mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 15:54:15 +08:00
d0da23b0de
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Don Mullis <don.mullis@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
291 lines
6.7 KiB
C
291 lines
6.7 KiB
C
|
|
#define pr_fmt(fmt) "list_sort_test: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
|
|
#define MAX_LIST_LENGTH_BITS 20
|
|
|
|
/*
|
|
* Returns a list organized in an intermediate format suited
|
|
* to chaining of merge() calls: null-terminated, no reserved or
|
|
* sentinel head node, "prev" links not maintained.
|
|
*/
|
|
static struct list_head *merge(void *priv,
|
|
int (*cmp)(void *priv, struct list_head *a,
|
|
struct list_head *b),
|
|
struct list_head *a, struct list_head *b)
|
|
{
|
|
struct list_head head, *tail = &head;
|
|
|
|
while (a && b) {
|
|
/* if equal, take 'a' -- important for sort stability */
|
|
if ((*cmp)(priv, a, b) <= 0) {
|
|
tail->next = a;
|
|
a = a->next;
|
|
} else {
|
|
tail->next = b;
|
|
b = b->next;
|
|
}
|
|
tail = tail->next;
|
|
}
|
|
tail->next = a?:b;
|
|
return head.next;
|
|
}
|
|
|
|
/*
|
|
* Combine final list merge with restoration of standard doubly-linked
|
|
* list structure. This approach duplicates code from merge(), but
|
|
* runs faster than the tidier alternatives of either a separate final
|
|
* prev-link restoration pass, or maintaining the prev links
|
|
* throughout.
|
|
*/
|
|
static void merge_and_restore_back_links(void *priv,
|
|
int (*cmp)(void *priv, struct list_head *a,
|
|
struct list_head *b),
|
|
struct list_head *head,
|
|
struct list_head *a, struct list_head *b)
|
|
{
|
|
struct list_head *tail = head;
|
|
u8 count = 0;
|
|
|
|
while (a && b) {
|
|
/* if equal, take 'a' -- important for sort stability */
|
|
if ((*cmp)(priv, a, b) <= 0) {
|
|
tail->next = a;
|
|
a->prev = tail;
|
|
a = a->next;
|
|
} else {
|
|
tail->next = b;
|
|
b->prev = tail;
|
|
b = b->next;
|
|
}
|
|
tail = tail->next;
|
|
}
|
|
tail->next = a ? : b;
|
|
|
|
do {
|
|
/*
|
|
* In worst cases this loop may run many iterations.
|
|
* Continue callbacks to the client even though no
|
|
* element comparison is needed, so the client's cmp()
|
|
* routine can invoke cond_resched() periodically.
|
|
*/
|
|
if (unlikely(!(++count)))
|
|
(*cmp)(priv, tail->next, tail->next);
|
|
|
|
tail->next->prev = tail;
|
|
tail = tail->next;
|
|
} while (tail->next);
|
|
|
|
tail->next = head;
|
|
head->prev = tail;
|
|
}
|
|
|
|
/**
|
|
* list_sort - sort a list
|
|
* @priv: private data, opaque to list_sort(), passed to @cmp
|
|
* @head: the list to sort
|
|
* @cmp: the elements comparison function
|
|
*
|
|
* This function implements "merge sort", which has O(nlog(n))
|
|
* complexity.
|
|
*
|
|
* The comparison function @cmp must return a negative value if @a
|
|
* should sort before @b, and a positive value if @a should sort after
|
|
* @b. If @a and @b are equivalent, and their original relative
|
|
* ordering is to be preserved, @cmp must return 0.
|
|
*/
|
|
void list_sort(void *priv, struct list_head *head,
|
|
int (*cmp)(void *priv, struct list_head *a,
|
|
struct list_head *b))
|
|
{
|
|
struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists
|
|
-- last slot is a sentinel */
|
|
int lev; /* index into part[] */
|
|
int max_lev = 0;
|
|
struct list_head *list;
|
|
|
|
if (list_empty(head))
|
|
return;
|
|
|
|
memset(part, 0, sizeof(part));
|
|
|
|
head->prev->next = NULL;
|
|
list = head->next;
|
|
|
|
while (list) {
|
|
struct list_head *cur = list;
|
|
list = list->next;
|
|
cur->next = NULL;
|
|
|
|
for (lev = 0; part[lev]; lev++) {
|
|
cur = merge(priv, cmp, part[lev], cur);
|
|
part[lev] = NULL;
|
|
}
|
|
if (lev > max_lev) {
|
|
if (unlikely(lev >= ARRAY_SIZE(part)-1)) {
|
|
printk_once(KERN_DEBUG "list too long for efficiency\n");
|
|
lev--;
|
|
}
|
|
max_lev = lev;
|
|
}
|
|
part[lev] = cur;
|
|
}
|
|
|
|
for (lev = 0; lev < max_lev; lev++)
|
|
if (part[lev])
|
|
list = merge(priv, cmp, part[lev], list);
|
|
|
|
merge_and_restore_back_links(priv, cmp, head, part[max_lev], list);
|
|
}
|
|
EXPORT_SYMBOL(list_sort);
|
|
|
|
#ifdef CONFIG_TEST_LIST_SORT
|
|
|
|
#include <linux/random.h>
|
|
|
|
/*
|
|
* The pattern of set bits in the list length determines which cases
|
|
* are hit in list_sort().
|
|
*/
|
|
#define TEST_LIST_LEN (512+128+2) /* not including head */
|
|
|
|
#define TEST_POISON1 0xDEADBEEF
|
|
#define TEST_POISON2 0xA324354C
|
|
|
|
struct debug_el {
|
|
unsigned int poison1;
|
|
struct list_head list;
|
|
unsigned int poison2;
|
|
int value;
|
|
unsigned serial;
|
|
};
|
|
|
|
/* Array, containing pointers to all elements in the test list */
|
|
static struct debug_el **elts __initdata;
|
|
|
|
static int __init check(struct debug_el *ela, struct debug_el *elb)
|
|
{
|
|
if (ela->serial >= TEST_LIST_LEN) {
|
|
pr_err("error: incorrect serial %d\n", ela->serial);
|
|
return -EINVAL;
|
|
}
|
|
if (elb->serial >= TEST_LIST_LEN) {
|
|
pr_err("error: incorrect serial %d\n", elb->serial);
|
|
return -EINVAL;
|
|
}
|
|
if (elts[ela->serial] != ela || elts[elb->serial] != elb) {
|
|
pr_err("error: phantom element\n");
|
|
return -EINVAL;
|
|
}
|
|
if (ela->poison1 != TEST_POISON1 || ela->poison2 != TEST_POISON2) {
|
|
pr_err("error: bad poison: %#x/%#x\n",
|
|
ela->poison1, ela->poison2);
|
|
return -EINVAL;
|
|
}
|
|
if (elb->poison1 != TEST_POISON1 || elb->poison2 != TEST_POISON2) {
|
|
pr_err("error: bad poison: %#x/%#x\n",
|
|
elb->poison1, elb->poison2);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct debug_el *ela, *elb;
|
|
|
|
ela = container_of(a, struct debug_el, list);
|
|
elb = container_of(b, struct debug_el, list);
|
|
|
|
check(ela, elb);
|
|
return ela->value - elb->value;
|
|
}
|
|
|
|
static int __init list_sort_test(void)
|
|
{
|
|
int i, count = 1, err = -ENOMEM;
|
|
struct debug_el *el;
|
|
struct list_head *cur;
|
|
LIST_HEAD(head);
|
|
|
|
pr_debug("start testing list_sort()\n");
|
|
|
|
elts = kcalloc(TEST_LIST_LEN, sizeof(*elts), GFP_KERNEL);
|
|
if (!elts) {
|
|
pr_err("error: cannot allocate memory\n");
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < TEST_LIST_LEN; i++) {
|
|
el = kmalloc(sizeof(*el), GFP_KERNEL);
|
|
if (!el) {
|
|
pr_err("error: cannot allocate memory\n");
|
|
goto exit;
|
|
}
|
|
/* force some equivalencies */
|
|
el->value = prandom_u32() % (TEST_LIST_LEN / 3);
|
|
el->serial = i;
|
|
el->poison1 = TEST_POISON1;
|
|
el->poison2 = TEST_POISON2;
|
|
elts[i] = el;
|
|
list_add_tail(&el->list, &head);
|
|
}
|
|
|
|
list_sort(NULL, &head, cmp);
|
|
|
|
err = -EINVAL;
|
|
for (cur = head.next; cur->next != &head; cur = cur->next) {
|
|
struct debug_el *el1;
|
|
int cmp_result;
|
|
|
|
if (cur->next->prev != cur) {
|
|
pr_err("error: list is corrupted\n");
|
|
goto exit;
|
|
}
|
|
|
|
cmp_result = cmp(NULL, cur, cur->next);
|
|
if (cmp_result > 0) {
|
|
pr_err("error: list is not sorted\n");
|
|
goto exit;
|
|
}
|
|
|
|
el = container_of(cur, struct debug_el, list);
|
|
el1 = container_of(cur->next, struct debug_el, list);
|
|
if (cmp_result == 0 && el->serial >= el1->serial) {
|
|
pr_err("error: order of equivalent elements not "
|
|
"preserved\n");
|
|
goto exit;
|
|
}
|
|
|
|
if (check(el, el1)) {
|
|
pr_err("error: element check failed\n");
|
|
goto exit;
|
|
}
|
|
count++;
|
|
}
|
|
if (head.prev != cur) {
|
|
pr_err("error: list is corrupted\n");
|
|
goto exit;
|
|
}
|
|
|
|
|
|
if (count != TEST_LIST_LEN) {
|
|
pr_err("error: bad list length %d", count);
|
|
goto exit;
|
|
}
|
|
|
|
err = 0;
|
|
exit:
|
|
for (i = 0; i < TEST_LIST_LEN; i++)
|
|
kfree(elts[i]);
|
|
kfree(elts);
|
|
return err;
|
|
}
|
|
module_init(list_sort_test);
|
|
#endif /* CONFIG_TEST_LIST_SORT */
|