mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
67050837ec
The comments added in commit 1ef990c4b36b ("srcu: No need to advance/accelerate if no callback enqueued") are a bit confusing. The comments are describing a scenario for code that was moved and is no longer the way it was (snapshot after advancing). Improve the code comments to reflect this and also document why acceleration can never fail. Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <neeraj.iitr10@gmail.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024 lines
69 KiB
C
2024 lines
69 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Sleepable Read-Copy Update mechanism for mutual exclusion.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2006
|
|
* Copyright (C) Fujitsu, 2012
|
|
*
|
|
* Authors: Paul McKenney <paulmck@linux.ibm.com>
|
|
* Lai Jiangshan <laijs@cn.fujitsu.com>
|
|
*
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
* Documentation/RCU/ *.txt
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "rcu: " fmt
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/rcupdate_wait.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/srcu.h>
|
|
|
|
#include "rcu.h"
|
|
#include "rcu_segcblist.h"
|
|
|
|
/* Holdoff in nanoseconds for auto-expediting. */
|
|
#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
|
|
static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
|
|
module_param(exp_holdoff, ulong, 0444);
|
|
|
|
/* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
|
|
static ulong counter_wrap_check = (ULONG_MAX >> 2);
|
|
module_param(counter_wrap_check, ulong, 0444);
|
|
|
|
/*
|
|
* Control conversion to SRCU_SIZE_BIG:
|
|
* 0: Don't convert at all.
|
|
* 1: Convert at init_srcu_struct() time.
|
|
* 2: Convert when rcutorture invokes srcu_torture_stats_print().
|
|
* 3: Decide at boot time based on system shape (default).
|
|
* 0x1x: Convert when excessive contention encountered.
|
|
*/
|
|
#define SRCU_SIZING_NONE 0
|
|
#define SRCU_SIZING_INIT 1
|
|
#define SRCU_SIZING_TORTURE 2
|
|
#define SRCU_SIZING_AUTO 3
|
|
#define SRCU_SIZING_CONTEND 0x10
|
|
#define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
|
|
#define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
|
|
#define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
|
|
#define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
|
|
#define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
|
|
static int convert_to_big = SRCU_SIZING_AUTO;
|
|
module_param(convert_to_big, int, 0444);
|
|
|
|
/* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
|
|
static int big_cpu_lim __read_mostly = 128;
|
|
module_param(big_cpu_lim, int, 0444);
|
|
|
|
/* Contention events per jiffy to initiate transition to big. */
|
|
static int small_contention_lim __read_mostly = 100;
|
|
module_param(small_contention_lim, int, 0444);
|
|
|
|
/* Early-boot callback-management, so early that no lock is required! */
|
|
static LIST_HEAD(srcu_boot_list);
|
|
static bool __read_mostly srcu_init_done;
|
|
|
|
static void srcu_invoke_callbacks(struct work_struct *work);
|
|
static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
|
|
static void process_srcu(struct work_struct *work);
|
|
static void srcu_delay_timer(struct timer_list *t);
|
|
|
|
/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
|
|
#define spin_lock_rcu_node(p) \
|
|
do { \
|
|
spin_lock(&ACCESS_PRIVATE(p, lock)); \
|
|
smp_mb__after_unlock_lock(); \
|
|
} while (0)
|
|
|
|
#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
|
|
|
|
#define spin_lock_irq_rcu_node(p) \
|
|
do { \
|
|
spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
|
|
smp_mb__after_unlock_lock(); \
|
|
} while (0)
|
|
|
|
#define spin_unlock_irq_rcu_node(p) \
|
|
spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
|
|
|
|
#define spin_lock_irqsave_rcu_node(p, flags) \
|
|
do { \
|
|
spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
|
|
smp_mb__after_unlock_lock(); \
|
|
} while (0)
|
|
|
|
#define spin_trylock_irqsave_rcu_node(p, flags) \
|
|
({ \
|
|
bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
|
|
\
|
|
if (___locked) \
|
|
smp_mb__after_unlock_lock(); \
|
|
___locked; \
|
|
})
|
|
|
|
#define spin_unlock_irqrestore_rcu_node(p, flags) \
|
|
spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
|
|
|
|
/*
|
|
* Initialize SRCU per-CPU data. Note that statically allocated
|
|
* srcu_struct structures might already have srcu_read_lock() and
|
|
* srcu_read_unlock() running against them. So if the is_static parameter
|
|
* is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
|
|
*/
|
|
static void init_srcu_struct_data(struct srcu_struct *ssp)
|
|
{
|
|
int cpu;
|
|
struct srcu_data *sdp;
|
|
|
|
/*
|
|
* Initialize the per-CPU srcu_data array, which feeds into the
|
|
* leaves of the srcu_node tree.
|
|
*/
|
|
WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
|
|
ARRAY_SIZE(sdp->srcu_unlock_count));
|
|
for_each_possible_cpu(cpu) {
|
|
sdp = per_cpu_ptr(ssp->sda, cpu);
|
|
spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
|
|
rcu_segcblist_init(&sdp->srcu_cblist);
|
|
sdp->srcu_cblist_invoking = false;
|
|
sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
|
|
sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
|
|
sdp->mynode = NULL;
|
|
sdp->cpu = cpu;
|
|
INIT_WORK(&sdp->work, srcu_invoke_callbacks);
|
|
timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
|
|
sdp->ssp = ssp;
|
|
}
|
|
}
|
|
|
|
/* Invalid seq state, used during snp node initialization */
|
|
#define SRCU_SNP_INIT_SEQ 0x2
|
|
|
|
/*
|
|
* Check whether sequence number corresponding to snp node,
|
|
* is invalid.
|
|
*/
|
|
static inline bool srcu_invl_snp_seq(unsigned long s)
|
|
{
|
|
return s == SRCU_SNP_INIT_SEQ;
|
|
}
|
|
|
|
/*
|
|
* Allocated and initialize SRCU combining tree. Returns @true if
|
|
* allocation succeeded and @false otherwise.
|
|
*/
|
|
static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
int level = 0;
|
|
int levelspread[RCU_NUM_LVLS];
|
|
struct srcu_data *sdp;
|
|
struct srcu_node *snp;
|
|
struct srcu_node *snp_first;
|
|
|
|
/* Initialize geometry if it has not already been initialized. */
|
|
rcu_init_geometry();
|
|
ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
|
|
if (!ssp->srcu_sup->node)
|
|
return false;
|
|
|
|
/* Work out the overall tree geometry. */
|
|
ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
|
|
for (i = 1; i < rcu_num_lvls; i++)
|
|
ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
|
|
rcu_init_levelspread(levelspread, num_rcu_lvl);
|
|
|
|
/* Each pass through this loop initializes one srcu_node structure. */
|
|
srcu_for_each_node_breadth_first(ssp, snp) {
|
|
spin_lock_init(&ACCESS_PRIVATE(snp, lock));
|
|
WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
|
|
ARRAY_SIZE(snp->srcu_data_have_cbs));
|
|
for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
|
|
snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
|
|
snp->srcu_data_have_cbs[i] = 0;
|
|
}
|
|
snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
|
|
snp->grplo = -1;
|
|
snp->grphi = -1;
|
|
if (snp == &ssp->srcu_sup->node[0]) {
|
|
/* Root node, special case. */
|
|
snp->srcu_parent = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* Non-root node. */
|
|
if (snp == ssp->srcu_sup->level[level + 1])
|
|
level++;
|
|
snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
|
|
(snp - ssp->srcu_sup->level[level]) /
|
|
levelspread[level - 1];
|
|
}
|
|
|
|
/*
|
|
* Initialize the per-CPU srcu_data array, which feeds into the
|
|
* leaves of the srcu_node tree.
|
|
*/
|
|
level = rcu_num_lvls - 1;
|
|
snp_first = ssp->srcu_sup->level[level];
|
|
for_each_possible_cpu(cpu) {
|
|
sdp = per_cpu_ptr(ssp->sda, cpu);
|
|
sdp->mynode = &snp_first[cpu / levelspread[level]];
|
|
for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
|
|
if (snp->grplo < 0)
|
|
snp->grplo = cpu;
|
|
snp->grphi = cpu;
|
|
}
|
|
sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
|
|
}
|
|
smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Initialize non-compile-time initialized fields, including the
|
|
* associated srcu_node and srcu_data structures. The is_static parameter
|
|
* tells us that ->sda has already been wired up to srcu_data.
|
|
*/
|
|
static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
|
|
{
|
|
if (!is_static)
|
|
ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
|
|
if (!ssp->srcu_sup)
|
|
return -ENOMEM;
|
|
if (!is_static)
|
|
spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
|
|
ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
|
|
ssp->srcu_sup->node = NULL;
|
|
mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
|
|
mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
|
|
ssp->srcu_idx = 0;
|
|
ssp->srcu_sup->srcu_gp_seq = 0;
|
|
ssp->srcu_sup->srcu_barrier_seq = 0;
|
|
mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
|
|
atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
|
|
INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
|
|
ssp->srcu_sup->sda_is_static = is_static;
|
|
if (!is_static)
|
|
ssp->sda = alloc_percpu(struct srcu_data);
|
|
if (!ssp->sda)
|
|
goto err_free_sup;
|
|
init_srcu_struct_data(ssp);
|
|
ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
|
|
ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
|
|
if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
|
|
if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
|
|
goto err_free_sda;
|
|
WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
|
|
}
|
|
ssp->srcu_sup->srcu_ssp = ssp;
|
|
smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
|
|
return 0;
|
|
|
|
err_free_sda:
|
|
if (!is_static) {
|
|
free_percpu(ssp->sda);
|
|
ssp->sda = NULL;
|
|
}
|
|
err_free_sup:
|
|
if (!is_static) {
|
|
kfree(ssp->srcu_sup);
|
|
ssp->srcu_sup = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
|
|
struct lock_class_key *key)
|
|
{
|
|
/* Don't re-initialize a lock while it is held. */
|
|
debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
|
|
lockdep_init_map(&ssp->dep_map, name, key, 0);
|
|
return init_srcu_struct_fields(ssp, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__init_srcu_struct);
|
|
|
|
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
/**
|
|
* init_srcu_struct - initialize a sleep-RCU structure
|
|
* @ssp: structure to initialize.
|
|
*
|
|
* Must invoke this on a given srcu_struct before passing that srcu_struct
|
|
* to any other function. Each srcu_struct represents a separate domain
|
|
* of SRCU protection.
|
|
*/
|
|
int init_srcu_struct(struct srcu_struct *ssp)
|
|
{
|
|
return init_srcu_struct_fields(ssp, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_srcu_struct);
|
|
|
|
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
/*
|
|
* Initiate a transition to SRCU_SIZE_BIG with lock held.
|
|
*/
|
|
static void __srcu_transition_to_big(struct srcu_struct *ssp)
|
|
{
|
|
lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
|
|
smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
|
|
}
|
|
|
|
/*
|
|
* Initiate an idempotent transition to SRCU_SIZE_BIG.
|
|
*/
|
|
static void srcu_transition_to_big(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Double-checked locking on ->srcu_size-state. */
|
|
if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
|
|
return;
|
|
spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
|
|
if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
|
|
return;
|
|
}
|
|
__srcu_transition_to_big(ssp);
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the just-encountered contention event justifies
|
|
* a transition to SRCU_SIZE_BIG.
|
|
*/
|
|
static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long j;
|
|
|
|
if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
|
|
return;
|
|
j = jiffies;
|
|
if (ssp->srcu_sup->srcu_size_jiffies != j) {
|
|
ssp->srcu_sup->srcu_size_jiffies = j;
|
|
ssp->srcu_sup->srcu_n_lock_retries = 0;
|
|
}
|
|
if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
|
|
return;
|
|
__srcu_transition_to_big(ssp);
|
|
}
|
|
|
|
/*
|
|
* Acquire the specified srcu_data structure's ->lock, but check for
|
|
* excessive contention, which results in initiation of a transition
|
|
* to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module
|
|
* parameter permits this.
|
|
*/
|
|
static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
|
|
{
|
|
struct srcu_struct *ssp = sdp->ssp;
|
|
|
|
if (spin_trylock_irqsave_rcu_node(sdp, *flags))
|
|
return;
|
|
spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
|
|
spin_lock_irqsave_check_contention(ssp);
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
|
|
spin_lock_irqsave_rcu_node(sdp, *flags);
|
|
}
|
|
|
|
/*
|
|
* Acquire the specified srcu_struct structure's ->lock, but check for
|
|
* excessive contention, which results in initiation of a transition
|
|
* to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module
|
|
* parameter permits this.
|
|
*/
|
|
static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
|
|
{
|
|
if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
|
|
return;
|
|
spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
|
|
spin_lock_irqsave_check_contention(ssp);
|
|
}
|
|
|
|
/*
|
|
* First-use initialization of statically allocated srcu_struct
|
|
* structure. Wiring up the combining tree is more than can be
|
|
* done with compile-time initialization, so this check is added
|
|
* to each update-side SRCU primitive. Use ssp->lock, which -is-
|
|
* compile-time initialized, to resolve races involving multiple
|
|
* CPUs trying to garner first-use privileges.
|
|
*/
|
|
static void check_init_srcu_struct(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* The smp_load_acquire() pairs with the smp_store_release(). */
|
|
if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
|
|
return; /* Already initialized. */
|
|
spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
|
|
if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
|
|
return;
|
|
}
|
|
init_srcu_struct_fields(ssp, true);
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
|
|
}
|
|
|
|
/*
|
|
* Returns approximate total of the readers' ->srcu_lock_count[] values
|
|
* for the rank of per-CPU counters specified by idx.
|
|
*/
|
|
static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
|
|
{
|
|
int cpu;
|
|
unsigned long sum = 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
|
|
|
|
sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Returns approximate total of the readers' ->srcu_unlock_count[] values
|
|
* for the rank of per-CPU counters specified by idx.
|
|
*/
|
|
static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
|
|
{
|
|
int cpu;
|
|
unsigned long mask = 0;
|
|
unsigned long sum = 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
|
|
|
|
sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
|
|
if (IS_ENABLED(CONFIG_PROVE_RCU))
|
|
mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
|
|
}
|
|
WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
|
|
"Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Return true if the number of pre-existing readers is determined to
|
|
* be zero.
|
|
*/
|
|
static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
|
|
{
|
|
unsigned long unlocks;
|
|
|
|
unlocks = srcu_readers_unlock_idx(ssp, idx);
|
|
|
|
/*
|
|
* Make sure that a lock is always counted if the corresponding
|
|
* unlock is counted. Needs to be a smp_mb() as the read side may
|
|
* contain a read from a variable that is written to before the
|
|
* synchronize_srcu() in the write side. In this case smp_mb()s
|
|
* A and B act like the store buffering pattern.
|
|
*
|
|
* This smp_mb() also pairs with smp_mb() C to prevent accesses
|
|
* after the synchronize_srcu() from being executed before the
|
|
* grace period ends.
|
|
*/
|
|
smp_mb(); /* A */
|
|
|
|
/*
|
|
* If the locks are the same as the unlocks, then there must have
|
|
* been no readers on this index at some point in this function.
|
|
* But there might be more readers, as a task might have read
|
|
* the current ->srcu_idx but not yet have incremented its CPU's
|
|
* ->srcu_lock_count[idx] counter. In fact, it is possible
|
|
* that most of the tasks have been preempted between fetching
|
|
* ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there
|
|
* could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
|
|
* in a system whose address space was fully populated with memory.
|
|
* Call this quantity Nt.
|
|
*
|
|
* So suppose that the updater is preempted at this point in the
|
|
* code for a long time. That now-preempted updater has already
|
|
* flipped ->srcu_idx (possibly during the preceding grace period),
|
|
* done an smp_mb() (again, possibly during the preceding grace
|
|
* period), and summed up the ->srcu_unlock_count[idx] counters.
|
|
* How many times can a given one of the aforementioned Nt tasks
|
|
* increment the old ->srcu_idx value's ->srcu_lock_count[idx]
|
|
* counter, in the absence of nesting?
|
|
*
|
|
* It can clearly do so once, given that it has already fetched
|
|
* the old value of ->srcu_idx and is just about to use that value
|
|
* to index its increment of ->srcu_lock_count[idx]. But as soon as
|
|
* it leaves that SRCU read-side critical section, it will increment
|
|
* ->srcu_unlock_count[idx], which must follow the updater's above
|
|
* read from that same value. Thus, as soon the reading task does
|
|
* an smp_mb() and a later fetch from ->srcu_idx, that task will be
|
|
* guaranteed to get the new index. Except that the increment of
|
|
* ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
|
|
* smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
|
|
* is before the smp_mb(). Thus, that task might not see the new
|
|
* value of ->srcu_idx until the -second- __srcu_read_lock(),
|
|
* which in turn means that this task might well increment
|
|
* ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
|
|
* not just once.
|
|
*
|
|
* However, it is important to note that a given smp_mb() takes
|
|
* effect not just for the task executing it, but also for any
|
|
* later task running on that same CPU.
|
|
*
|
|
* That is, there can be almost Nt + Nc further increments of
|
|
* ->srcu_lock_count[idx] for the old index, where Nc is the number
|
|
* of CPUs. But this is OK because the size of the task_struct
|
|
* structure limits the value of Nt and current systems limit Nc
|
|
* to a few thousand.
|
|
*
|
|
* OK, but what about nesting? This does impose a limit on
|
|
* nesting of half of the size of the task_struct structure
|
|
* (measured in bytes), which should be sufficient. A late 2022
|
|
* TREE01 rcutorture run reported this size to be no less than
|
|
* 9408 bytes, allowing up to 4704 levels of nesting, which is
|
|
* comfortably beyond excessive. Especially on 64-bit systems,
|
|
* which are unlikely to be configured with an address space fully
|
|
* populated with memory, at least not anytime soon.
|
|
*/
|
|
return srcu_readers_lock_idx(ssp, idx) == unlocks;
|
|
}
|
|
|
|
/**
|
|
* srcu_readers_active - returns true if there are readers. and false
|
|
* otherwise
|
|
* @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
|
|
*
|
|
* Note that this is not an atomic primitive, and can therefore suffer
|
|
* severe errors when invoked on an active srcu_struct. That said, it
|
|
* can be useful as an error check at cleanup time.
|
|
*/
|
|
static bool srcu_readers_active(struct srcu_struct *ssp)
|
|
{
|
|
int cpu;
|
|
unsigned long sum = 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
|
|
|
|
sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
|
|
sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
|
|
sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
|
|
sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* We use an adaptive strategy for synchronize_srcu() and especially for
|
|
* synchronize_srcu_expedited(). We spin for a fixed time period
|
|
* (defined below, boot time configurable) to allow SRCU readers to exit
|
|
* their read-side critical sections. If there are still some readers
|
|
* after one jiffy, we repeatedly block for one jiffy time periods.
|
|
* The blocking time is increased as the grace-period age increases,
|
|
* with max blocking time capped at 10 jiffies.
|
|
*/
|
|
#define SRCU_DEFAULT_RETRY_CHECK_DELAY 5
|
|
|
|
static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
|
|
module_param(srcu_retry_check_delay, ulong, 0444);
|
|
|
|
#define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending.
|
|
#define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers.
|
|
|
|
#define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase
|
|
// no-delay instances.
|
|
#define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase
|
|
// no-delay instances.
|
|
|
|
#define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low))
|
|
#define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high))
|
|
#define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
|
|
// per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
|
|
// one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
|
|
// called from process_srcu().
|
|
#define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \
|
|
(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
|
|
|
|
// Maximum per-GP-phase consecutive no-delay instances.
|
|
#define SRCU_DEFAULT_MAX_NODELAY_PHASE \
|
|
SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \
|
|
SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \
|
|
SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
|
|
|
|
static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
|
|
module_param(srcu_max_nodelay_phase, ulong, 0444);
|
|
|
|
// Maximum consecutive no-delay instances.
|
|
#define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \
|
|
SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
|
|
|
|
static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
|
|
module_param(srcu_max_nodelay, ulong, 0444);
|
|
|
|
/*
|
|
* Return grace-period delay, zero if there are expedited grace
|
|
* periods pending, SRCU_INTERVAL otherwise.
|
|
*/
|
|
static unsigned long srcu_get_delay(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long gpstart;
|
|
unsigned long j;
|
|
unsigned long jbase = SRCU_INTERVAL;
|
|
struct srcu_usage *sup = ssp->srcu_sup;
|
|
|
|
if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
|
|
jbase = 0;
|
|
if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
|
|
j = jiffies - 1;
|
|
gpstart = READ_ONCE(sup->srcu_gp_start);
|
|
if (time_after(j, gpstart))
|
|
jbase += j - gpstart;
|
|
if (!jbase) {
|
|
WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
|
|
if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
|
|
jbase = 1;
|
|
}
|
|
}
|
|
return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
|
|
}
|
|
|
|
/**
|
|
* cleanup_srcu_struct - deconstruct a sleep-RCU structure
|
|
* @ssp: structure to clean up.
|
|
*
|
|
* Must invoke this after you are finished using a given srcu_struct that
|
|
* was initialized via init_srcu_struct(), else you leak memory.
|
|
*/
|
|
void cleanup_srcu_struct(struct srcu_struct *ssp)
|
|
{
|
|
int cpu;
|
|
struct srcu_usage *sup = ssp->srcu_sup;
|
|
|
|
if (WARN_ON(!srcu_get_delay(ssp)))
|
|
return; /* Just leak it! */
|
|
if (WARN_ON(srcu_readers_active(ssp)))
|
|
return; /* Just leak it! */
|
|
flush_delayed_work(&sup->work);
|
|
for_each_possible_cpu(cpu) {
|
|
struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
|
|
|
|
del_timer_sync(&sdp->delay_work);
|
|
flush_work(&sdp->work);
|
|
if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
|
|
return; /* Forgot srcu_barrier(), so just leak it! */
|
|
}
|
|
if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
|
|
WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
|
|
WARN_ON(srcu_readers_active(ssp))) {
|
|
pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
|
|
__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
|
|
rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
|
|
return; /* Caller forgot to stop doing call_srcu()? */
|
|
}
|
|
kfree(sup->node);
|
|
sup->node = NULL;
|
|
sup->srcu_size_state = SRCU_SIZE_SMALL;
|
|
if (!sup->sda_is_static) {
|
|
free_percpu(ssp->sda);
|
|
ssp->sda = NULL;
|
|
kfree(sup);
|
|
ssp->srcu_sup = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
/*
|
|
* Check for consistent NMI safety.
|
|
*/
|
|
void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
|
|
{
|
|
int nmi_safe_mask = 1 << nmi_safe;
|
|
int old_nmi_safe_mask;
|
|
struct srcu_data *sdp;
|
|
|
|
/* NMI-unsafe use in NMI is a bad sign */
|
|
WARN_ON_ONCE(!nmi_safe && in_nmi());
|
|
sdp = raw_cpu_ptr(ssp->sda);
|
|
old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
|
|
if (!old_nmi_safe_mask) {
|
|
WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
|
|
return;
|
|
}
|
|
WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
|
|
#endif /* CONFIG_PROVE_RCU */
|
|
|
|
/*
|
|
* Counts the new reader in the appropriate per-CPU element of the
|
|
* srcu_struct.
|
|
* Returns an index that must be passed to the matching srcu_read_unlock().
|
|
*/
|
|
int __srcu_read_lock(struct srcu_struct *ssp)
|
|
{
|
|
int idx;
|
|
|
|
idx = READ_ONCE(ssp->srcu_idx) & 0x1;
|
|
this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
|
|
smp_mb(); /* B */ /* Avoid leaking the critical section. */
|
|
return idx;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__srcu_read_lock);
|
|
|
|
/*
|
|
* Removes the count for the old reader from the appropriate per-CPU
|
|
* element of the srcu_struct. Note that this may well be a different
|
|
* CPU than that which was incremented by the corresponding srcu_read_lock().
|
|
*/
|
|
void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
|
|
{
|
|
smp_mb(); /* C */ /* Avoid leaking the critical section. */
|
|
this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
|
|
|
|
#ifdef CONFIG_NEED_SRCU_NMI_SAFE
|
|
|
|
/*
|
|
* Counts the new reader in the appropriate per-CPU element of the
|
|
* srcu_struct, but in an NMI-safe manner using RMW atomics.
|
|
* Returns an index that must be passed to the matching srcu_read_unlock().
|
|
*/
|
|
int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
|
|
{
|
|
int idx;
|
|
struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
|
|
|
|
idx = READ_ONCE(ssp->srcu_idx) & 0x1;
|
|
atomic_long_inc(&sdp->srcu_lock_count[idx]);
|
|
smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */
|
|
return idx;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
|
|
|
|
/*
|
|
* Removes the count for the old reader from the appropriate per-CPU
|
|
* element of the srcu_struct. Note that this may well be a different
|
|
* CPU than that which was incremented by the corresponding srcu_read_lock().
|
|
*/
|
|
void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
|
|
{
|
|
struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
|
|
|
|
smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */
|
|
atomic_long_inc(&sdp->srcu_unlock_count[idx]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
|
|
|
|
#endif // CONFIG_NEED_SRCU_NMI_SAFE
|
|
|
|
/*
|
|
* Start an SRCU grace period.
|
|
*/
|
|
static void srcu_gp_start(struct srcu_struct *ssp)
|
|
{
|
|
int state;
|
|
|
|
lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
|
|
WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
|
|
WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
|
|
WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
|
|
smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
|
|
rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
|
|
state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
|
|
WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
|
|
}
|
|
|
|
|
|
static void srcu_delay_timer(struct timer_list *t)
|
|
{
|
|
struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
|
|
|
|
queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
|
|
}
|
|
|
|
static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
|
|
unsigned long delay)
|
|
{
|
|
if (!delay) {
|
|
queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
|
|
return;
|
|
}
|
|
|
|
timer_reduce(&sdp->delay_work, jiffies + delay);
|
|
}
|
|
|
|
/*
|
|
* Schedule callback invocation for the specified srcu_data structure,
|
|
* if possible, on the corresponding CPU.
|
|
*/
|
|
static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
|
|
{
|
|
srcu_queue_delayed_work_on(sdp, delay);
|
|
}
|
|
|
|
/*
|
|
* Schedule callback invocation for all srcu_data structures associated
|
|
* with the specified srcu_node structure that have callbacks for the
|
|
* just-completed grace period, the one corresponding to idx. If possible,
|
|
* schedule this invocation on the corresponding CPUs.
|
|
*/
|
|
static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
|
|
unsigned long mask, unsigned long delay)
|
|
{
|
|
int cpu;
|
|
|
|
for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
|
|
if (!(mask & (1UL << (cpu - snp->grplo))))
|
|
continue;
|
|
srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note the end of an SRCU grace period. Initiates callback invocation
|
|
* and starts a new grace period if needed.
|
|
*
|
|
* The ->srcu_cb_mutex acquisition does not protect any data, but
|
|
* instead prevents more than one grace period from starting while we
|
|
* are initiating callback invocation. This allows the ->srcu_have_cbs[]
|
|
* array to have a finite number of elements.
|
|
*/
|
|
static void srcu_gp_end(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long cbdelay = 1;
|
|
bool cbs;
|
|
bool last_lvl;
|
|
int cpu;
|
|
unsigned long flags;
|
|
unsigned long gpseq;
|
|
int idx;
|
|
unsigned long mask;
|
|
struct srcu_data *sdp;
|
|
unsigned long sgsne;
|
|
struct srcu_node *snp;
|
|
int ss_state;
|
|
struct srcu_usage *sup = ssp->srcu_sup;
|
|
|
|
/* Prevent more than one additional grace period. */
|
|
mutex_lock(&sup->srcu_cb_mutex);
|
|
|
|
/* End the current grace period. */
|
|
spin_lock_irq_rcu_node(sup);
|
|
idx = rcu_seq_state(sup->srcu_gp_seq);
|
|
WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
|
|
if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
|
|
cbdelay = 0;
|
|
|
|
WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
|
|
rcu_seq_end(&sup->srcu_gp_seq);
|
|
gpseq = rcu_seq_current(&sup->srcu_gp_seq);
|
|
if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
|
|
WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
|
|
spin_unlock_irq_rcu_node(sup);
|
|
mutex_unlock(&sup->srcu_gp_mutex);
|
|
/* A new grace period can start at this point. But only one. */
|
|
|
|
/* Initiate callback invocation as needed. */
|
|
ss_state = smp_load_acquire(&sup->srcu_size_state);
|
|
if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
|
|
srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
|
|
cbdelay);
|
|
} else {
|
|
idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
|
|
srcu_for_each_node_breadth_first(ssp, snp) {
|
|
spin_lock_irq_rcu_node(snp);
|
|
cbs = false;
|
|
last_lvl = snp >= sup->level[rcu_num_lvls - 1];
|
|
if (last_lvl)
|
|
cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
|
|
snp->srcu_have_cbs[idx] = gpseq;
|
|
rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
|
|
sgsne = snp->srcu_gp_seq_needed_exp;
|
|
if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
|
|
WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
|
|
if (ss_state < SRCU_SIZE_BIG)
|
|
mask = ~0;
|
|
else
|
|
mask = snp->srcu_data_have_cbs[idx];
|
|
snp->srcu_data_have_cbs[idx] = 0;
|
|
spin_unlock_irq_rcu_node(snp);
|
|
if (cbs)
|
|
srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
|
|
}
|
|
}
|
|
|
|
/* Occasionally prevent srcu_data counter wrap. */
|
|
if (!(gpseq & counter_wrap_check))
|
|
for_each_possible_cpu(cpu) {
|
|
sdp = per_cpu_ptr(ssp->sda, cpu);
|
|
spin_lock_irqsave_rcu_node(sdp, flags);
|
|
if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
|
|
sdp->srcu_gp_seq_needed = gpseq;
|
|
if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
|
|
sdp->srcu_gp_seq_needed_exp = gpseq;
|
|
spin_unlock_irqrestore_rcu_node(sdp, flags);
|
|
}
|
|
|
|
/* Callback initiation done, allow grace periods after next. */
|
|
mutex_unlock(&sup->srcu_cb_mutex);
|
|
|
|
/* Start a new grace period if needed. */
|
|
spin_lock_irq_rcu_node(sup);
|
|
gpseq = rcu_seq_current(&sup->srcu_gp_seq);
|
|
if (!rcu_seq_state(gpseq) &&
|
|
ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
|
|
srcu_gp_start(ssp);
|
|
spin_unlock_irq_rcu_node(sup);
|
|
srcu_reschedule(ssp, 0);
|
|
} else {
|
|
spin_unlock_irq_rcu_node(sup);
|
|
}
|
|
|
|
/* Transition to big if needed. */
|
|
if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
|
|
if (ss_state == SRCU_SIZE_ALLOC)
|
|
init_srcu_struct_nodes(ssp, GFP_KERNEL);
|
|
else
|
|
smp_store_release(&sup->srcu_size_state, ss_state + 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Funnel-locking scheme to scalably mediate many concurrent expedited
|
|
* grace-period requests. This function is invoked for the first known
|
|
* expedited request for a grace period that has already been requested,
|
|
* but without expediting. To start a completely new grace period,
|
|
* whether expedited or not, use srcu_funnel_gp_start() instead.
|
|
*/
|
|
static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
|
|
unsigned long s)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long sgsne;
|
|
|
|
if (snp)
|
|
for (; snp != NULL; snp = snp->srcu_parent) {
|
|
sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
|
|
if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
|
|
(!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
|
|
return;
|
|
spin_lock_irqsave_rcu_node(snp, flags);
|
|
sgsne = snp->srcu_gp_seq_needed_exp;
|
|
if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
|
|
spin_unlock_irqrestore_rcu_node(snp, flags);
|
|
return;
|
|
}
|
|
WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
|
|
spin_unlock_irqrestore_rcu_node(snp, flags);
|
|
}
|
|
spin_lock_irqsave_ssp_contention(ssp, &flags);
|
|
if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
|
|
WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
|
|
spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
|
|
}
|
|
|
|
/*
|
|
* Funnel-locking scheme to scalably mediate many concurrent grace-period
|
|
* requests. The winner has to do the work of actually starting grace
|
|
* period s. Losers must either ensure that their desired grace-period
|
|
* number is recorded on at least their leaf srcu_node structure, or they
|
|
* must take steps to invoke their own callbacks.
|
|
*
|
|
* Note that this function also does the work of srcu_funnel_exp_start(),
|
|
* in some cases by directly invoking it.
|
|
*
|
|
* The srcu read lock should be hold around this function. And s is a seq snap
|
|
* after holding that lock.
|
|
*/
|
|
static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
|
|
unsigned long s, bool do_norm)
|
|
{
|
|
unsigned long flags;
|
|
int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
|
|
unsigned long sgsne;
|
|
struct srcu_node *snp;
|
|
struct srcu_node *snp_leaf;
|
|
unsigned long snp_seq;
|
|
struct srcu_usage *sup = ssp->srcu_sup;
|
|
|
|
/* Ensure that snp node tree is fully initialized before traversing it */
|
|
if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
|
|
snp_leaf = NULL;
|
|
else
|
|
snp_leaf = sdp->mynode;
|
|
|
|
if (snp_leaf)
|
|
/* Each pass through the loop does one level of the srcu_node tree. */
|
|
for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
|
|
if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
|
|
return; /* GP already done and CBs recorded. */
|
|
spin_lock_irqsave_rcu_node(snp, flags);
|
|
snp_seq = snp->srcu_have_cbs[idx];
|
|
if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
|
|
if (snp == snp_leaf && snp_seq == s)
|
|
snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
|
|
spin_unlock_irqrestore_rcu_node(snp, flags);
|
|
if (snp == snp_leaf && snp_seq != s) {
|
|
srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
|
|
return;
|
|
}
|
|
if (!do_norm)
|
|
srcu_funnel_exp_start(ssp, snp, s);
|
|
return;
|
|
}
|
|
snp->srcu_have_cbs[idx] = s;
|
|
if (snp == snp_leaf)
|
|
snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
|
|
sgsne = snp->srcu_gp_seq_needed_exp;
|
|
if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
|
|
WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
|
|
spin_unlock_irqrestore_rcu_node(snp, flags);
|
|
}
|
|
|
|
/* Top of tree, must ensure the grace period will be started. */
|
|
spin_lock_irqsave_ssp_contention(ssp, &flags);
|
|
if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
|
|
/*
|
|
* Record need for grace period s. Pair with load
|
|
* acquire setting up for initialization.
|
|
*/
|
|
smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
|
|
}
|
|
if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
|
|
WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
|
|
|
|
/* If grace period not already in progress, start it. */
|
|
if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
|
|
rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
|
|
WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
|
|
srcu_gp_start(ssp);
|
|
|
|
// And how can that list_add() in the "else" clause
|
|
// possibly be safe for concurrent execution? Well,
|
|
// it isn't. And it does not have to be. After all, it
|
|
// can only be executed during early boot when there is only
|
|
// the one boot CPU running with interrupts still disabled.
|
|
if (likely(srcu_init_done))
|
|
queue_delayed_work(rcu_gp_wq, &sup->work,
|
|
!!srcu_get_delay(ssp));
|
|
else if (list_empty(&sup->work.work.entry))
|
|
list_add(&sup->work.work.entry, &srcu_boot_list);
|
|
}
|
|
spin_unlock_irqrestore_rcu_node(sup, flags);
|
|
}
|
|
|
|
/*
|
|
* Wait until all readers counted by array index idx complete, but
|
|
* loop an additional time if there is an expedited grace period pending.
|
|
* The caller must ensure that ->srcu_idx is not changed while checking.
|
|
*/
|
|
static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
|
|
{
|
|
unsigned long curdelay;
|
|
|
|
curdelay = !srcu_get_delay(ssp);
|
|
|
|
for (;;) {
|
|
if (srcu_readers_active_idx_check(ssp, idx))
|
|
return true;
|
|
if ((--trycount + curdelay) <= 0)
|
|
return false;
|
|
udelay(srcu_retry_check_delay);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment the ->srcu_idx counter so that future SRCU readers will
|
|
* use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
|
|
* us to wait for pre-existing readers in a starvation-free manner.
|
|
*/
|
|
static void srcu_flip(struct srcu_struct *ssp)
|
|
{
|
|
/*
|
|
* Because the flip of ->srcu_idx is executed only if the
|
|
* preceding call to srcu_readers_active_idx_check() found that
|
|
* the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
|
|
* and because that summing uses atomic_long_read(), there is
|
|
* ordering due to a control dependency between that summing and
|
|
* the WRITE_ONCE() in this call to srcu_flip(). This ordering
|
|
* ensures that if this updater saw a given reader's increment from
|
|
* __srcu_read_lock(), that reader was using a value of ->srcu_idx
|
|
* from before the previous call to srcu_flip(), which should be
|
|
* quite rare. This ordering thus helps forward progress because
|
|
* the grace period could otherwise be delayed by additional
|
|
* calls to __srcu_read_lock() using that old (soon to be new)
|
|
* value of ->srcu_idx.
|
|
*
|
|
* This sum-equality check and ordering also ensures that if
|
|
* a given call to __srcu_read_lock() uses the new value of
|
|
* ->srcu_idx, this updater's earlier scans cannot have seen
|
|
* that reader's increments, which is all to the good, because
|
|
* this grace period need not wait on that reader. After all,
|
|
* if those earlier scans had seen that reader, there would have
|
|
* been a sum mismatch and this code would not be reached.
|
|
*
|
|
* This means that the following smp_mb() is redundant, but
|
|
* it stays until either (1) Compilers learn about this sort of
|
|
* control dependency or (2) Some production workload running on
|
|
* a production system is unduly delayed by this slowpath smp_mb().
|
|
*/
|
|
smp_mb(); /* E */ /* Pairs with B and C. */
|
|
|
|
WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
|
|
|
|
/*
|
|
* Ensure that if the updater misses an __srcu_read_unlock()
|
|
* increment, that task's __srcu_read_lock() following its next
|
|
* __srcu_read_lock() or __srcu_read_unlock() will see the above
|
|
* counter update. Note that both this memory barrier and the
|
|
* one in srcu_readers_active_idx_check() provide the guarantee
|
|
* for __srcu_read_lock().
|
|
*/
|
|
smp_mb(); /* D */ /* Pairs with C. */
|
|
}
|
|
|
|
/*
|
|
* If SRCU is likely idle, return true, otherwise return false.
|
|
*
|
|
* Note that it is OK for several current from-idle requests for a new
|
|
* grace period from idle to specify expediting because they will all end
|
|
* up requesting the same grace period anyhow. So no loss.
|
|
*
|
|
* Note also that if any CPU (including the current one) is still invoking
|
|
* callbacks, this function will nevertheless say "idle". This is not
|
|
* ideal, but the overhead of checking all CPUs' callback lists is even
|
|
* less ideal, especially on large systems. Furthermore, the wakeup
|
|
* can happen before the callback is fully removed, so we have no choice
|
|
* but to accept this type of error.
|
|
*
|
|
* This function is also subject to counter-wrap errors, but let's face
|
|
* it, if this function was preempted for enough time for the counters
|
|
* to wrap, it really doesn't matter whether or not we expedite the grace
|
|
* period. The extra overhead of a needlessly expedited grace period is
|
|
* negligible when amortized over that time period, and the extra latency
|
|
* of a needlessly non-expedited grace period is similarly negligible.
|
|
*/
|
|
static bool srcu_might_be_idle(struct srcu_struct *ssp)
|
|
{
|
|
unsigned long curseq;
|
|
unsigned long flags;
|
|
struct srcu_data *sdp;
|
|
unsigned long t;
|
|
unsigned long tlast;
|
|
|
|
check_init_srcu_struct(ssp);
|
|
/* If the local srcu_data structure has callbacks, not idle. */
|
|
sdp = raw_cpu_ptr(ssp->sda);
|
|
spin_lock_irqsave_rcu_node(sdp, flags);
|
|
if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
|
|
spin_unlock_irqrestore_rcu_node(sdp, flags);
|
|
return false; /* Callbacks already present, so not idle. */
|
|
}
|
|
spin_unlock_irqrestore_rcu_node(sdp, flags);
|
|
|
|
/*
|
|
* No local callbacks, so probabilistically probe global state.
|
|
* Exact information would require acquiring locks, which would
|
|
* kill scalability, hence the probabilistic nature of the probe.
|
|
*/
|
|
|
|
/* First, see if enough time has passed since the last GP. */
|
|
t = ktime_get_mono_fast_ns();
|
|
tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
|
|
if (exp_holdoff == 0 ||
|
|
time_in_range_open(t, tlast, tlast + exp_holdoff))
|
|
return false; /* Too soon after last GP. */
|
|
|
|
/* Next, check for probable idleness. */
|
|
curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
|
|
smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
|
|
if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
|
|
return false; /* Grace period in progress, so not idle. */
|
|
smp_mb(); /* Order ->srcu_gp_seq with prior access. */
|
|
if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
|
|
return false; /* GP # changed, so not idle. */
|
|
return true; /* With reasonable probability, idle! */
|
|
}
|
|
|
|
/*
|
|
* SRCU callback function to leak a callback.
|
|
*/
|
|
static void srcu_leak_callback(struct rcu_head *rhp)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Start an SRCU grace period, and also queue the callback if non-NULL.
|
|
*/
|
|
static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
|
|
struct rcu_head *rhp, bool do_norm)
|
|
{
|
|
unsigned long flags;
|
|
int idx;
|
|
bool needexp = false;
|
|
bool needgp = false;
|
|
unsigned long s;
|
|
struct srcu_data *sdp;
|
|
struct srcu_node *sdp_mynode;
|
|
int ss_state;
|
|
|
|
check_init_srcu_struct(ssp);
|
|
/*
|
|
* While starting a new grace period, make sure we are in an
|
|
* SRCU read-side critical section so that the grace-period
|
|
* sequence number cannot wrap around in the meantime.
|
|
*/
|
|
idx = __srcu_read_lock_nmisafe(ssp);
|
|
ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
|
|
if (ss_state < SRCU_SIZE_WAIT_CALL)
|
|
sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
|
|
else
|
|
sdp = raw_cpu_ptr(ssp->sda);
|
|
spin_lock_irqsave_sdp_contention(sdp, &flags);
|
|
if (rhp)
|
|
rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
|
|
/*
|
|
* It's crucial to capture the snapshot 's' for acceleration before
|
|
* reading the current gp_seq that is used for advancing. This is
|
|
* essential because if the acceleration snapshot is taken after a
|
|
* failed advancement attempt, there's a risk that a grace period may
|
|
* conclude and a new one may start in the interim. If the snapshot is
|
|
* captured after this sequence of events, the acceleration snapshot 's'
|
|
* could be excessively advanced, leading to acceleration failure.
|
|
* In such a scenario, an 'acceleration leak' can occur, where new
|
|
* callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
|
|
* Also note that encountering advancing failures is a normal
|
|
* occurrence when the grace period for RCU_WAIT_TAIL is in progress.
|
|
*
|
|
* To see this, consider the following events which occur if
|
|
* rcu_seq_snap() were to be called after advance:
|
|
*
|
|
* 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
|
|
* RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
|
|
*
|
|
* 2) The grace period for RCU_WAIT_TAIL is seen as started but not
|
|
* completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
|
|
*
|
|
* 3) This value is passed to rcu_segcblist_advance() which can't move
|
|
* any segment forward and fails.
|
|
*
|
|
* 4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
|
|
* But then the call to rcu_seq_snap() observes the grace period for the
|
|
* RCU_WAIT_TAIL segment as completed and the subsequent one for the
|
|
* RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
|
|
* so it returns a snapshot of the next grace period, which is X + 12.
|
|
*
|
|
* 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
|
|
* freshly enqueued callback in RCU_NEXT_TAIL can't move to
|
|
* RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
|
|
* period (gp_num = X + 8). So acceleration fails.
|
|
*/
|
|
s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
|
|
if (rhp) {
|
|
rcu_segcblist_advance(&sdp->srcu_cblist,
|
|
rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
|
|
/*
|
|
* Acceleration can never fail because the base current gp_seq
|
|
* used for acceleration is <= the value of gp_seq used for
|
|
* advancing. This means that RCU_NEXT_TAIL segment will
|
|
* always be able to be emptied by the acceleration into the
|
|
* RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
|
|
*/
|
|
WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
|
|
}
|
|
if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
|
|
sdp->srcu_gp_seq_needed = s;
|
|
needgp = true;
|
|
}
|
|
if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
|
|
sdp->srcu_gp_seq_needed_exp = s;
|
|
needexp = true;
|
|
}
|
|
spin_unlock_irqrestore_rcu_node(sdp, flags);
|
|
|
|
/* Ensure that snp node tree is fully initialized before traversing it */
|
|
if (ss_state < SRCU_SIZE_WAIT_BARRIER)
|
|
sdp_mynode = NULL;
|
|
else
|
|
sdp_mynode = sdp->mynode;
|
|
|
|
if (needgp)
|
|
srcu_funnel_gp_start(ssp, sdp, s, do_norm);
|
|
else if (needexp)
|
|
srcu_funnel_exp_start(ssp, sdp_mynode, s);
|
|
__srcu_read_unlock_nmisafe(ssp, idx);
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* Enqueue an SRCU callback on the srcu_data structure associated with
|
|
* the current CPU and the specified srcu_struct structure, initiating
|
|
* grace-period processing if it is not already running.
|
|
*
|
|
* Note that all CPUs must agree that the grace period extended beyond
|
|
* all pre-existing SRCU read-side critical section. On systems with
|
|
* more than one CPU, this means that when "func()" is invoked, each CPU
|
|
* is guaranteed to have executed a full memory barrier since the end of
|
|
* its last corresponding SRCU read-side critical section whose beginning
|
|
* preceded the call to call_srcu(). It also means that each CPU executing
|
|
* an SRCU read-side critical section that continues beyond the start of
|
|
* "func()" must have executed a memory barrier after the call_srcu()
|
|
* but before the beginning of that SRCU read-side critical section.
|
|
* Note that these guarantees include CPUs that are offline, idle, or
|
|
* executing in user mode, as well as CPUs that are executing in the kernel.
|
|
*
|
|
* Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
|
|
* resulting SRCU callback function "func()", then both CPU A and CPU
|
|
* B are guaranteed to execute a full memory barrier during the time
|
|
* interval between the call to call_srcu() and the invocation of "func()".
|
|
* This guarantee applies even if CPU A and CPU B are the same CPU (but
|
|
* again only if the system has more than one CPU).
|
|
*
|
|
* Of course, these guarantees apply only for invocations of call_srcu(),
|
|
* srcu_read_lock(), and srcu_read_unlock() that are all passed the same
|
|
* srcu_struct structure.
|
|
*/
|
|
static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
|
|
rcu_callback_t func, bool do_norm)
|
|
{
|
|
if (debug_rcu_head_queue(rhp)) {
|
|
/* Probable double call_srcu(), so leak the callback. */
|
|
WRITE_ONCE(rhp->func, srcu_leak_callback);
|
|
WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
|
|
return;
|
|
}
|
|
rhp->func = func;
|
|
(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
|
|
}
|
|
|
|
/**
|
|
* call_srcu() - Queue a callback for invocation after an SRCU grace period
|
|
* @ssp: srcu_struct in queue the callback
|
|
* @rhp: structure to be used for queueing the SRCU callback.
|
|
* @func: function to be invoked after the SRCU grace period
|
|
*
|
|
* The callback function will be invoked some time after a full SRCU
|
|
* grace period elapses, in other words after all pre-existing SRCU
|
|
* read-side critical sections have completed. However, the callback
|
|
* function might well execute concurrently with other SRCU read-side
|
|
* critical sections that started after call_srcu() was invoked. SRCU
|
|
* read-side critical sections are delimited by srcu_read_lock() and
|
|
* srcu_read_unlock(), and may be nested.
|
|
*
|
|
* The callback will be invoked from process context, but must nevertheless
|
|
* be fast and must not block.
|
|
*/
|
|
void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
|
|
rcu_callback_t func)
|
|
{
|
|
__call_srcu(ssp, rhp, func, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_srcu);
|
|
|
|
/*
|
|
* Helper function for synchronize_srcu() and synchronize_srcu_expedited().
|
|
*/
|
|
static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
|
|
{
|
|
struct rcu_synchronize rcu;
|
|
|
|
srcu_lock_sync(&ssp->dep_map);
|
|
|
|
RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
|
|
lock_is_held(&rcu_bh_lock_map) ||
|
|
lock_is_held(&rcu_lock_map) ||
|
|
lock_is_held(&rcu_sched_lock_map),
|
|
"Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
|
|
|
|
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
|
|
return;
|
|
might_sleep();
|
|
check_init_srcu_struct(ssp);
|
|
init_completion(&rcu.completion);
|
|
init_rcu_head_on_stack(&rcu.head);
|
|
__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
|
|
wait_for_completion(&rcu.completion);
|
|
destroy_rcu_head_on_stack(&rcu.head);
|
|
|
|
/*
|
|
* Make sure that later code is ordered after the SRCU grace
|
|
* period. This pairs with the spin_lock_irq_rcu_node()
|
|
* in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
|
|
* because the current CPU might have been totally uninvolved with
|
|
* (and thus unordered against) that grace period.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
|
|
/**
|
|
* synchronize_srcu_expedited - Brute-force SRCU grace period
|
|
* @ssp: srcu_struct with which to synchronize.
|
|
*
|
|
* Wait for an SRCU grace period to elapse, but be more aggressive about
|
|
* spinning rather than blocking when waiting.
|
|
*
|
|
* Note that synchronize_srcu_expedited() has the same deadlock and
|
|
* memory-ordering properties as does synchronize_srcu().
|
|
*/
|
|
void synchronize_srcu_expedited(struct srcu_struct *ssp)
|
|
{
|
|
__synchronize_srcu(ssp, rcu_gp_is_normal());
|
|
}
|
|
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
|
|
|
|
/**
|
|
* synchronize_srcu - wait for prior SRCU read-side critical-section completion
|
|
* @ssp: srcu_struct with which to synchronize.
|
|
*
|
|
* Wait for the count to drain to zero of both indexes. To avoid the
|
|
* possible starvation of synchronize_srcu(), it waits for the count of
|
|
* the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
|
|
* and then flip the srcu_idx and wait for the count of the other index.
|
|
*
|
|
* Can block; must be called from process context.
|
|
*
|
|
* Note that it is illegal to call synchronize_srcu() from the corresponding
|
|
* SRCU read-side critical section; doing so will result in deadlock.
|
|
* However, it is perfectly legal to call synchronize_srcu() on one
|
|
* srcu_struct from some other srcu_struct's read-side critical section,
|
|
* as long as the resulting graph of srcu_structs is acyclic.
|
|
*
|
|
* There are memory-ordering constraints implied by synchronize_srcu().
|
|
* On systems with more than one CPU, when synchronize_srcu() returns,
|
|
* each CPU is guaranteed to have executed a full memory barrier since
|
|
* the end of its last corresponding SRCU read-side critical section
|
|
* whose beginning preceded the call to synchronize_srcu(). In addition,
|
|
* each CPU having an SRCU read-side critical section that extends beyond
|
|
* the return from synchronize_srcu() is guaranteed to have executed a
|
|
* full memory barrier after the beginning of synchronize_srcu() and before
|
|
* the beginning of that SRCU read-side critical section. Note that these
|
|
* guarantees include CPUs that are offline, idle, or executing in user mode,
|
|
* as well as CPUs that are executing in the kernel.
|
|
*
|
|
* Furthermore, if CPU A invoked synchronize_srcu(), which returned
|
|
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
|
* to have executed a full memory barrier during the execution of
|
|
* synchronize_srcu(). This guarantee applies even if CPU A and CPU B
|
|
* are the same CPU, but again only if the system has more than one CPU.
|
|
*
|
|
* Of course, these memory-ordering guarantees apply only when
|
|
* synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
|
|
* passed the same srcu_struct structure.
|
|
*
|
|
* Implementation of these memory-ordering guarantees is similar to
|
|
* that of synchronize_rcu().
|
|
*
|
|
* If SRCU is likely idle, expedite the first request. This semantic
|
|
* was provided by Classic SRCU, and is relied upon by its users, so TREE
|
|
* SRCU must also provide it. Note that detecting idleness is heuristic
|
|
* and subject to both false positives and negatives.
|
|
*/
|
|
void synchronize_srcu(struct srcu_struct *ssp)
|
|
{
|
|
if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
|
|
synchronize_srcu_expedited(ssp);
|
|
else
|
|
__synchronize_srcu(ssp, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(synchronize_srcu);
|
|
|
|
/**
|
|
* get_state_synchronize_srcu - Provide an end-of-grace-period cookie
|
|
* @ssp: srcu_struct to provide cookie for.
|
|
*
|
|
* This function returns a cookie that can be passed to
|
|
* poll_state_synchronize_srcu(), which will return true if a full grace
|
|
* period has elapsed in the meantime. It is the caller's responsibility
|
|
* to make sure that grace period happens, for example, by invoking
|
|
* call_srcu() after return from get_state_synchronize_srcu().
|
|
*/
|
|
unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
|
|
{
|
|
// Any prior manipulation of SRCU-protected data must happen
|
|
// before the load from ->srcu_gp_seq.
|
|
smp_mb();
|
|
return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
|
|
|
|
/**
|
|
* start_poll_synchronize_srcu - Provide cookie and start grace period
|
|
* @ssp: srcu_struct to provide cookie for.
|
|
*
|
|
* This function returns a cookie that can be passed to
|
|
* poll_state_synchronize_srcu(), which will return true if a full grace
|
|
* period has elapsed in the meantime. Unlike get_state_synchronize_srcu(),
|
|
* this function also ensures that any needed SRCU grace period will be
|
|
* started. This convenience does come at a cost in terms of CPU overhead.
|
|
*/
|
|
unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
|
|
{
|
|
return srcu_gp_start_if_needed(ssp, NULL, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
|
|
|
|
/**
|
|
* poll_state_synchronize_srcu - Has cookie's grace period ended?
|
|
* @ssp: srcu_struct to provide cookie for.
|
|
* @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
|
|
*
|
|
* This function takes the cookie that was returned from either
|
|
* get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
|
|
* returns @true if an SRCU grace period elapsed since the time that the
|
|
* cookie was created.
|
|
*
|
|
* Because cookies are finite in size, wrapping/overflow is possible.
|
|
* This is more pronounced on 32-bit systems where cookies are 32 bits,
|
|
* where in theory wrapping could happen in about 14 hours assuming
|
|
* 25-microsecond expedited SRCU grace periods. However, a more likely
|
|
* overflow lower bound is on the order of 24 days in the case of
|
|
* one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit
|
|
* system requires geologic timespans, as in more than seven million years
|
|
* even for expedited SRCU grace periods.
|
|
*
|
|
* Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
|
|
* that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses
|
|
* a 16-bit cookie, which rcutorture routinely wraps in a matter of a
|
|
* few minutes. If this proves to be a problem, this counter will be
|
|
* expanded to the same size as for Tree SRCU.
|
|
*/
|
|
bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
|
|
{
|
|
if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
|
|
return false;
|
|
// Ensure that the end of the SRCU grace period happens before
|
|
// any subsequent code that the caller might execute.
|
|
smp_mb(); // ^^^
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
|
|
|
|
/*
|
|
* Callback function for srcu_barrier() use.
|
|
*/
|
|
static void srcu_barrier_cb(struct rcu_head *rhp)
|
|
{
|
|
struct srcu_data *sdp;
|
|
struct srcu_struct *ssp;
|
|
|
|
sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
|
|
ssp = sdp->ssp;
|
|
if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
|
|
complete(&ssp->srcu_sup->srcu_barrier_completion);
|
|
}
|
|
|
|
/*
|
|
* Enqueue an srcu_barrier() callback on the specified srcu_data
|
|
* structure's ->cblist. but only if that ->cblist already has at least one
|
|
* callback enqueued. Note that if a CPU already has callbacks enqueue,
|
|
* it must have already registered the need for a future grace period,
|
|
* so all we need do is enqueue a callback that will use the same grace
|
|
* period as the last callback already in the queue.
|
|
*/
|
|
static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
|
|
{
|
|
spin_lock_irq_rcu_node(sdp);
|
|
atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
|
|
sdp->srcu_barrier_head.func = srcu_barrier_cb;
|
|
debug_rcu_head_queue(&sdp->srcu_barrier_head);
|
|
if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
|
|
&sdp->srcu_barrier_head)) {
|
|
debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
|
|
atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
|
|
}
|
|
spin_unlock_irq_rcu_node(sdp);
|
|
}
|
|
|
|
/**
|
|
* srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
|
|
* @ssp: srcu_struct on which to wait for in-flight callbacks.
|
|
*/
|
|
void srcu_barrier(struct srcu_struct *ssp)
|
|
{
|
|
int cpu;
|
|
int idx;
|
|
unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
|
|
|
|
check_init_srcu_struct(ssp);
|
|
mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
|
|
if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
|
|
smp_mb(); /* Force ordering following return. */
|
|
mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
|
|
return; /* Someone else did our work for us. */
|
|
}
|
|
rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
|
|
init_completion(&ssp->srcu_sup->srcu_barrier_completion);
|
|
|
|
/* Initial count prevents reaching zero until all CBs are posted. */
|
|
atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
|
|
|
|
idx = __srcu_read_lock_nmisafe(ssp);
|
|
if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
|
|
srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id()));
|
|
else
|
|
for_each_possible_cpu(cpu)
|
|
srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
|
|
__srcu_read_unlock_nmisafe(ssp, idx);
|
|
|
|
/* Remove the initial count, at which point reaching zero can happen. */
|
|
if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
|
|
complete(&ssp->srcu_sup->srcu_barrier_completion);
|
|
wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
|
|
|
|
rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
|
|
mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(srcu_barrier);
|
|
|
|
/**
|
|
* srcu_batches_completed - return batches completed.
|
|
* @ssp: srcu_struct on which to report batch completion.
|
|
*
|
|
* Report the number of batches, correlated with, but not necessarily
|
|
* precisely the same as, the number of grace periods that have elapsed.
|
|
*/
|
|
unsigned long srcu_batches_completed(struct srcu_struct *ssp)
|
|
{
|
|
return READ_ONCE(ssp->srcu_idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(srcu_batches_completed);
|
|
|
|
/*
|
|
* Core SRCU state machine. Push state bits of ->srcu_gp_seq
|
|
* to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
|
|
* completed in that state.
|
|
*/
|
|
static void srcu_advance_state(struct srcu_struct *ssp)
|
|
{
|
|
int idx;
|
|
|
|
mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
|
|
|
|
/*
|
|
* Because readers might be delayed for an extended period after
|
|
* fetching ->srcu_idx for their index, at any point in time there
|
|
* might well be readers using both idx=0 and idx=1. We therefore
|
|
* need to wait for readers to clear from both index values before
|
|
* invoking a callback.
|
|
*
|
|
* The load-acquire ensures that we see the accesses performed
|
|
* by the prior grace period.
|
|
*/
|
|
idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
|
|
if (idx == SRCU_STATE_IDLE) {
|
|
spin_lock_irq_rcu_node(ssp->srcu_sup);
|
|
if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
|
|
WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
|
|
spin_unlock_irq_rcu_node(ssp->srcu_sup);
|
|
mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
|
|
return;
|
|
}
|
|
idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
|
|
if (idx == SRCU_STATE_IDLE)
|
|
srcu_gp_start(ssp);
|
|
spin_unlock_irq_rcu_node(ssp->srcu_sup);
|
|
if (idx != SRCU_STATE_IDLE) {
|
|
mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
|
|
return; /* Someone else started the grace period. */
|
|
}
|
|
}
|
|
|
|
if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
|
|
idx = 1 ^ (ssp->srcu_idx & 1);
|
|
if (!try_check_zero(ssp, idx, 1)) {
|
|
mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
|
|
return; /* readers present, retry later. */
|
|
}
|
|
srcu_flip(ssp);
|
|
spin_lock_irq_rcu_node(ssp->srcu_sup);
|
|
rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
|
|
ssp->srcu_sup->srcu_n_exp_nodelay = 0;
|
|
spin_unlock_irq_rcu_node(ssp->srcu_sup);
|
|
}
|
|
|
|
if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
|
|
|
|
/*
|
|
* SRCU read-side critical sections are normally short,
|
|
* so check at least twice in quick succession after a flip.
|
|
*/
|
|
idx = 1 ^ (ssp->srcu_idx & 1);
|
|
if (!try_check_zero(ssp, idx, 2)) {
|
|
mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
|
|
return; /* readers present, retry later. */
|
|
}
|
|
ssp->srcu_sup->srcu_n_exp_nodelay = 0;
|
|
srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke a limited number of SRCU callbacks that have passed through
|
|
* their grace period. If there are more to do, SRCU will reschedule
|
|
* the workqueue. Note that needed memory barriers have been executed
|
|
* in this task's context by srcu_readers_active_idx_check().
|
|
*/
|
|
static void srcu_invoke_callbacks(struct work_struct *work)
|
|
{
|
|
long len;
|
|
bool more;
|
|
struct rcu_cblist ready_cbs;
|
|
struct rcu_head *rhp;
|
|
struct srcu_data *sdp;
|
|
struct srcu_struct *ssp;
|
|
|
|
sdp = container_of(work, struct srcu_data, work);
|
|
|
|
ssp = sdp->ssp;
|
|
rcu_cblist_init(&ready_cbs);
|
|
spin_lock_irq_rcu_node(sdp);
|
|
WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
|
|
rcu_segcblist_advance(&sdp->srcu_cblist,
|
|
rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
|
|
/*
|
|
* Although this function is theoretically re-entrant, concurrent
|
|
* callbacks invocation is disallowed to avoid executing an SRCU barrier
|
|
* too early.
|
|
*/
|
|
if (sdp->srcu_cblist_invoking ||
|
|
!rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
|
|
spin_unlock_irq_rcu_node(sdp);
|
|
return; /* Someone else on the job or nothing to do. */
|
|
}
|
|
|
|
/* We are on the job! Extract and invoke ready callbacks. */
|
|
sdp->srcu_cblist_invoking = true;
|
|
rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
|
|
len = ready_cbs.len;
|
|
spin_unlock_irq_rcu_node(sdp);
|
|
rhp = rcu_cblist_dequeue(&ready_cbs);
|
|
for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
|
|
debug_rcu_head_unqueue(rhp);
|
|
debug_rcu_head_callback(rhp);
|
|
local_bh_disable();
|
|
rhp->func(rhp);
|
|
local_bh_enable();
|
|
}
|
|
WARN_ON_ONCE(ready_cbs.len);
|
|
|
|
/*
|
|
* Update counts, accelerate new callbacks, and if needed,
|
|
* schedule another round of callback invocation.
|
|
*/
|
|
spin_lock_irq_rcu_node(sdp);
|
|
rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
|
|
sdp->srcu_cblist_invoking = false;
|
|
more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
|
|
spin_unlock_irq_rcu_node(sdp);
|
|
/* An SRCU barrier or callbacks from previous nesting work pending */
|
|
if (more)
|
|
srcu_schedule_cbs_sdp(sdp, 0);
|
|
}
|
|
|
|
/*
|
|
* Finished one round of SRCU grace period. Start another if there are
|
|
* more SRCU callbacks queued, otherwise put SRCU into not-running state.
|
|
*/
|
|
static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
|
|
{
|
|
bool pushgp = true;
|
|
|
|
spin_lock_irq_rcu_node(ssp->srcu_sup);
|
|
if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
|
|
if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
|
|
/* All requests fulfilled, time to go idle. */
|
|
pushgp = false;
|
|
}
|
|
} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
|
|
/* Outstanding request and no GP. Start one. */
|
|
srcu_gp_start(ssp);
|
|
}
|
|
spin_unlock_irq_rcu_node(ssp->srcu_sup);
|
|
|
|
if (pushgp)
|
|
queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
|
|
}
|
|
|
|
/*
|
|
* This is the work-queue function that handles SRCU grace periods.
|
|
*/
|
|
static void process_srcu(struct work_struct *work)
|
|
{
|
|
unsigned long curdelay;
|
|
unsigned long j;
|
|
struct srcu_struct *ssp;
|
|
struct srcu_usage *sup;
|
|
|
|
sup = container_of(work, struct srcu_usage, work.work);
|
|
ssp = sup->srcu_ssp;
|
|
|
|
srcu_advance_state(ssp);
|
|
curdelay = srcu_get_delay(ssp);
|
|
if (curdelay) {
|
|
WRITE_ONCE(sup->reschedule_count, 0);
|
|
} else {
|
|
j = jiffies;
|
|
if (READ_ONCE(sup->reschedule_jiffies) == j) {
|
|
WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
|
|
if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
|
|
curdelay = 1;
|
|
} else {
|
|
WRITE_ONCE(sup->reschedule_count, 1);
|
|
WRITE_ONCE(sup->reschedule_jiffies, j);
|
|
}
|
|
}
|
|
srcu_reschedule(ssp, curdelay);
|
|
}
|
|
|
|
void srcutorture_get_gp_data(enum rcutorture_type test_type,
|
|
struct srcu_struct *ssp, int *flags,
|
|
unsigned long *gp_seq)
|
|
{
|
|
if (test_type != SRCU_FLAVOR)
|
|
return;
|
|
*flags = 0;
|
|
*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
|
|
|
|
static const char * const srcu_size_state_name[] = {
|
|
"SRCU_SIZE_SMALL",
|
|
"SRCU_SIZE_ALLOC",
|
|
"SRCU_SIZE_WAIT_BARRIER",
|
|
"SRCU_SIZE_WAIT_CALL",
|
|
"SRCU_SIZE_WAIT_CBS1",
|
|
"SRCU_SIZE_WAIT_CBS2",
|
|
"SRCU_SIZE_WAIT_CBS3",
|
|
"SRCU_SIZE_WAIT_CBS4",
|
|
"SRCU_SIZE_BIG",
|
|
"SRCU_SIZE_???",
|
|
};
|
|
|
|
void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
|
|
{
|
|
int cpu;
|
|
int idx;
|
|
unsigned long s0 = 0, s1 = 0;
|
|
int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
|
|
int ss_state_idx = ss_state;
|
|
|
|
idx = ssp->srcu_idx & 0x1;
|
|
if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
|
|
ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
|
|
pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
|
|
tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
|
|
srcu_size_state_name[ss_state_idx]);
|
|
if (!ssp->sda) {
|
|
// Called after cleanup_srcu_struct(), perhaps.
|
|
pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
|
|
} else {
|
|
pr_cont(" per-CPU(idx=%d):", idx);
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long l0, l1;
|
|
unsigned long u0, u1;
|
|
long c0, c1;
|
|
struct srcu_data *sdp;
|
|
|
|
sdp = per_cpu_ptr(ssp->sda, cpu);
|
|
u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
|
|
u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
|
|
|
|
/*
|
|
* Make sure that a lock is always counted if the corresponding
|
|
* unlock is counted.
|
|
*/
|
|
smp_rmb();
|
|
|
|
l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
|
|
l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
|
|
|
|
c0 = l0 - u0;
|
|
c1 = l1 - u1;
|
|
pr_cont(" %d(%ld,%ld %c)",
|
|
cpu, c0, c1,
|
|
"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
|
|
s0 += c0;
|
|
s1 += c1;
|
|
}
|
|
pr_cont(" T(%ld,%ld)\n", s0, s1);
|
|
}
|
|
if (SRCU_SIZING_IS_TORTURE())
|
|
srcu_transition_to_big(ssp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
|
|
|
|
static int __init srcu_bootup_announce(void)
|
|
{
|
|
pr_info("Hierarchical SRCU implementation.\n");
|
|
if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
|
|
pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
|
|
if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
|
|
pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
|
|
if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
|
|
pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
|
|
pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
|
|
return 0;
|
|
}
|
|
early_initcall(srcu_bootup_announce);
|
|
|
|
void __init srcu_init(void)
|
|
{
|
|
struct srcu_usage *sup;
|
|
|
|
/* Decide on srcu_struct-size strategy. */
|
|
if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
|
|
if (nr_cpu_ids >= big_cpu_lim) {
|
|
convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
|
|
pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
|
|
} else {
|
|
convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
|
|
pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Once that is set, call_srcu() can follow the normal path and
|
|
* queue delayed work. This must follow RCU workqueues creation
|
|
* and timers initialization.
|
|
*/
|
|
srcu_init_done = true;
|
|
while (!list_empty(&srcu_boot_list)) {
|
|
sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
|
|
work.work.entry);
|
|
list_del_init(&sup->work.work.entry);
|
|
if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
|
|
sup->srcu_size_state == SRCU_SIZE_SMALL)
|
|
sup->srcu_size_state = SRCU_SIZE_ALLOC;
|
|
queue_work(rcu_gp_wq, &sup->work.work);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MODULES
|
|
|
|
/* Initialize any global-scope srcu_struct structures used by this module. */
|
|
static int srcu_module_coming(struct module *mod)
|
|
{
|
|
int i;
|
|
struct srcu_struct *ssp;
|
|
struct srcu_struct **sspp = mod->srcu_struct_ptrs;
|
|
|
|
for (i = 0; i < mod->num_srcu_structs; i++) {
|
|
ssp = *(sspp++);
|
|
ssp->sda = alloc_percpu(struct srcu_data);
|
|
if (WARN_ON_ONCE(!ssp->sda))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Clean up any global-scope srcu_struct structures used by this module. */
|
|
static void srcu_module_going(struct module *mod)
|
|
{
|
|
int i;
|
|
struct srcu_struct *ssp;
|
|
struct srcu_struct **sspp = mod->srcu_struct_ptrs;
|
|
|
|
for (i = 0; i < mod->num_srcu_structs; i++) {
|
|
ssp = *(sspp++);
|
|
if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
|
|
!WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
|
|
cleanup_srcu_struct(ssp);
|
|
if (!WARN_ON(srcu_readers_active(ssp)))
|
|
free_percpu(ssp->sda);
|
|
}
|
|
}
|
|
|
|
/* Handle one module, either coming or going. */
|
|
static int srcu_module_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct module *mod = data;
|
|
int ret = 0;
|
|
|
|
switch (val) {
|
|
case MODULE_STATE_COMING:
|
|
ret = srcu_module_coming(mod);
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
srcu_module_going(mod);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct notifier_block srcu_module_nb = {
|
|
.notifier_call = srcu_module_notify,
|
|
.priority = 0,
|
|
};
|
|
|
|
static __init int init_srcu_module_notifier(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = register_module_notifier(&srcu_module_nb);
|
|
if (ret)
|
|
pr_warn("Failed to register srcu module notifier\n");
|
|
return ret;
|
|
}
|
|
late_initcall(init_srcu_module_notifier);
|
|
|
|
#endif /* #ifdef CONFIG_MODULES */
|