linux/drivers/media/i2c/og01a1b.c
Al Viro 5f60d5f6bb move asm/unaligned.h to linux/unaligned.h
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.

auto-generated by the following:

for i in `git grep -l -w asm/unaligned.h`; do
	sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
	sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-02 17:23:23 -04:00

1233 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2022 Intel Corporation.
#include <linux/unaligned.h>
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#define OG01A1B_REG_VALUE_08BIT 1
#define OG01A1B_REG_VALUE_16BIT 2
#define OG01A1B_REG_VALUE_24BIT 3
#define OG01A1B_LINK_FREQ_500MHZ 500000000ULL
#define OG01A1B_SCLK 120000000LL
#define OG01A1B_MCLK 19200000
#define OG01A1B_DATA_LANES 2
#define OG01A1B_RGB_DEPTH 10
#define OG01A1B_REG_CHIP_ID 0x300a
#define OG01A1B_CHIP_ID 0x470141
#define OG01A1B_REG_MODE_SELECT 0x0100
#define OG01A1B_MODE_STANDBY 0x00
#define OG01A1B_MODE_STREAMING 0x01
/* vertical-timings from sensor */
#define OG01A1B_REG_VTS 0x380e
#define OG01A1B_VTS_120FPS 0x0498
#define OG01A1B_VTS_120FPS_MIN 0x0498
#define OG01A1B_VTS_MAX 0x7fff
/* horizontal-timings from sensor */
#define OG01A1B_REG_HTS 0x380c
/* Exposure controls from sensor */
#define OG01A1B_REG_EXPOSURE 0x3501
#define OG01A1B_EXPOSURE_MIN 1
#define OG01A1B_EXPOSURE_MAX_MARGIN 14
#define OG01A1B_EXPOSURE_STEP 1
/* Analog gain controls from sensor */
#define OG01A1B_REG_ANALOG_GAIN 0x3508
#define OG01A1B_ANAL_GAIN_MIN 16
#define OG01A1B_ANAL_GAIN_MAX 248 /* Max = 15.5x */
#define OG01A1B_ANAL_GAIN_STEP 1
/* Digital gain controls from sensor */
#define OG01A1B_REG_DIG_GAIN 0x350a
#define OG01A1B_DGTL_GAIN_MIN 1024
#define OG01A1B_DGTL_GAIN_MAX 16384 /* Max = 16x */
#define OG01A1B_DGTL_GAIN_STEP 1
#define OG01A1B_DGTL_GAIN_DEFAULT 1024
/* Group Access */
#define OG01A1B_REG_GROUP_ACCESS 0x3208
#define OG01A1B_GROUP_HOLD_START 0x0
#define OG01A1B_GROUP_HOLD_END 0x10
#define OG01A1B_GROUP_HOLD_LAUNCH 0xa0
/* Test Pattern Control */
#define OG01A1B_REG_TEST_PATTERN 0x5100
#define OG01A1B_TEST_PATTERN_ENABLE BIT(7)
#define OG01A1B_TEST_PATTERN_BAR_SHIFT 2
#define to_og01a1b(_sd) container_of(_sd, struct og01a1b, sd)
enum {
OG01A1B_LINK_FREQ_1000MBPS,
};
struct og01a1b_reg {
u16 address;
u8 val;
};
struct og01a1b_reg_list {
u32 num_of_regs;
const struct og01a1b_reg *regs;
};
struct og01a1b_link_freq_config {
const struct og01a1b_reg_list reg_list;
};
struct og01a1b_mode {
/* Frame width in pixels */
u32 width;
/* Frame height in pixels */
u32 height;
/* Horizontal timining size */
u32 hts;
/* Default vertical timining size */
u32 vts_def;
/* Min vertical timining size */
u32 vts_min;
/* Link frequency needed for this resolution */
u32 link_freq_index;
/* Sensor register settings for this resolution */
const struct og01a1b_reg_list reg_list;
};
static const struct og01a1b_reg mipi_data_rate_1000mbps[] = {
{0x0103, 0x01},
{0x0303, 0x02},
{0x0304, 0x00},
{0x0305, 0xd2},
{0x0323, 0x02},
{0x0324, 0x01},
{0x0325, 0x77},
};
static const struct og01a1b_reg mode_1280x1024_regs[] = {
{0x0300, 0x0a},
{0x0301, 0x29},
{0x0302, 0x31},
{0x0303, 0x02},
{0x0304, 0x00},
{0x0305, 0xd2},
{0x0306, 0x00},
{0x0307, 0x01},
{0x0308, 0x02},
{0x0309, 0x00},
{0x0310, 0x00},
{0x0311, 0x00},
{0x0312, 0x07},
{0x0313, 0x00},
{0x0314, 0x00},
{0x0315, 0x00},
{0x0320, 0x02},
{0x0321, 0x01},
{0x0322, 0x01},
{0x0323, 0x02},
{0x0324, 0x01},
{0x0325, 0x77},
{0x0326, 0xce},
{0x0327, 0x04},
{0x0329, 0x02},
{0x032a, 0x04},
{0x032b, 0x04},
{0x032c, 0x02},
{0x032d, 0x01},
{0x032e, 0x00},
{0x300d, 0x02},
{0x300e, 0x04},
{0x3021, 0x08},
{0x301e, 0x03},
{0x3103, 0x00},
{0x3106, 0x08},
{0x3107, 0x40},
{0x3216, 0x01},
{0x3217, 0x00},
{0x3218, 0xc0},
{0x3219, 0x55},
{0x3500, 0x00},
{0x3501, 0x04},
{0x3502, 0x8a},
{0x3506, 0x01},
{0x3507, 0x72},
{0x3508, 0x01},
{0x3509, 0x00},
{0x350a, 0x01},
{0x350b, 0x00},
{0x350c, 0x00},
{0x3541, 0x00},
{0x3542, 0x40},
{0x3605, 0xe0},
{0x3606, 0x41},
{0x3614, 0x20},
{0x3620, 0x0b},
{0x3630, 0x07},
{0x3636, 0xa0},
{0x3637, 0xf9},
{0x3638, 0x09},
{0x3639, 0x38},
{0x363f, 0x09},
{0x3640, 0x17},
{0x3662, 0x04},
{0x3665, 0x80},
{0x3670, 0x68},
{0x3674, 0x00},
{0x3677, 0x3f},
{0x3679, 0x00},
{0x369f, 0x19},
{0x36a0, 0x03},
{0x36a2, 0x19},
{0x36a3, 0x03},
{0x370d, 0x66},
{0x370f, 0x00},
{0x3710, 0x03},
{0x3715, 0x03},
{0x3716, 0x03},
{0x3717, 0x06},
{0x3733, 0x00},
{0x3778, 0x00},
{0x37a8, 0x0f},
{0x37a9, 0x01},
{0x37aa, 0x07},
{0x37bd, 0x1c},
{0x37c1, 0x2f},
{0x37c3, 0x09},
{0x37c8, 0x1d},
{0x37ca, 0x30},
{0x37df, 0x00},
{0x3800, 0x00},
{0x3801, 0x00},
{0x3802, 0x00},
{0x3803, 0x00},
{0x3804, 0x05},
{0x3805, 0x0f},
{0x3806, 0x04},
{0x3807, 0x0f},
{0x3808, 0x05},
{0x3809, 0x00},
{0x380a, 0x04},
{0x380b, 0x00},
{0x380c, 0x03},
{0x380d, 0x50},
{0x380e, 0x04},
{0x380f, 0x98},
{0x3810, 0x00},
{0x3811, 0x08},
{0x3812, 0x00},
{0x3813, 0x08},
{0x3814, 0x11},
{0x3815, 0x11},
{0x3820, 0x40},
{0x3821, 0x04},
{0x3826, 0x00},
{0x3827, 0x00},
{0x382a, 0x08},
{0x382b, 0x52},
{0x382d, 0xba},
{0x383d, 0x14},
{0x384a, 0xa2},
{0x3866, 0x0e},
{0x3867, 0x07},
{0x3884, 0x00},
{0x3885, 0x08},
{0x3893, 0x68},
{0x3894, 0x2a},
{0x3898, 0x00},
{0x3899, 0x31},
{0x389a, 0x04},
{0x389b, 0x00},
{0x389c, 0x0b},
{0x389d, 0xad},
{0x389f, 0x08},
{0x38a0, 0x00},
{0x38a1, 0x00},
{0x38a8, 0x70},
{0x38ac, 0xea},
{0x38b2, 0x00},
{0x38b3, 0x08},
{0x38bc, 0x20},
{0x38c4, 0x0c},
{0x38c5, 0x3a},
{0x38c7, 0x3a},
{0x38e1, 0xc0},
{0x38ec, 0x3c},
{0x38f0, 0x09},
{0x38f1, 0x6f},
{0x38fe, 0x3c},
{0x391e, 0x00},
{0x391f, 0x00},
{0x3920, 0xa5},
{0x3921, 0x00},
{0x3922, 0x00},
{0x3923, 0x00},
{0x3924, 0x05},
{0x3925, 0x00},
{0x3926, 0x00},
{0x3927, 0x00},
{0x3928, 0x1a},
{0x3929, 0x01},
{0x392a, 0xb4},
{0x392b, 0x00},
{0x392c, 0x10},
{0x392f, 0x40},
{0x4000, 0xcf},
{0x4003, 0x40},
{0x4008, 0x00},
{0x4009, 0x07},
{0x400a, 0x02},
{0x400b, 0x54},
{0x400c, 0x00},
{0x400d, 0x07},
{0x4010, 0xc0},
{0x4012, 0x02},
{0x4014, 0x04},
{0x4015, 0x04},
{0x4017, 0x02},
{0x4042, 0x01},
{0x4306, 0x04},
{0x4307, 0x12},
{0x4509, 0x00},
{0x450b, 0x83},
{0x4604, 0x68},
{0x4608, 0x0a},
{0x4700, 0x06},
{0x4800, 0x64},
{0x481b, 0x3c},
{0x4825, 0x32},
{0x4833, 0x18},
{0x4837, 0x0f},
{0x4850, 0x40},
{0x4860, 0x00},
{0x4861, 0xec},
{0x4864, 0x00},
{0x4883, 0x00},
{0x4888, 0x90},
{0x4889, 0x05},
{0x488b, 0x04},
{0x4f00, 0x04},
{0x4f10, 0x04},
{0x4f21, 0x01},
{0x4f22, 0x40},
{0x4f23, 0x44},
{0x4f24, 0x51},
{0x4f25, 0x41},
{0x5000, 0x1f},
{0x500a, 0x00},
{0x5100, 0x00},
{0x5111, 0x20},
{0x3020, 0x20},
{0x3613, 0x03},
{0x38c9, 0x02},
{0x5304, 0x01},
{0x3620, 0x08},
{0x3639, 0x58},
{0x363a, 0x10},
{0x3674, 0x04},
{0x3780, 0xff},
{0x3781, 0xff},
{0x3782, 0x00},
{0x3783, 0x01},
{0x3798, 0xa3},
{0x37aa, 0x10},
{0x38a8, 0xf0},
{0x38c4, 0x09},
{0x38c5, 0xb0},
{0x38df, 0x80},
{0x38ff, 0x05},
{0x4010, 0xf1},
{0x4011, 0x70},
{0x3667, 0x80},
{0x4d00, 0x4a},
{0x4d01, 0x18},
{0x4d02, 0xbb},
{0x4d03, 0xde},
{0x4d04, 0x93},
{0x4d05, 0xff},
{0x4d09, 0x0a},
{0x37aa, 0x16},
{0x3606, 0x42},
{0x3605, 0x00},
{0x36a2, 0x17},
{0x300d, 0x0a},
{0x4d00, 0x4d},
{0x4d01, 0x95},
{0x3d8C, 0x70},
{0x3d8d, 0xE9},
{0x5300, 0x00},
{0x5301, 0x10},
{0x5302, 0x00},
{0x5303, 0xE3},
{0x3d88, 0x00},
{0x3d89, 0x10},
{0x3d8a, 0x00},
{0x3d8b, 0xE3},
{0x4f22, 0x00},
};
static const char * const og01a1b_test_pattern_menu[] = {
"Disabled",
"Standard Color Bar",
"Top-Bottom Darker Color Bar",
"Right-Left Darker Color Bar",
"Bottom-Top Darker Color Bar"
};
static const s64 link_freq_menu_items[] = {
OG01A1B_LINK_FREQ_500MHZ,
};
static const struct og01a1b_link_freq_config link_freq_configs[] = {
[OG01A1B_LINK_FREQ_1000MBPS] = {
.reg_list = {
.num_of_regs = ARRAY_SIZE(mipi_data_rate_1000mbps),
.regs = mipi_data_rate_1000mbps,
}
}
};
static const struct og01a1b_mode supported_modes[] = {
{
.width = 1280,
.height = 1024,
.hts = 848,
.vts_def = OG01A1B_VTS_120FPS,
.vts_min = OG01A1B_VTS_120FPS_MIN,
.reg_list = {
.num_of_regs = ARRAY_SIZE(mode_1280x1024_regs),
.regs = mode_1280x1024_regs,
},
.link_freq_index = OG01A1B_LINK_FREQ_1000MBPS,
},
};
struct og01a1b {
struct clk *xvclk;
struct gpio_desc *reset_gpio;
struct regulator *avdd;
struct regulator *dovdd;
struct regulator *dvdd;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
/* V4L2 Controls */
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *pixel_rate;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *exposure;
/* Current mode */
const struct og01a1b_mode *cur_mode;
/* To serialize asynchronus callbacks */
struct mutex mutex;
};
static u64 to_pixel_rate(u32 f_index)
{
u64 pixel_rate = link_freq_menu_items[f_index] * 2 * OG01A1B_DATA_LANES;
do_div(pixel_rate, OG01A1B_RGB_DEPTH);
return pixel_rate;
}
static u64 to_pixels_per_line(u32 hts, u32 f_index)
{
u64 ppl = hts * to_pixel_rate(f_index);
do_div(ppl, OG01A1B_SCLK);
return ppl;
}
static int og01a1b_read_reg(struct og01a1b *og01a1b, u16 reg, u16 len, u32 *val)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
struct i2c_msg msgs[2];
u8 addr_buf[2];
u8 data_buf[4] = {0};
int ret;
if (len > 4)
return -EINVAL;
put_unaligned_be16(reg, addr_buf);
msgs[0].addr = client->addr;
msgs[0].flags = 0;
msgs[0].len = sizeof(addr_buf);
msgs[0].buf = addr_buf;
msgs[1].addr = client->addr;
msgs[1].flags = I2C_M_RD;
msgs[1].len = len;
msgs[1].buf = &data_buf[4 - len];
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret != ARRAY_SIZE(msgs))
return -EIO;
*val = get_unaligned_be32(data_buf);
return 0;
}
static int og01a1b_write_reg(struct og01a1b *og01a1b, u16 reg, u16 len, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
u8 buf[6];
if (len > 4)
return -EINVAL;
put_unaligned_be16(reg, buf);
put_unaligned_be32(val << 8 * (4 - len), buf + 2);
if (i2c_master_send(client, buf, len + 2) != len + 2)
return -EIO;
return 0;
}
static int og01a1b_write_reg_list(struct og01a1b *og01a1b,
const struct og01a1b_reg_list *r_list)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
unsigned int i;
int ret;
for (i = 0; i < r_list->num_of_regs; i++) {
ret = og01a1b_write_reg(og01a1b, r_list->regs[i].address, 1,
r_list->regs[i].val);
if (ret) {
dev_err_ratelimited(&client->dev,
"failed to write reg 0x%4.4x. error = %d",
r_list->regs[i].address, ret);
return ret;
}
}
return 0;
}
static int og01a1b_test_pattern(struct og01a1b *og01a1b, u32 pattern)
{
if (pattern)
pattern = (pattern - 1) << OG01A1B_TEST_PATTERN_BAR_SHIFT |
OG01A1B_TEST_PATTERN_ENABLE;
return og01a1b_write_reg(og01a1b, OG01A1B_REG_TEST_PATTERN,
OG01A1B_REG_VALUE_08BIT, pattern);
}
static int og01a1b_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct og01a1b *og01a1b = container_of(ctrl->handler,
struct og01a1b, ctrl_handler);
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
s64 exposure_max;
int ret = 0;
/* Propagate change of current control to all related controls */
if (ctrl->id == V4L2_CID_VBLANK) {
/* Update max exposure while meeting expected vblanking */
exposure_max = og01a1b->cur_mode->height + ctrl->val -
OG01A1B_EXPOSURE_MAX_MARGIN;
__v4l2_ctrl_modify_range(og01a1b->exposure,
og01a1b->exposure->minimum,
exposure_max, og01a1b->exposure->step,
exposure_max);
}
/* V4L2 controls values will be applied only when power is already up */
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_ANALOG_GAIN,
OG01A1B_REG_VALUE_16BIT,
ctrl->val << 4);
break;
case V4L2_CID_DIGITAL_GAIN:
ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_DIG_GAIN,
OG01A1B_REG_VALUE_24BIT,
ctrl->val << 6);
break;
case V4L2_CID_EXPOSURE:
ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_EXPOSURE,
OG01A1B_REG_VALUE_16BIT, ctrl->val);
break;
case V4L2_CID_VBLANK:
ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_VTS,
OG01A1B_REG_VALUE_16BIT,
og01a1b->cur_mode->height + ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
ret = og01a1b_test_pattern(og01a1b, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops og01a1b_ctrl_ops = {
.s_ctrl = og01a1b_set_ctrl,
};
static int og01a1b_init_controls(struct og01a1b *og01a1b)
{
struct v4l2_ctrl_handler *ctrl_hdlr;
s64 exposure_max, h_blank;
int ret;
ctrl_hdlr = &og01a1b->ctrl_handler;
ret = v4l2_ctrl_handler_init(ctrl_hdlr, 8);
if (ret)
return ret;
ctrl_hdlr->lock = &og01a1b->mutex;
og01a1b->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr,
&og01a1b_ctrl_ops,
V4L2_CID_LINK_FREQ,
ARRAY_SIZE
(link_freq_menu_items) - 1,
0, link_freq_menu_items);
if (og01a1b->link_freq)
og01a1b->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
og01a1b->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops,
V4L2_CID_PIXEL_RATE, 0,
to_pixel_rate
(OG01A1B_LINK_FREQ_1000MBPS),
1,
to_pixel_rate
(OG01A1B_LINK_FREQ_1000MBPS));
og01a1b->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops,
V4L2_CID_VBLANK,
og01a1b->cur_mode->vts_min -
og01a1b->cur_mode->height,
OG01A1B_VTS_MAX -
og01a1b->cur_mode->height, 1,
og01a1b->cur_mode->vts_def -
og01a1b->cur_mode->height);
h_blank = to_pixels_per_line(og01a1b->cur_mode->hts,
og01a1b->cur_mode->link_freq_index) -
og01a1b->cur_mode->width;
og01a1b->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops,
V4L2_CID_HBLANK, h_blank, h_blank,
1, h_blank);
if (og01a1b->hblank)
og01a1b->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
OG01A1B_ANAL_GAIN_MIN, OG01A1B_ANAL_GAIN_MAX,
OG01A1B_ANAL_GAIN_STEP, OG01A1B_ANAL_GAIN_MIN);
v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
OG01A1B_DGTL_GAIN_MIN, OG01A1B_DGTL_GAIN_MAX,
OG01A1B_DGTL_GAIN_STEP, OG01A1B_DGTL_GAIN_DEFAULT);
exposure_max = (og01a1b->cur_mode->vts_def -
OG01A1B_EXPOSURE_MAX_MARGIN);
og01a1b->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops,
V4L2_CID_EXPOSURE,
OG01A1B_EXPOSURE_MIN,
exposure_max,
OG01A1B_EXPOSURE_STEP,
exposure_max);
v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &og01a1b_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(og01a1b_test_pattern_menu) - 1,
0, 0, og01a1b_test_pattern_menu);
if (ctrl_hdlr->error)
return ctrl_hdlr->error;
og01a1b->sd.ctrl_handler = ctrl_hdlr;
return 0;
}
static void og01a1b_update_pad_format(const struct og01a1b_mode *mode,
struct v4l2_mbus_framefmt *fmt)
{
fmt->width = mode->width;
fmt->height = mode->height;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
fmt->field = V4L2_FIELD_NONE;
}
static int og01a1b_start_streaming(struct og01a1b *og01a1b)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
const struct og01a1b_reg_list *reg_list;
int link_freq_index, ret;
link_freq_index = og01a1b->cur_mode->link_freq_index;
reg_list = &link_freq_configs[link_freq_index].reg_list;
ret = og01a1b_write_reg_list(og01a1b, reg_list);
if (ret) {
dev_err(&client->dev, "failed to set plls");
return ret;
}
reg_list = &og01a1b->cur_mode->reg_list;
ret = og01a1b_write_reg_list(og01a1b, reg_list);
if (ret) {
dev_err(&client->dev, "failed to set mode");
return ret;
}
ret = __v4l2_ctrl_handler_setup(og01a1b->sd.ctrl_handler);
if (ret)
return ret;
ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_MODE_SELECT,
OG01A1B_REG_VALUE_08BIT,
OG01A1B_MODE_STREAMING);
if (ret) {
dev_err(&client->dev, "failed to set stream");
return ret;
}
return 0;
}
static void og01a1b_stop_streaming(struct og01a1b *og01a1b)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
if (og01a1b_write_reg(og01a1b, OG01A1B_REG_MODE_SELECT,
OG01A1B_REG_VALUE_08BIT, OG01A1B_MODE_STANDBY))
dev_err(&client->dev, "failed to set stream");
}
static int og01a1b_set_stream(struct v4l2_subdev *sd, int enable)
{
struct og01a1b *og01a1b = to_og01a1b(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret = 0;
mutex_lock(&og01a1b->mutex);
if (enable) {
ret = pm_runtime_resume_and_get(&client->dev);
if (ret) {
mutex_unlock(&og01a1b->mutex);
return ret;
}
ret = og01a1b_start_streaming(og01a1b);
if (ret) {
enable = 0;
og01a1b_stop_streaming(og01a1b);
pm_runtime_put(&client->dev);
}
} else {
og01a1b_stop_streaming(og01a1b);
pm_runtime_put(&client->dev);
}
mutex_unlock(&og01a1b->mutex);
return ret;
}
static int og01a1b_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct og01a1b *og01a1b = to_og01a1b(sd);
const struct og01a1b_mode *mode;
s32 vblank_def, h_blank;
mode = v4l2_find_nearest_size(supported_modes,
ARRAY_SIZE(supported_modes), width,
height, fmt->format.width,
fmt->format.height);
mutex_lock(&og01a1b->mutex);
og01a1b_update_pad_format(mode, &fmt->format);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
*v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format;
} else {
og01a1b->cur_mode = mode;
__v4l2_ctrl_s_ctrl(og01a1b->link_freq, mode->link_freq_index);
__v4l2_ctrl_s_ctrl_int64(og01a1b->pixel_rate,
to_pixel_rate(mode->link_freq_index));
/* Update limits and set FPS to default */
vblank_def = mode->vts_def - mode->height;
__v4l2_ctrl_modify_range(og01a1b->vblank,
mode->vts_min - mode->height,
OG01A1B_VTS_MAX - mode->height, 1,
vblank_def);
__v4l2_ctrl_s_ctrl(og01a1b->vblank, vblank_def);
h_blank = to_pixels_per_line(mode->hts, mode->link_freq_index) -
mode->width;
__v4l2_ctrl_modify_range(og01a1b->hblank, h_blank, h_blank, 1,
h_blank);
}
mutex_unlock(&og01a1b->mutex);
return 0;
}
static int og01a1b_get_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct og01a1b *og01a1b = to_og01a1b(sd);
mutex_lock(&og01a1b->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY)
fmt->format = *v4l2_subdev_state_get_format(sd_state,
fmt->pad);
else
og01a1b_update_pad_format(og01a1b->cur_mode, &fmt->format);
mutex_unlock(&og01a1b->mutex);
return 0;
}
static int og01a1b_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int og01a1b_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = supported_modes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int og01a1b_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct og01a1b *og01a1b = to_og01a1b(sd);
mutex_lock(&og01a1b->mutex);
og01a1b_update_pad_format(&supported_modes[0],
v4l2_subdev_state_get_format(fh->state, 0));
mutex_unlock(&og01a1b->mutex);
return 0;
}
static const struct v4l2_subdev_video_ops og01a1b_video_ops = {
.s_stream = og01a1b_set_stream,
};
static const struct v4l2_subdev_pad_ops og01a1b_pad_ops = {
.set_fmt = og01a1b_set_format,
.get_fmt = og01a1b_get_format,
.enum_mbus_code = og01a1b_enum_mbus_code,
.enum_frame_size = og01a1b_enum_frame_size,
};
static const struct v4l2_subdev_ops og01a1b_subdev_ops = {
.video = &og01a1b_video_ops,
.pad = &og01a1b_pad_ops,
};
static const struct media_entity_operations og01a1b_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops og01a1b_internal_ops = {
.open = og01a1b_open,
};
static int og01a1b_identify_module(struct og01a1b *og01a1b)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
int ret;
u32 val;
ret = og01a1b_read_reg(og01a1b, OG01A1B_REG_CHIP_ID,
OG01A1B_REG_VALUE_24BIT, &val);
if (ret)
return ret;
if (val != OG01A1B_CHIP_ID) {
dev_err(&client->dev, "chip id mismatch: %x!=%x",
OG01A1B_CHIP_ID, val);
return -ENXIO;
}
return 0;
}
static int og01a1b_check_hwcfg(struct og01a1b *og01a1b)
{
struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd);
struct device *dev = &client->dev;
struct fwnode_handle *ep;
struct fwnode_handle *fwnode = dev_fwnode(dev);
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
u32 mclk;
int ret;
unsigned int i, j;
if (!fwnode)
return -ENXIO;
ret = fwnode_property_read_u32(fwnode, "clock-frequency", &mclk);
if (ret) {
if (!og01a1b->xvclk) {
dev_err(dev, "can't get clock frequency");
return ret;
}
mclk = clk_get_rate(og01a1b->xvclk);
}
if (mclk != OG01A1B_MCLK) {
dev_err(dev, "external clock %d is not supported", mclk);
return -EINVAL;
}
ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (!ep)
return -ENXIO;
ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
fwnode_handle_put(ep);
if (ret)
return ret;
if (bus_cfg.bus.mipi_csi2.num_data_lanes != OG01A1B_DATA_LANES) {
dev_err(dev, "number of CSI2 data lanes %d is not supported",
bus_cfg.bus.mipi_csi2.num_data_lanes);
ret = -EINVAL;
goto check_hwcfg_error;
}
if (!bus_cfg.nr_of_link_frequencies) {
dev_err(dev, "no link frequencies defined");
ret = -EINVAL;
goto check_hwcfg_error;
}
for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); i++) {
for (j = 0; j < bus_cfg.nr_of_link_frequencies; j++) {
if (link_freq_menu_items[i] ==
bus_cfg.link_frequencies[j])
break;
}
if (j == bus_cfg.nr_of_link_frequencies) {
dev_err(dev, "no link frequency %lld supported",
link_freq_menu_items[i]);
ret = -EINVAL;
goto check_hwcfg_error;
}
}
check_hwcfg_error:
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
/* Power/clock management functions */
static int og01a1b_power_on(struct device *dev)
{
unsigned long delay = DIV_ROUND_UP(8192UL * USEC_PER_SEC, OG01A1B_MCLK);
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct og01a1b *og01a1b = to_og01a1b(sd);
int ret;
if (og01a1b->avdd) {
ret = regulator_enable(og01a1b->avdd);
if (ret)
return ret;
}
if (og01a1b->dovdd) {
ret = regulator_enable(og01a1b->dovdd);
if (ret)
goto avdd_disable;
}
if (og01a1b->dvdd) {
ret = regulator_enable(og01a1b->dvdd);
if (ret)
goto dovdd_disable;
}
ret = clk_prepare_enable(og01a1b->xvclk);
if (ret)
goto dvdd_disable;
gpiod_set_value_cansleep(og01a1b->reset_gpio, 0);
if (og01a1b->reset_gpio)
usleep_range(5 * USEC_PER_MSEC, 6 * USEC_PER_MSEC);
else if (og01a1b->xvclk)
usleep_range(delay, 2 * delay);
return 0;
dvdd_disable:
if (og01a1b->dvdd)
regulator_disable(og01a1b->dvdd);
dovdd_disable:
if (og01a1b->dovdd)
regulator_disable(og01a1b->dovdd);
avdd_disable:
if (og01a1b->avdd)
regulator_disable(og01a1b->avdd);
return ret;
}
static int og01a1b_power_off(struct device *dev)
{
unsigned long delay = DIV_ROUND_UP(512 * USEC_PER_SEC, OG01A1B_MCLK);
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct og01a1b *og01a1b = to_og01a1b(sd);
if (og01a1b->xvclk)
usleep_range(delay, 2 * delay);
clk_disable_unprepare(og01a1b->xvclk);
gpiod_set_value_cansleep(og01a1b->reset_gpio, 1);
if (og01a1b->dvdd)
regulator_disable(og01a1b->dvdd);
if (og01a1b->dovdd)
regulator_disable(og01a1b->dovdd);
if (og01a1b->avdd)
regulator_disable(og01a1b->avdd);
return 0;
}
static void og01a1b_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct og01a1b *og01a1b = to_og01a1b(sd);
v4l2_async_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(sd->ctrl_handler);
pm_runtime_disable(&client->dev);
mutex_destroy(&og01a1b->mutex);
}
static int og01a1b_probe(struct i2c_client *client)
{
struct og01a1b *og01a1b;
int ret;
og01a1b = devm_kzalloc(&client->dev, sizeof(*og01a1b), GFP_KERNEL);
if (!og01a1b)
return -ENOMEM;
v4l2_i2c_subdev_init(&og01a1b->sd, client, &og01a1b_subdev_ops);
og01a1b->xvclk = devm_clk_get_optional(&client->dev, NULL);
if (IS_ERR(og01a1b->xvclk)) {
ret = PTR_ERR(og01a1b->xvclk);
dev_err(&client->dev, "failed to get xvclk clock: %d\n", ret);
return ret;
}
ret = og01a1b_check_hwcfg(og01a1b);
if (ret) {
dev_err(&client->dev, "failed to check HW configuration: %d",
ret);
return ret;
}
og01a1b->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(og01a1b->reset_gpio)) {
dev_err(&client->dev, "cannot get reset GPIO\n");
return PTR_ERR(og01a1b->reset_gpio);
}
og01a1b->avdd = devm_regulator_get_optional(&client->dev, "avdd");
if (IS_ERR(og01a1b->avdd)) {
ret = PTR_ERR(og01a1b->avdd);
if (ret != -ENODEV) {
dev_err_probe(&client->dev, ret,
"Failed to get 'avdd' regulator\n");
return ret;
}
og01a1b->avdd = NULL;
}
og01a1b->dovdd = devm_regulator_get_optional(&client->dev, "dovdd");
if (IS_ERR(og01a1b->dovdd)) {
ret = PTR_ERR(og01a1b->dovdd);
if (ret != -ENODEV) {
dev_err_probe(&client->dev, ret,
"Failed to get 'dovdd' regulator\n");
return ret;
}
og01a1b->dovdd = NULL;
}
og01a1b->dvdd = devm_regulator_get_optional(&client->dev, "dvdd");
if (IS_ERR(og01a1b->dvdd)) {
ret = PTR_ERR(og01a1b->dvdd);
if (ret != -ENODEV) {
dev_err_probe(&client->dev, ret,
"Failed to get 'dvdd' regulator\n");
return ret;
}
og01a1b->dvdd = NULL;
}
/* The sensor must be powered on to read the CHIP_ID register */
ret = og01a1b_power_on(&client->dev);
if (ret)
return ret;
ret = og01a1b_identify_module(og01a1b);
if (ret) {
dev_err(&client->dev, "failed to find sensor: %d", ret);
goto power_off;
}
mutex_init(&og01a1b->mutex);
og01a1b->cur_mode = &supported_modes[0];
ret = og01a1b_init_controls(og01a1b);
if (ret) {
dev_err(&client->dev, "failed to init controls: %d", ret);
goto probe_error_v4l2_ctrl_handler_free;
}
og01a1b->sd.internal_ops = &og01a1b_internal_ops;
og01a1b->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
og01a1b->sd.entity.ops = &og01a1b_subdev_entity_ops;
og01a1b->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
og01a1b->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&og01a1b->sd.entity, 1, &og01a1b->pad);
if (ret) {
dev_err(&client->dev, "failed to init entity pads: %d", ret);
goto probe_error_v4l2_ctrl_handler_free;
}
ret = v4l2_async_register_subdev_sensor(&og01a1b->sd);
if (ret < 0) {
dev_err(&client->dev, "failed to register V4L2 subdev: %d",
ret);
goto probe_error_media_entity_cleanup;
}
/* Enable runtime PM and turn off the device */
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
pm_runtime_idle(&client->dev);
return 0;
probe_error_media_entity_cleanup:
media_entity_cleanup(&og01a1b->sd.entity);
probe_error_v4l2_ctrl_handler_free:
v4l2_ctrl_handler_free(og01a1b->sd.ctrl_handler);
mutex_destroy(&og01a1b->mutex);
power_off:
og01a1b_power_off(&client->dev);
return ret;
}
static const struct dev_pm_ops og01a1b_pm_ops = {
SET_RUNTIME_PM_OPS(og01a1b_power_off, og01a1b_power_on, NULL)
};
#ifdef CONFIG_ACPI
static const struct acpi_device_id og01a1b_acpi_ids[] = {
{"OVTI01AC"},
{}
};
MODULE_DEVICE_TABLE(acpi, og01a1b_acpi_ids);
#endif
static const struct of_device_id og01a1b_of_match[] = {
{ .compatible = "ovti,og01a1b" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, og01a1b_of_match);
static struct i2c_driver og01a1b_i2c_driver = {
.driver = {
.name = "og01a1b",
.pm = &og01a1b_pm_ops,
.acpi_match_table = ACPI_PTR(og01a1b_acpi_ids),
.of_match_table = og01a1b_of_match,
},
.probe = og01a1b_probe,
.remove = og01a1b_remove,
};
module_i2c_driver(og01a1b_i2c_driver);
MODULE_AUTHOR("Shawn Tu");
MODULE_DESCRIPTION("OmniVision OG01A1B sensor driver");
MODULE_LICENSE("GPL v2");