linux/drivers/dma/fsl-qdma.c
Frank Li 1878840a03 dmaengine: fsl-qdma: add __iomem and struct in union to fix sparse warning
Fix below sparse warnings.

drivers/dma/fsl-qdma.c:645:50: sparse: warning: incorrect type in argument 2 (different address spaces)
drivers/dma/fsl-qdma.c:645:50: sparse:    expected void [noderef] __iomem *addr
drivers/dma/fsl-qdma.c:645:50: sparse:    got void

drivers/dma/fsl-qdma.c:387:15: sparse: sparse: restricted __le32 degrades to integer
drivers/dma/fsl-qdma.c:390:19: sparse:     expected restricted __le64 [usertype] data
drivers/dma/fsl-qdma.c:392:13: sparse:     expected unsigned int [assigned] [usertype] cmd

QDMA decriptor have below 3 kind formats. (little endian)

Compound Command Descriptor Format
  ┌──────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
  │Offset│3│3│2│2│2│2│2│2│2│2│2│2│1│1│1│1│1│1│1│1│1│1│ │ │ │ │ │ │ │ │ │ │
  │      │1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│
  ├──────┼─┴─┼─┴─┴─┼─┴─┴─┼─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┼─┴─┴─┴─┴─┴─┴─┴─┤
  │ 0x0C │DD │  -  │QUEUE│             -                 │      ADDR     │
  ├──────┼───┴─────┴─────┴───────────────────────────────┴───────────────┤
  │ 0x08 │                       ADDR                                    │
  ├──────┼─────┬─────────────────┬───────────────────────────────────────┤
  │ 0x04 │ FMT │    OFFSET       │                   -                   │
  ├──────┼─┬─┬─┴─────────────────┴───────────────────────┬───────────────┤
  │      │ │S│                                           │               │
  │ 0x00 │-│E│                   -                       │    STATUS     │
  │      │ │R│                                           │               │
  └──────┴─┴─┴───────────────────────────────────────────┴───────────────┘

Compound S/G Table Entry Format
 ┌──────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
 │Offset│3│3│2│2│2│2│2│2│2│2│2│2│1│1│1│1│1│1│1│1│1│1│ │ │ │ │ │ │ │ │ │ │
 │      │1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│
 ├──────┼─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┼─┴─┴─┴─┴─┴─┴─┴─┤
 │ 0x0C │                      -                        │    ADDR       │
 ├──────┼───────────────────────────────────────────────┴───────────────┤
 │ 0x08 │                          ADDR                                 │
 ├──────┼─┬─┬───────────────────────────────────────────────────────────┤
 │ 0x04 │E│F│                    LENGTH                                 │
 ├──────┼─┴─┴─────────────────────────────────┬─────────────────────────┤
 │ 0x00 │              -                      │        OFFSET           │
 └──────┴─────────────────────────────────────┴─────────────────────────┘

Source/Destination Descriptor Format
  ┌──────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
  │Offset│3│3│2│2│2│2│2│2│2│2│2│2│1│1│1│1│1│1│1│1│1│1│ │ │ │ │ │ │ │ │ │ │
  │      │1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│9│8│7│6│5│4│3│2│1│0│
  ├──────┼─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┤
  │ 0x0C │                            CMD                                │
  ├──────┼───────────────────────────────────────────────────────────────┤
  │ 0x08 │                             -                                 │
  ├──────┼───────────────┬───────────────────────┬───────────────────────┤
  │ 0x04 │       -       │         S[D]SS        │        S[D]SD         │
  ├──────┼───────────────┴───────────────────────┴───────────────────────┤
  │ 0x00 │                             -                                 │
  └──────┴───────────────────────────────────────────────────────────────┘

Previous code use 64bit 'data' map to 0x8 and 0xC. In little endian system
CMD is high part of 64bit 'data'. It is correct by left shift 32. But in
big endian system, shift left 32 will write to 0x8 position. Sparse detect
this problem.

Add below field ot match 'Source/Destination Descriptor Format'.
struct {
	__le32 __reserved2;
	__le32 cmd;
} __packed;

Using ddf(sdf)->cmd save to correct posistion regardless endian.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202402081929.mggOTHaZ-lkp@intel.com/
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Link: https://lore.kernel.org/r/20240219155939.611237-1-Frank.Li@nxp.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-02-23 12:20:39 +05:30

1299 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright 2014-2015 Freescale
// Copyright 2018 NXP
/*
* Driver for NXP Layerscape Queue Direct Memory Access Controller
*
* Author:
* Wen He <wen.he_1@nxp.com>
* Jiaheng Fan <jiaheng.fan@nxp.com>
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include "virt-dma.h"
#include "fsldma.h"
/* Register related definition */
#define FSL_QDMA_DMR 0x0
#define FSL_QDMA_DSR 0x4
#define FSL_QDMA_DEIER 0xe00
#define FSL_QDMA_DEDR 0xe04
#define FSL_QDMA_DECFDW0R 0xe10
#define FSL_QDMA_DECFDW1R 0xe14
#define FSL_QDMA_DECFDW2R 0xe18
#define FSL_QDMA_DECFDW3R 0xe1c
#define FSL_QDMA_DECFQIDR 0xe30
#define FSL_QDMA_DECBR 0xe34
#define FSL_QDMA_BCQMR(x) (0xc0 + 0x100 * (x))
#define FSL_QDMA_BCQSR(x) (0xc4 + 0x100 * (x))
#define FSL_QDMA_BCQEDPA_SADDR(x) (0xc8 + 0x100 * (x))
#define FSL_QDMA_BCQDPA_SADDR(x) (0xcc + 0x100 * (x))
#define FSL_QDMA_BCQEEPA_SADDR(x) (0xd0 + 0x100 * (x))
#define FSL_QDMA_BCQEPA_SADDR(x) (0xd4 + 0x100 * (x))
#define FSL_QDMA_BCQIER(x) (0xe0 + 0x100 * (x))
#define FSL_QDMA_BCQIDR(x) (0xe4 + 0x100 * (x))
#define FSL_QDMA_SQDPAR 0x80c
#define FSL_QDMA_SQEPAR 0x814
#define FSL_QDMA_BSQMR 0x800
#define FSL_QDMA_BSQSR 0x804
#define FSL_QDMA_BSQICR 0x828
#define FSL_QDMA_CQMR 0xa00
#define FSL_QDMA_CQDSCR1 0xa08
#define FSL_QDMA_CQDSCR2 0xa0c
#define FSL_QDMA_CQIER 0xa10
#define FSL_QDMA_CQEDR 0xa14
#define FSL_QDMA_SQCCMR 0xa20
/* Registers for bit and genmask */
#define FSL_QDMA_CQIDR_SQT BIT(15)
#define QDMA_CCDF_FORMAT BIT(29)
#define QDMA_CCDF_SER BIT(30)
#define QDMA_SG_FIN BIT(30)
#define QDMA_SG_LEN_MASK GENMASK(29, 0)
#define QDMA_CCDF_MASK GENMASK(28, 20)
#define FSL_QDMA_DEDR_CLEAR GENMASK(31, 0)
#define FSL_QDMA_BCQIDR_CLEAR GENMASK(31, 0)
#define FSL_QDMA_DEIER_CLEAR GENMASK(31, 0)
#define FSL_QDMA_BCQIER_CQTIE BIT(15)
#define FSL_QDMA_BCQIER_CQPEIE BIT(23)
#define FSL_QDMA_BSQICR_ICEN BIT(31)
#define FSL_QDMA_BSQICR_ICST(x) ((x) << 16)
#define FSL_QDMA_CQIER_MEIE BIT(31)
#define FSL_QDMA_CQIER_TEIE BIT(0)
#define FSL_QDMA_SQCCMR_ENTER_WM BIT(21)
#define FSL_QDMA_BCQMR_EN BIT(31)
#define FSL_QDMA_BCQMR_EI BIT(30)
#define FSL_QDMA_BCQMR_CD_THLD(x) ((x) << 20)
#define FSL_QDMA_BCQMR_CQ_SIZE(x) ((x) << 16)
#define FSL_QDMA_BCQSR_QF BIT(16)
#define FSL_QDMA_BCQSR_XOFF BIT(0)
#define FSL_QDMA_BSQMR_EN BIT(31)
#define FSL_QDMA_BSQMR_DI BIT(30)
#define FSL_QDMA_BSQMR_CQ_SIZE(x) ((x) << 16)
#define FSL_QDMA_BSQSR_QE BIT(17)
#define FSL_QDMA_DMR_DQD BIT(30)
#define FSL_QDMA_DSR_DB BIT(31)
/* Size related definition */
#define FSL_QDMA_QUEUE_MAX 8
#define FSL_QDMA_COMMAND_BUFFER_SIZE 64
#define FSL_QDMA_DESCRIPTOR_BUFFER_SIZE 32
#define FSL_QDMA_CIRCULAR_DESC_SIZE_MIN 64
#define FSL_QDMA_CIRCULAR_DESC_SIZE_MAX 16384
#define FSL_QDMA_QUEUE_NUM_MAX 8
/* Field definition for CMD */
#define FSL_QDMA_CMD_RWTTYPE 0x4
#define FSL_QDMA_CMD_LWC 0x2
#define FSL_QDMA_CMD_RWTTYPE_OFFSET 28
#define FSL_QDMA_CMD_NS_OFFSET 27
#define FSL_QDMA_CMD_DQOS_OFFSET 24
#define FSL_QDMA_CMD_WTHROTL_OFFSET 20
#define FSL_QDMA_CMD_DSEN_OFFSET 19
#define FSL_QDMA_CMD_LWC_OFFSET 16
#define FSL_QDMA_CMD_PF BIT(17)
/* Field definition for Descriptor status */
#define QDMA_CCDF_STATUS_RTE BIT(5)
#define QDMA_CCDF_STATUS_WTE BIT(4)
#define QDMA_CCDF_STATUS_CDE BIT(2)
#define QDMA_CCDF_STATUS_SDE BIT(1)
#define QDMA_CCDF_STATUS_DDE BIT(0)
#define QDMA_CCDF_STATUS_MASK (QDMA_CCDF_STATUS_RTE | \
QDMA_CCDF_STATUS_WTE | \
QDMA_CCDF_STATUS_CDE | \
QDMA_CCDF_STATUS_SDE | \
QDMA_CCDF_STATUS_DDE)
/* Field definition for Descriptor offset */
#define QDMA_CCDF_OFFSET 20
#define QDMA_SDDF_CMD(x) (((u64)(x)) << 32)
/* Field definition for safe loop count*/
#define FSL_QDMA_HALT_COUNT 1500
#define FSL_QDMA_MAX_SIZE 16385
#define FSL_QDMA_COMP_TIMEOUT 1000
#define FSL_COMMAND_QUEUE_OVERFLLOW 10
#define FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma_engine, x) \
(((fsl_qdma_engine)->block_offset) * (x))
/**
* struct fsl_qdma_format - This is the struct holding describing compound
* descriptor format with qDMA.
* @status: Command status and enqueue status notification.
* @cfg: Frame offset and frame format.
* @addr_lo: Holding the compound descriptor of the lower
* 32-bits address in memory 40-bit address.
* @addr_hi: Same as above member, but point high 8-bits in
* memory 40-bit address.
* @__reserved1: Reserved field.
* @cfg8b_w1: Compound descriptor command queue origin produced
* by qDMA and dynamic debug field.
* @data: Pointer to the memory 40-bit address, describes DMA
* source information and DMA destination information.
*/
struct fsl_qdma_format {
__le32 status;
__le32 cfg;
union {
struct {
__le32 addr_lo;
u8 addr_hi;
u8 __reserved1[2];
u8 cfg8b_w1;
} __packed;
struct {
__le32 __reserved2;
__le32 cmd;
} __packed;
__le64 data;
};
} __packed;
/* qDMA status notification pre information */
struct fsl_pre_status {
u64 addr;
u8 queue;
};
static DEFINE_PER_CPU(struct fsl_pre_status, pre);
struct fsl_qdma_chan {
struct virt_dma_chan vchan;
struct virt_dma_desc vdesc;
enum dma_status status;
struct fsl_qdma_engine *qdma;
struct fsl_qdma_queue *queue;
};
struct fsl_qdma_queue {
struct fsl_qdma_format *virt_head;
struct fsl_qdma_format *virt_tail;
struct list_head comp_used;
struct list_head comp_free;
struct dma_pool *comp_pool;
struct dma_pool *desc_pool;
spinlock_t queue_lock;
dma_addr_t bus_addr;
u32 n_cq;
u32 id;
struct fsl_qdma_format *cq;
void __iomem *block_base;
};
struct fsl_qdma_comp {
dma_addr_t bus_addr;
dma_addr_t desc_bus_addr;
struct fsl_qdma_format *virt_addr;
struct fsl_qdma_format *desc_virt_addr;
struct fsl_qdma_chan *qchan;
struct virt_dma_desc vdesc;
struct list_head list;
};
struct fsl_qdma_engine {
struct dma_device dma_dev;
void __iomem *ctrl_base;
void __iomem *status_base;
void __iomem *block_base;
u32 n_chans;
u32 n_queues;
struct mutex fsl_qdma_mutex;
int error_irq;
int *queue_irq;
u32 feature;
struct fsl_qdma_queue *queue;
struct fsl_qdma_queue **status;
struct fsl_qdma_chan *chans;
int block_number;
int block_offset;
int irq_base;
int desc_allocated;
};
static inline u64
qdma_ccdf_addr_get64(const struct fsl_qdma_format *ccdf)
{
return le64_to_cpu(ccdf->data) & (U64_MAX >> 24);
}
static inline void
qdma_desc_addr_set64(struct fsl_qdma_format *ccdf, u64 addr)
{
ccdf->addr_hi = upper_32_bits(addr);
ccdf->addr_lo = cpu_to_le32(lower_32_bits(addr));
}
static inline u8
qdma_ccdf_get_queue(const struct fsl_qdma_format *ccdf)
{
return ccdf->cfg8b_w1 & U8_MAX;
}
static inline int
qdma_ccdf_get_offset(const struct fsl_qdma_format *ccdf)
{
return (le32_to_cpu(ccdf->cfg) & QDMA_CCDF_MASK) >> QDMA_CCDF_OFFSET;
}
static inline void
qdma_ccdf_set_format(struct fsl_qdma_format *ccdf, int offset)
{
ccdf->cfg = cpu_to_le32(QDMA_CCDF_FORMAT |
(offset << QDMA_CCDF_OFFSET));
}
static inline int
qdma_ccdf_get_status(const struct fsl_qdma_format *ccdf)
{
return (le32_to_cpu(ccdf->status) & QDMA_CCDF_STATUS_MASK);
}
static inline void
qdma_ccdf_set_ser(struct fsl_qdma_format *ccdf, int status)
{
ccdf->status = cpu_to_le32(QDMA_CCDF_SER | status);
}
static inline void qdma_csgf_set_len(struct fsl_qdma_format *csgf, int len)
{
csgf->cfg = cpu_to_le32(len & QDMA_SG_LEN_MASK);
}
static inline void qdma_csgf_set_f(struct fsl_qdma_format *csgf, int len)
{
csgf->cfg = cpu_to_le32(QDMA_SG_FIN | (len & QDMA_SG_LEN_MASK));
}
static u32 qdma_readl(struct fsl_qdma_engine *qdma, void __iomem *addr)
{
return FSL_DMA_IN(qdma, addr, 32);
}
static void qdma_writel(struct fsl_qdma_engine *qdma, u32 val,
void __iomem *addr)
{
FSL_DMA_OUT(qdma, addr, val, 32);
}
static struct fsl_qdma_chan *to_fsl_qdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct fsl_qdma_chan, vchan.chan);
}
static struct fsl_qdma_comp *to_fsl_qdma_comp(struct virt_dma_desc *vd)
{
return container_of(vd, struct fsl_qdma_comp, vdesc);
}
static void fsl_qdma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma;
struct fsl_qdma_comp *comp_temp, *_comp_temp;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
if (!fsl_queue->comp_pool && !fsl_queue->desc_pool)
return;
list_for_each_entry_safe(comp_temp, _comp_temp,
&fsl_queue->comp_used, list) {
dma_pool_free(fsl_queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
dma_pool_free(fsl_queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
list_for_each_entry_safe(comp_temp, _comp_temp,
&fsl_queue->comp_free, list) {
dma_pool_free(fsl_queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
dma_pool_free(fsl_queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
dma_pool_destroy(fsl_queue->comp_pool);
dma_pool_destroy(fsl_queue->desc_pool);
fsl_qdma->desc_allocated--;
fsl_queue->comp_pool = NULL;
fsl_queue->desc_pool = NULL;
}
static void fsl_qdma_comp_fill_memcpy(struct fsl_qdma_comp *fsl_comp,
dma_addr_t dst, dma_addr_t src, u32 len)
{
struct fsl_qdma_format *sdf, *ddf;
struct fsl_qdma_format *ccdf, *csgf_desc, *csgf_src, *csgf_dest;
ccdf = fsl_comp->virt_addr;
csgf_desc = fsl_comp->virt_addr + 1;
csgf_src = fsl_comp->virt_addr + 2;
csgf_dest = fsl_comp->virt_addr + 3;
sdf = fsl_comp->desc_virt_addr;
ddf = fsl_comp->desc_virt_addr + 1;
memset(fsl_comp->virt_addr, 0, FSL_QDMA_COMMAND_BUFFER_SIZE);
memset(fsl_comp->desc_virt_addr, 0, FSL_QDMA_DESCRIPTOR_BUFFER_SIZE);
/* Head Command Descriptor(Frame Descriptor) */
qdma_desc_addr_set64(ccdf, fsl_comp->bus_addr + 16);
qdma_ccdf_set_format(ccdf, qdma_ccdf_get_offset(ccdf));
qdma_ccdf_set_ser(ccdf, qdma_ccdf_get_status(ccdf));
/* Status notification is enqueued to status queue. */
/* Compound Command Descriptor(Frame List Table) */
qdma_desc_addr_set64(csgf_desc, fsl_comp->desc_bus_addr);
/* It must be 32 as Compound S/G Descriptor */
qdma_csgf_set_len(csgf_desc, 32);
qdma_desc_addr_set64(csgf_src, src);
qdma_csgf_set_len(csgf_src, len);
qdma_desc_addr_set64(csgf_dest, dst);
qdma_csgf_set_len(csgf_dest, len);
/* This entry is the last entry. */
qdma_csgf_set_f(csgf_dest, len);
/* Descriptor Buffer */
sdf->cmd = cpu_to_le32((FSL_QDMA_CMD_RWTTYPE << FSL_QDMA_CMD_RWTTYPE_OFFSET) |
FSL_QDMA_CMD_PF);
ddf->cmd = cpu_to_le32((FSL_QDMA_CMD_RWTTYPE << FSL_QDMA_CMD_RWTTYPE_OFFSET) |
(FSL_QDMA_CMD_LWC << FSL_QDMA_CMD_LWC_OFFSET));
}
/*
* Pre-request full command descriptor for enqueue.
*/
static int fsl_qdma_pre_request_enqueue_desc(struct fsl_qdma_queue *queue)
{
int i;
struct fsl_qdma_comp *comp_temp, *_comp_temp;
for (i = 0; i < queue->n_cq + FSL_COMMAND_QUEUE_OVERFLLOW; i++) {
comp_temp = kzalloc(sizeof(*comp_temp), GFP_KERNEL);
if (!comp_temp)
goto err_alloc;
comp_temp->virt_addr =
dma_pool_alloc(queue->comp_pool, GFP_KERNEL,
&comp_temp->bus_addr);
if (!comp_temp->virt_addr)
goto err_dma_alloc;
comp_temp->desc_virt_addr =
dma_pool_alloc(queue->desc_pool, GFP_KERNEL,
&comp_temp->desc_bus_addr);
if (!comp_temp->desc_virt_addr)
goto err_desc_dma_alloc;
list_add_tail(&comp_temp->list, &queue->comp_free);
}
return 0;
err_desc_dma_alloc:
dma_pool_free(queue->comp_pool, comp_temp->virt_addr,
comp_temp->bus_addr);
err_dma_alloc:
kfree(comp_temp);
err_alloc:
list_for_each_entry_safe(comp_temp, _comp_temp,
&queue->comp_free, list) {
if (comp_temp->virt_addr)
dma_pool_free(queue->comp_pool,
comp_temp->virt_addr,
comp_temp->bus_addr);
if (comp_temp->desc_virt_addr)
dma_pool_free(queue->desc_pool,
comp_temp->desc_virt_addr,
comp_temp->desc_bus_addr);
list_del(&comp_temp->list);
kfree(comp_temp);
}
return -ENOMEM;
}
/*
* Request a command descriptor for enqueue.
*/
static struct fsl_qdma_comp
*fsl_qdma_request_enqueue_desc(struct fsl_qdma_chan *fsl_chan)
{
unsigned long flags;
struct fsl_qdma_comp *comp_temp;
int timeout = FSL_QDMA_COMP_TIMEOUT;
struct fsl_qdma_queue *queue = fsl_chan->queue;
while (timeout--) {
spin_lock_irqsave(&queue->queue_lock, flags);
if (!list_empty(&queue->comp_free)) {
comp_temp = list_first_entry(&queue->comp_free,
struct fsl_qdma_comp,
list);
list_del(&comp_temp->list);
spin_unlock_irqrestore(&queue->queue_lock, flags);
comp_temp->qchan = fsl_chan;
return comp_temp;
}
spin_unlock_irqrestore(&queue->queue_lock, flags);
udelay(1);
}
return NULL;
}
static struct fsl_qdma_queue
*fsl_qdma_alloc_queue_resources(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int ret, len, i, j;
int queue_num, block_number;
unsigned int queue_size[FSL_QDMA_QUEUE_MAX];
struct fsl_qdma_queue *queue_head, *queue_temp;
queue_num = fsl_qdma->n_queues;
block_number = fsl_qdma->block_number;
if (queue_num > FSL_QDMA_QUEUE_MAX)
queue_num = FSL_QDMA_QUEUE_MAX;
len = sizeof(*queue_head) * queue_num * block_number;
queue_head = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!queue_head)
return NULL;
ret = device_property_read_u32_array(&pdev->dev, "queue-sizes",
queue_size, queue_num);
if (ret) {
dev_err(&pdev->dev, "Can't get queue-sizes.\n");
return NULL;
}
for (j = 0; j < block_number; j++) {
for (i = 0; i < queue_num; i++) {
if (queue_size[i] > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX ||
queue_size[i] < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) {
dev_err(&pdev->dev,
"Get wrong queue-sizes.\n");
return NULL;
}
queue_temp = queue_head + i + (j * queue_num);
queue_temp->cq =
dmam_alloc_coherent(&pdev->dev,
sizeof(struct fsl_qdma_format) *
queue_size[i],
&queue_temp->bus_addr,
GFP_KERNEL);
if (!queue_temp->cq)
return NULL;
queue_temp->block_base = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
queue_temp->n_cq = queue_size[i];
queue_temp->id = i;
queue_temp->virt_head = queue_temp->cq;
queue_temp->virt_tail = queue_temp->cq;
/*
* List for queue command buffer
*/
INIT_LIST_HEAD(&queue_temp->comp_used);
spin_lock_init(&queue_temp->queue_lock);
}
}
return queue_head;
}
static struct fsl_qdma_queue
*fsl_qdma_prep_status_queue(struct platform_device *pdev)
{
int ret;
unsigned int status_size;
struct fsl_qdma_queue *status_head;
struct device_node *np = pdev->dev.of_node;
ret = of_property_read_u32(np, "status-sizes", &status_size);
if (ret) {
dev_err(&pdev->dev, "Can't get status-sizes.\n");
return NULL;
}
if (status_size > FSL_QDMA_CIRCULAR_DESC_SIZE_MAX ||
status_size < FSL_QDMA_CIRCULAR_DESC_SIZE_MIN) {
dev_err(&pdev->dev, "Get wrong status_size.\n");
return NULL;
}
status_head = devm_kzalloc(&pdev->dev,
sizeof(*status_head), GFP_KERNEL);
if (!status_head)
return NULL;
/*
* Buffer for queue command
*/
status_head->cq = dmam_alloc_coherent(&pdev->dev,
sizeof(struct fsl_qdma_format) *
status_size,
&status_head->bus_addr,
GFP_KERNEL);
if (!status_head->cq)
return NULL;
status_head->n_cq = status_size;
status_head->virt_head = status_head->cq;
status_head->virt_tail = status_head->cq;
status_head->comp_pool = NULL;
return status_head;
}
static int fsl_qdma_halt(struct fsl_qdma_engine *fsl_qdma)
{
u32 reg;
int i, j, count = FSL_QDMA_HALT_COUNT;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
/* Disable the command queue and wait for idle state. */
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg |= FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
for (i = 0; i < FSL_QDMA_QUEUE_NUM_MAX; i++)
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQMR(i));
}
while (1) {
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DSR);
if (!(reg & FSL_QDMA_DSR_DB))
break;
if (count-- < 0)
return -EBUSY;
udelay(100);
}
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
/* Disable status queue. */
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BSQMR);
/*
* clear the command queue interrupt detect register for
* all queues.
*/
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
}
return 0;
}
static int
fsl_qdma_queue_transfer_complete(struct fsl_qdma_engine *fsl_qdma,
__iomem void *block,
int id)
{
bool duplicate;
u32 reg, i, count;
u8 completion_status;
struct fsl_qdma_queue *temp_queue;
struct fsl_qdma_format *status_addr;
struct fsl_qdma_comp *fsl_comp = NULL;
struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue;
struct fsl_qdma_queue *fsl_status = fsl_qdma->status[id];
count = FSL_QDMA_MAX_SIZE;
while (count--) {
duplicate = 0;
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQSR);
if (reg & FSL_QDMA_BSQSR_QE)
return 0;
status_addr = fsl_status->virt_head;
if (qdma_ccdf_get_queue(status_addr) ==
__this_cpu_read(pre.queue) &&
qdma_ccdf_addr_get64(status_addr) ==
__this_cpu_read(pre.addr))
duplicate = 1;
i = qdma_ccdf_get_queue(status_addr) +
id * fsl_qdma->n_queues;
__this_cpu_write(pre.addr, qdma_ccdf_addr_get64(status_addr));
__this_cpu_write(pre.queue, qdma_ccdf_get_queue(status_addr));
temp_queue = fsl_queue + i;
spin_lock(&temp_queue->queue_lock);
if (list_empty(&temp_queue->comp_used)) {
if (!duplicate) {
spin_unlock(&temp_queue->queue_lock);
return -EAGAIN;
}
} else {
fsl_comp = list_first_entry(&temp_queue->comp_used,
struct fsl_qdma_comp, list);
if (fsl_comp->bus_addr + 16 !=
__this_cpu_read(pre.addr)) {
if (!duplicate) {
spin_unlock(&temp_queue->queue_lock);
return -EAGAIN;
}
}
}
if (duplicate) {
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
reg |= FSL_QDMA_BSQMR_DI;
qdma_desc_addr_set64(status_addr, 0x0);
fsl_status->virt_head++;
if (fsl_status->virt_head == fsl_status->cq
+ fsl_status->n_cq)
fsl_status->virt_head = fsl_status->cq;
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
spin_unlock(&temp_queue->queue_lock);
continue;
}
list_del(&fsl_comp->list);
completion_status = qdma_ccdf_get_status(status_addr);
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
reg |= FSL_QDMA_BSQMR_DI;
qdma_desc_addr_set64(status_addr, 0x0);
fsl_status->virt_head++;
if (fsl_status->virt_head == fsl_status->cq + fsl_status->n_cq)
fsl_status->virt_head = fsl_status->cq;
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
spin_unlock(&temp_queue->queue_lock);
/* The completion_status is evaluated here
* (outside of spin lock)
*/
if (completion_status) {
/* A completion error occurred! */
if (completion_status & QDMA_CCDF_STATUS_WTE) {
/* Write transaction error */
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_WRITE_FAILED;
} else if (completion_status & QDMA_CCDF_STATUS_RTE) {
/* Read transaction error */
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_READ_FAILED;
} else {
/* Command/source/destination
* description error
*/
fsl_comp->vdesc.tx_result.result =
DMA_TRANS_ABORTED;
dev_err(fsl_qdma->dma_dev.dev,
"DMA status descriptor error %x\n",
completion_status);
}
}
spin_lock(&fsl_comp->qchan->vchan.lock);
vchan_cookie_complete(&fsl_comp->vdesc);
fsl_comp->qchan->status = DMA_COMPLETE;
spin_unlock(&fsl_comp->qchan->vchan.lock);
}
return 0;
}
static irqreturn_t fsl_qdma_error_handler(int irq, void *dev_id)
{
unsigned int intr;
struct fsl_qdma_engine *fsl_qdma = dev_id;
void __iomem *status = fsl_qdma->status_base;
unsigned int decfdw0r;
unsigned int decfdw1r;
unsigned int decfdw2r;
unsigned int decfdw3r;
intr = qdma_readl(fsl_qdma, status + FSL_QDMA_DEDR);
if (intr) {
decfdw0r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW0R);
decfdw1r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW1R);
decfdw2r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW2R);
decfdw3r = qdma_readl(fsl_qdma, status + FSL_QDMA_DECFDW3R);
dev_err(fsl_qdma->dma_dev.dev,
"DMA transaction error! (%x: %x-%x-%x-%x)\n",
intr, decfdw0r, decfdw1r, decfdw2r, decfdw3r);
}
qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR);
return IRQ_HANDLED;
}
static irqreturn_t fsl_qdma_queue_handler(int irq, void *dev_id)
{
int id;
unsigned int intr, reg;
struct fsl_qdma_engine *fsl_qdma = dev_id;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
id = irq - fsl_qdma->irq_base;
if (id < 0 && id > fsl_qdma->block_number) {
dev_err(fsl_qdma->dma_dev.dev,
"irq %d is wrong irq_base is %d\n",
irq, fsl_qdma->irq_base);
}
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, id);
intr = qdma_readl(fsl_qdma, block + FSL_QDMA_BCQIDR(0));
if ((intr & FSL_QDMA_CQIDR_SQT) != 0)
intr = fsl_qdma_queue_transfer_complete(fsl_qdma, block, id);
if (intr != 0) {
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg |= FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
qdma_writel(fsl_qdma, 0, block + FSL_QDMA_BCQIER(0));
dev_err(fsl_qdma->dma_dev.dev, "QDMA: status err!\n");
}
/* Clear all detected events and interrupts. */
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
return IRQ_HANDLED;
}
static int
fsl_qdma_irq_init(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int i;
int cpu;
int ret;
char irq_name[32];
fsl_qdma->error_irq =
platform_get_irq_byname(pdev, "qdma-error");
if (fsl_qdma->error_irq < 0)
return fsl_qdma->error_irq;
ret = devm_request_irq(&pdev->dev, fsl_qdma->error_irq,
fsl_qdma_error_handler, 0,
"qDMA error", fsl_qdma);
if (ret) {
dev_err(&pdev->dev, "Can't register qDMA controller IRQ.\n");
return ret;
}
for (i = 0; i < fsl_qdma->block_number; i++) {
sprintf(irq_name, "qdma-queue%d", i);
fsl_qdma->queue_irq[i] =
platform_get_irq_byname(pdev, irq_name);
if (fsl_qdma->queue_irq[i] < 0)
return fsl_qdma->queue_irq[i];
ret = devm_request_irq(&pdev->dev,
fsl_qdma->queue_irq[i],
fsl_qdma_queue_handler,
0,
"qDMA queue",
fsl_qdma);
if (ret) {
dev_err(&pdev->dev,
"Can't register qDMA queue IRQ.\n");
return ret;
}
cpu = i % num_online_cpus();
ret = irq_set_affinity_hint(fsl_qdma->queue_irq[i],
get_cpu_mask(cpu));
if (ret) {
dev_err(&pdev->dev,
"Can't set cpu %d affinity to IRQ %d.\n",
cpu,
fsl_qdma->queue_irq[i]);
return ret;
}
}
return 0;
}
static void fsl_qdma_irq_exit(struct platform_device *pdev,
struct fsl_qdma_engine *fsl_qdma)
{
int i;
devm_free_irq(&pdev->dev, fsl_qdma->error_irq, fsl_qdma);
for (i = 0; i < fsl_qdma->block_number; i++)
devm_free_irq(&pdev->dev, fsl_qdma->queue_irq[i], fsl_qdma);
}
static int fsl_qdma_reg_init(struct fsl_qdma_engine *fsl_qdma)
{
u32 reg;
int i, j, ret;
struct fsl_qdma_queue *temp;
void __iomem *status = fsl_qdma->status_base;
void __iomem *block, *ctrl = fsl_qdma->ctrl_base;
struct fsl_qdma_queue *fsl_queue = fsl_qdma->queue;
/* Try to halt the qDMA engine first. */
ret = fsl_qdma_halt(fsl_qdma);
if (ret) {
dev_err(fsl_qdma->dma_dev.dev, "DMA halt failed!");
return ret;
}
for (i = 0; i < fsl_qdma->block_number; i++) {
/*
* Clear the command queue interrupt detect register for
* all queues.
*/
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, i);
qdma_writel(fsl_qdma, FSL_QDMA_BCQIDR_CLEAR,
block + FSL_QDMA_BCQIDR(0));
}
for (j = 0; j < fsl_qdma->block_number; j++) {
block = fsl_qdma->block_base +
FSL_QDMA_BLOCK_BASE_OFFSET(fsl_qdma, j);
for (i = 0; i < fsl_qdma->n_queues; i++) {
temp = fsl_queue + i + (j * fsl_qdma->n_queues);
/*
* Initialize Command Queue registers to
* point to the first
* command descriptor in memory.
* Dequeue Pointer Address Registers
* Enqueue Pointer Address Registers
*/
qdma_writel(fsl_qdma, temp->bus_addr,
block + FSL_QDMA_BCQDPA_SADDR(i));
qdma_writel(fsl_qdma, temp->bus_addr,
block + FSL_QDMA_BCQEPA_SADDR(i));
/* Initialize the queue mode. */
reg = FSL_QDMA_BCQMR_EN;
reg |= FSL_QDMA_BCQMR_CD_THLD(ilog2(temp->n_cq) - 4);
reg |= FSL_QDMA_BCQMR_CQ_SIZE(ilog2(temp->n_cq) - 6);
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BCQMR(i));
}
/*
* Workaround for erratum: ERR010812.
* We must enable XOFF to avoid the enqueue rejection occurs.
* Setting SQCCMR ENTER_WM to 0x20.
*/
qdma_writel(fsl_qdma, FSL_QDMA_SQCCMR_ENTER_WM,
block + FSL_QDMA_SQCCMR);
/*
* Initialize status queue registers to point to the first
* command descriptor in memory.
* Dequeue Pointer Address Registers
* Enqueue Pointer Address Registers
*/
qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr,
block + FSL_QDMA_SQEPAR);
qdma_writel(fsl_qdma, fsl_qdma->status[j]->bus_addr,
block + FSL_QDMA_SQDPAR);
/* Initialize status queue interrupt. */
qdma_writel(fsl_qdma, FSL_QDMA_BCQIER_CQTIE,
block + FSL_QDMA_BCQIER(0));
qdma_writel(fsl_qdma, FSL_QDMA_BSQICR_ICEN |
FSL_QDMA_BSQICR_ICST(5) | 0x8000,
block + FSL_QDMA_BSQICR);
qdma_writel(fsl_qdma, FSL_QDMA_CQIER_MEIE |
FSL_QDMA_CQIER_TEIE,
block + FSL_QDMA_CQIER);
/* Initialize the status queue mode. */
reg = FSL_QDMA_BSQMR_EN;
reg |= FSL_QDMA_BSQMR_CQ_SIZE(ilog2
(fsl_qdma->status[j]->n_cq) - 6);
qdma_writel(fsl_qdma, reg, block + FSL_QDMA_BSQMR);
reg = qdma_readl(fsl_qdma, block + FSL_QDMA_BSQMR);
}
/* Initialize controller interrupt register. */
qdma_writel(fsl_qdma, FSL_QDMA_DEDR_CLEAR, status + FSL_QDMA_DEDR);
qdma_writel(fsl_qdma, FSL_QDMA_DEIER_CLEAR, status + FSL_QDMA_DEIER);
reg = qdma_readl(fsl_qdma, ctrl + FSL_QDMA_DMR);
reg &= ~FSL_QDMA_DMR_DQD;
qdma_writel(fsl_qdma, reg, ctrl + FSL_QDMA_DMR);
return 0;
}
static struct dma_async_tx_descriptor *
fsl_qdma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst,
dma_addr_t src, size_t len, unsigned long flags)
{
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
fsl_comp = fsl_qdma_request_enqueue_desc(fsl_chan);
if (!fsl_comp)
return NULL;
fsl_qdma_comp_fill_memcpy(fsl_comp, dst, src, len);
return vchan_tx_prep(&fsl_chan->vchan, &fsl_comp->vdesc, flags);
}
static void fsl_qdma_enqueue_desc(struct fsl_qdma_chan *fsl_chan)
{
u32 reg;
struct virt_dma_desc *vdesc;
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
void __iomem *block = fsl_queue->block_base;
reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQSR(fsl_queue->id));
if (reg & (FSL_QDMA_BCQSR_QF | FSL_QDMA_BCQSR_XOFF))
return;
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
list_del(&vdesc->node);
fsl_comp = to_fsl_qdma_comp(vdesc);
memcpy(fsl_queue->virt_head++,
fsl_comp->virt_addr, sizeof(struct fsl_qdma_format));
if (fsl_queue->virt_head == fsl_queue->cq + fsl_queue->n_cq)
fsl_queue->virt_head = fsl_queue->cq;
list_add_tail(&fsl_comp->list, &fsl_queue->comp_used);
barrier();
reg = qdma_readl(fsl_chan->qdma, block + FSL_QDMA_BCQMR(fsl_queue->id));
reg |= FSL_QDMA_BCQMR_EI;
qdma_writel(fsl_chan->qdma, reg, block + FSL_QDMA_BCQMR(fsl_queue->id));
fsl_chan->status = DMA_IN_PROGRESS;
}
static void fsl_qdma_free_desc(struct virt_dma_desc *vdesc)
{
unsigned long flags;
struct fsl_qdma_comp *fsl_comp;
struct fsl_qdma_queue *fsl_queue;
fsl_comp = to_fsl_qdma_comp(vdesc);
fsl_queue = fsl_comp->qchan->queue;
spin_lock_irqsave(&fsl_queue->queue_lock, flags);
list_add_tail(&fsl_comp->list, &fsl_queue->comp_free);
spin_unlock_irqrestore(&fsl_queue->queue_lock, flags);
}
static void fsl_qdma_issue_pending(struct dma_chan *chan)
{
unsigned long flags;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
spin_lock_irqsave(&fsl_queue->queue_lock, flags);
spin_lock(&fsl_chan->vchan.lock);
if (vchan_issue_pending(&fsl_chan->vchan))
fsl_qdma_enqueue_desc(fsl_chan);
spin_unlock(&fsl_chan->vchan.lock);
spin_unlock_irqrestore(&fsl_queue->queue_lock, flags);
}
static void fsl_qdma_synchronize(struct dma_chan *chan)
{
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
vchan_synchronize(&fsl_chan->vchan);
}
static int fsl_qdma_terminate_all(struct dma_chan *chan)
{
LIST_HEAD(head);
unsigned long flags;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
static int fsl_qdma_alloc_chan_resources(struct dma_chan *chan)
{
int ret;
struct fsl_qdma_chan *fsl_chan = to_fsl_qdma_chan(chan);
struct fsl_qdma_engine *fsl_qdma = fsl_chan->qdma;
struct fsl_qdma_queue *fsl_queue = fsl_chan->queue;
if (fsl_queue->comp_pool && fsl_queue->desc_pool)
return fsl_qdma->desc_allocated;
INIT_LIST_HEAD(&fsl_queue->comp_free);
/*
* The dma pool for queue command buffer
*/
fsl_queue->comp_pool =
dma_pool_create("comp_pool",
chan->device->dev,
FSL_QDMA_COMMAND_BUFFER_SIZE,
64, 0);
if (!fsl_queue->comp_pool)
return -ENOMEM;
/*
* The dma pool for Descriptor(SD/DD) buffer
*/
fsl_queue->desc_pool =
dma_pool_create("desc_pool",
chan->device->dev,
FSL_QDMA_DESCRIPTOR_BUFFER_SIZE,
32, 0);
if (!fsl_queue->desc_pool)
goto err_desc_pool;
ret = fsl_qdma_pre_request_enqueue_desc(fsl_queue);
if (ret) {
dev_err(chan->device->dev,
"failed to alloc dma buffer for S/G descriptor\n");
goto err_mem;
}
fsl_qdma->desc_allocated++;
return fsl_qdma->desc_allocated;
err_mem:
dma_pool_destroy(fsl_queue->desc_pool);
err_desc_pool:
dma_pool_destroy(fsl_queue->comp_pool);
return -ENOMEM;
}
static int fsl_qdma_probe(struct platform_device *pdev)
{
int ret, i;
int blk_num, blk_off;
u32 len, chans, queues;
struct fsl_qdma_chan *fsl_chan;
struct fsl_qdma_engine *fsl_qdma;
struct device_node *np = pdev->dev.of_node;
ret = of_property_read_u32(np, "dma-channels", &chans);
if (ret) {
dev_err(&pdev->dev, "Can't get dma-channels.\n");
return ret;
}
ret = of_property_read_u32(np, "block-offset", &blk_off);
if (ret) {
dev_err(&pdev->dev, "Can't get block-offset.\n");
return ret;
}
ret = of_property_read_u32(np, "block-number", &blk_num);
if (ret) {
dev_err(&pdev->dev, "Can't get block-number.\n");
return ret;
}
blk_num = min_t(int, blk_num, num_online_cpus());
len = sizeof(*fsl_qdma);
fsl_qdma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma)
return -ENOMEM;
len = sizeof(*fsl_chan) * chans;
fsl_qdma->chans = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->chans)
return -ENOMEM;
len = sizeof(struct fsl_qdma_queue *) * blk_num;
fsl_qdma->status = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->status)
return -ENOMEM;
len = sizeof(int) * blk_num;
fsl_qdma->queue_irq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_qdma->queue_irq)
return -ENOMEM;
ret = of_property_read_u32(np, "fsl,dma-queues", &queues);
if (ret) {
dev_err(&pdev->dev, "Can't get queues.\n");
return ret;
}
fsl_qdma->desc_allocated = 0;
fsl_qdma->n_chans = chans;
fsl_qdma->n_queues = queues;
fsl_qdma->block_number = blk_num;
fsl_qdma->block_offset = blk_off;
mutex_init(&fsl_qdma->fsl_qdma_mutex);
for (i = 0; i < fsl_qdma->block_number; i++) {
fsl_qdma->status[i] = fsl_qdma_prep_status_queue(pdev);
if (!fsl_qdma->status[i])
return -ENOMEM;
}
fsl_qdma->ctrl_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(fsl_qdma->ctrl_base))
return PTR_ERR(fsl_qdma->ctrl_base);
fsl_qdma->status_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(fsl_qdma->status_base))
return PTR_ERR(fsl_qdma->status_base);
fsl_qdma->block_base = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(fsl_qdma->block_base))
return PTR_ERR(fsl_qdma->block_base);
fsl_qdma->queue = fsl_qdma_alloc_queue_resources(pdev, fsl_qdma);
if (!fsl_qdma->queue)
return -ENOMEM;
fsl_qdma->irq_base = platform_get_irq_byname(pdev, "qdma-queue0");
if (fsl_qdma->irq_base < 0)
return fsl_qdma->irq_base;
fsl_qdma->feature = of_property_read_bool(np, "big-endian");
INIT_LIST_HEAD(&fsl_qdma->dma_dev.channels);
for (i = 0; i < fsl_qdma->n_chans; i++) {
struct fsl_qdma_chan *fsl_chan = &fsl_qdma->chans[i];
fsl_chan->qdma = fsl_qdma;
fsl_chan->queue = fsl_qdma->queue + i % (fsl_qdma->n_queues *
fsl_qdma->block_number);
fsl_chan->vchan.desc_free = fsl_qdma_free_desc;
vchan_init(&fsl_chan->vchan, &fsl_qdma->dma_dev);
}
dma_cap_set(DMA_MEMCPY, fsl_qdma->dma_dev.cap_mask);
fsl_qdma->dma_dev.dev = &pdev->dev;
fsl_qdma->dma_dev.device_free_chan_resources =
fsl_qdma_free_chan_resources;
fsl_qdma->dma_dev.device_alloc_chan_resources =
fsl_qdma_alloc_chan_resources;
fsl_qdma->dma_dev.device_tx_status = dma_cookie_status;
fsl_qdma->dma_dev.device_prep_dma_memcpy = fsl_qdma_prep_memcpy;
fsl_qdma->dma_dev.device_issue_pending = fsl_qdma_issue_pending;
fsl_qdma->dma_dev.device_synchronize = fsl_qdma_synchronize;
fsl_qdma->dma_dev.device_terminate_all = fsl_qdma_terminate_all;
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
if (ret) {
dev_err(&pdev->dev, "dma_set_mask failure.\n");
return ret;
}
platform_set_drvdata(pdev, fsl_qdma);
ret = fsl_qdma_reg_init(fsl_qdma);
if (ret) {
dev_err(&pdev->dev, "Can't Initialize the qDMA engine.\n");
return ret;
}
ret = fsl_qdma_irq_init(pdev, fsl_qdma);
if (ret)
return ret;
ret = dma_async_device_register(&fsl_qdma->dma_dev);
if (ret) {
dev_err(&pdev->dev, "Can't register NXP Layerscape qDMA engine.\n");
return ret;
}
return 0;
}
static void fsl_qdma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_qdma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
static void fsl_qdma_remove(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_qdma_engine *fsl_qdma = platform_get_drvdata(pdev);
fsl_qdma_irq_exit(pdev, fsl_qdma);
fsl_qdma_cleanup_vchan(&fsl_qdma->dma_dev);
of_dma_controller_free(np);
dma_async_device_unregister(&fsl_qdma->dma_dev);
}
static const struct of_device_id fsl_qdma_dt_ids[] = {
{ .compatible = "fsl,ls1021a-qdma", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qdma_dt_ids);
static struct platform_driver fsl_qdma_driver = {
.driver = {
.name = "fsl-qdma",
.of_match_table = fsl_qdma_dt_ids,
},
.probe = fsl_qdma_probe,
.remove_new = fsl_qdma_remove,
};
module_platform_driver(fsl_qdma_driver);
MODULE_ALIAS("platform:fsl-qdma");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("NXP Layerscape qDMA engine driver");