
|
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
|
|
if (IS_ERR(root)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
|
|
err = PTR_ERR(root);
|
|
goto free_stats;
|
|
}
|
|
if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
|
|
!root->i_size || !root->i_nlink) {
|
|
iput(root);
|
|
err = -EINVAL;
|
|
goto free_stats;
|
|
}
|
|
|
|
sb->s_root = d_make_root(root); /* allocate root dentry */
|
|
if (!sb->s_root) {
|
|
err = -ENOMEM;
|
|
goto free_root_inode;
|
|
}
|
|
|
|
err = f2fs_register_sysfs(sbi);
|
|
if (err)
|
|
goto free_root_inode;
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Enable quota usage during mount */
|
|
if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
|
|
err = f2fs_enable_quotas(sb);
|
|
if (err)
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Cannot turn on quotas: error %d", err);
|
|
}
|
|
#endif
|
|
/* if there are nt orphan nodes free them */
|
|
err = f2fs_recover_orphan_inodes(sbi);
|
|
if (err)
|
|
goto free_meta;
|
|
|
|
if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
|
|
goto skip_recovery;
|
|
|
|
/* recover fsynced data */
|
|
if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
|
|
/*
|
|
* mount should be failed, when device has readonly mode, and
|
|
* previous checkpoint was not done by clean system shutdown.
|
|
*/
|
|
if (bdev_read_only(sb->s_bdev) &&
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
err = -EROFS;
|
|
goto free_meta;
|
|
}
|
|
|
|
if (need_fsck)
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
if (!retry)
|
|
goto skip_recovery;
|
|
|
|
err = f2fs_recover_fsync_data(sbi, false);
|
|
if (err < 0) {
|
|
need_fsck = true;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Cannot recover all fsync data errno=%d", err);
|
|
goto free_meta;
|
|
}
|
|
} else {
|
|
err = f2fs_recover_fsync_data(sbi, true);
|
|
|
|
if (!f2fs_readonly(sb) && err > 0) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Need to recover fsync data");
|
|
goto free_meta;
|
|
}
|
|
}
|
|
skip_recovery:
|
|
/* f2fs_recover_fsync_data() cleared this already */
|
|
clear_sbi_flag(sbi, SBI_POR_DOING);
|
|
|
|
if (test_opt(sbi, DISABLE_CHECKPOINT)) {
|
|
err = f2fs_disable_checkpoint(sbi);
|
|
if (err)
|
|
goto free_meta;
|
|
} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
|
|
f2fs_enable_checkpoint(sbi);
|
|
}
|
|
|
|
/*
|
|
* If filesystem is not mounted as read-only then
|
|
* do start the gc_thread.
|
|
*/
|
|
if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
|
|
/* After POR, we can run background GC thread.*/
|
|
err = f2fs_start_gc_thread(sbi);
|
|
if (err)
|
|
goto free_meta;
|
|
}
|
|
kfree(options);
|
|
|
|
/* recover broken superblock */
|
|
if (recovery) {
|
|
err = f2fs_commit_super(sbi, true);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover %dth superblock, ret: %d",
|
|
sbi->valid_super_block ? 1 : 2, err);
|
|
}
|
|
|
|
f2fs_join_shrinker(sbi);
|
|
|
|
f2fs_tuning_parameters(sbi);
|
|
|
|
f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
|
|
cur_cp_version(F2FS_CKPT(sbi)));
|
|
f2fs_update_time(sbi, CP_TIME);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
return 0;
|
|
|
|
free_meta:
|
|
#ifdef CONFIG_QUOTA
|
|
f2fs_truncate_quota_inode_pages(sb);
|
|
if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
|
|
f2fs_quota_off_umount(sbi->sb);
|
|
#endif
|
|
/*
|
|
* Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
|
|
* failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
|
|
* followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
|
|
* falls into an infinite loop in f2fs_sync_meta_pages().
|
|
*/
|
|
truncate_inode_pages_final(META_MAPPING(sbi));
|
|
f2fs_unregister_sysfs(sbi);
|
|
free_root_inode:
|
|
dput(sb->s_root);
|
|
sb->s_root = NULL;
|
|
free_stats:
|
|
f2fs_destroy_stats(sbi);
|
|
free_node_inode:
|
|
f2fs_release_ino_entry(sbi, true);
|
|
truncate_inode_pages_final(NODE_MAPPING(sbi));
|
|
iput(sbi->node_inode);
|
|
free_nm:
|
|
f2fs_destroy_node_manager(sbi);
|
|
free_sm:
|
|
f2fs_destroy_segment_manager(sbi);
|
|
free_devices:
|
|
destroy_device_list(sbi);
|
|
kfree(sbi->ckpt);
|
|
free_meta_inode:
|
|
make_bad_inode(sbi->meta_inode);
|
|
iput(sbi->meta_inode);
|
|
free_io_dummy:
|
|
mempool_destroy(sbi->write_io_dummy);
|
|
free_percpu:
|
|
destroy_percpu_info(sbi);
|
|
free_bio_info:
|
|
for (i = 0; i < NR_PAGE_TYPE; i++)
|
|
kfree(sbi->write_io[i]);
|
|
free_options:
|
|
#ifdef CONFIG_QUOTA
|
|
for (i = 0; i < MAXQUOTAS; i++)
|
|
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
|
|
#endif
|
|
kfree(options);
|
|
free_sb_buf:
|
|
kfree(raw_super);
|
|
free_sbi:
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi);
|
|
|
|
/* give only one another chance */
|
|
if (retry) {
|
|
retry = false;
|
|
shrink_dcache_sb(sb);
|
|
goto try_onemore;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
|
|
const char *dev_name, void *data)
|
|
{
|
|
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
|
|
}
|
|
|
|
static void kill_f2fs_super(struct super_block *sb)
|
|
{
|
|
if (sb->s_root) {
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
set_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
f2fs_stop_gc_thread(sbi);
|
|
f2fs_stop_discard_thread(sbi);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT,
|
|
};
|
|
f2fs_write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
|
|
sb->s_flags &= ~SB_RDONLY;
|
|
}
|
|
kill_block_super(sb);
|
|
}
|
|
|
|
static struct file_system_type f2fs_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "f2fs",
|
|
.mount = f2fs_mount,
|
|
.kill_sb = kill_f2fs_super,
|
|
.fs_flags = FS_REQUIRES_DEV,
|
|
};
|
|
MODULE_ALIAS_FS("f2fs");
|
|
|
|
static int __init init_inodecache(void)
|
|
{
|
|
f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
|
|
sizeof(struct f2fs_inode_info), 0,
|
|
SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
|
|
if (!f2fs_inode_cachep)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_inodecache(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(f2fs_inode_cachep);
|
|
}
|
|
|
|
static int __init init_f2fs_fs(void)
|
|
{
|
|
int err;
|
|
|
|
if (PAGE_SIZE != F2FS_BLKSIZE) {
|
|
printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
|
|
PAGE_SIZE, F2FS_BLKSIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
f2fs_build_trace_ios();
|
|
|
|
err = init_inodecache();
|
|
if (err)
|
|
goto fail;
|
|
err = f2fs_create_node_manager_caches();
|
|
if (err)
|
|
goto free_inodecache;
|
|
err = f2fs_create_segment_manager_caches();
|
|
if (err)
|
|
goto free_node_manager_caches;
|
|
err = f2fs_create_checkpoint_caches();
|
|
if (err)
|
|
goto free_segment_manager_caches;
|
|
err = f2fs_create_extent_cache();
|
|
if (err)
|
|
goto free_checkpoint_caches;
|
|
err = f2fs_init_sysfs();
|
|
if (err)
|
|
goto free_extent_cache;
|
|
err = register_shrinker(&f2fs_shrinker_info);
|
|
if (err)
|
|
goto free_sysfs;
|
|
err = register_filesystem(&f2fs_fs_type);
|
|
if (err)
|
|
goto free_shrinker;
|
|
err = f2fs_create_root_stats();
|
|
if (err)
|
|
goto free_filesystem;
|
|
err = f2fs_init_post_read_processing();
|
|
if (err)
|
|
goto free_root_stats;
|
|
return 0;
|
|
|
|
free_root_stats:
|
|
f2fs_destroy_root_stats();
|
|
free_filesystem:
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
free_shrinker:
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
free_sysfs:
|
|
f2fs_exit_sysfs();
|
|
free_extent_cache:
|
|
f2fs_destroy_extent_cache();
|
|
free_checkpoint_caches:
|
|
f2fs_destroy_checkpoint_caches();
|
|
free_segment_manager_caches:
|
|
f2fs_destroy_segment_manager_caches();
|
|
free_node_manager_caches:
|
|
f2fs_destroy_node_manager_caches();
|
|
free_inodecache:
|
|
destroy_inodecache();
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static void __exit exit_f2fs_fs(void)
|
|
{
|
|
f2fs_destroy_post_read_processing();
|
|
f2fs_destroy_root_stats();
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
f2fs_exit_sysfs();
|
|
f2fs_destroy_extent_cache();
|
|
f2fs_destroy_checkpoint_caches();
|
|
f2fs_destroy_segment_manager_caches();
|
|
f2fs_destroy_node_manager_caches();
|
|
destroy_inodecache();
|
|
f2fs_destroy_trace_ios();
|
|
}
|
|
|
|
module_init(init_f2fs_fs)
|
|
module_exit(exit_f2fs_fs)
|
|
|
|
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
|
|
MODULE_DESCRIPTION("Flash Friendly File System");
|
|
MODULE_LICENSE("GPL");
|
|
|