mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 18:24:14 +08:00
25520d55cd
Up until now the_integrity profile has been dynamically allocated and attached to struct gendisk after the disk has been made active. This causes problems because NVMe devices need to register the profile prior to the partition table being read due to a mandatory metadata buffer requirement. In addition, DM goes through hoops to deal with preallocating, but not initializing integrity profiles. Since the integrity profile is small (4 bytes + a pointer), Christoph suggested moving it to struct gendisk proper. This requires several changes: - Moving the blk_integrity definition to genhd.h. - Inlining blk_integrity in struct gendisk. - Removing the dynamic allocation code. - Adding helper functions which allow gendisk to set up and tear down the integrity sysfs dir when a disk is added/deleted. - Adding a blk_integrity_revalidate() callback for updating the stable pages bdi setting. - The calls that depend on whether a device has an integrity profile or not now key off of the bi->profile pointer. - Simplifying the integrity support routines in DM (Mike Snitzer). Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Reported-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
1693 lines
39 KiB
C
1693 lines
39 KiB
C
/*
|
|
* Copyright (C) 2001 Sistina Software (UK) Limited.
|
|
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/mount.h>
|
|
|
|
#define DM_MSG_PREFIX "table"
|
|
|
|
#define MAX_DEPTH 16
|
|
#define NODE_SIZE L1_CACHE_BYTES
|
|
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
|
|
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
|
|
|
|
struct dm_table {
|
|
struct mapped_device *md;
|
|
unsigned type;
|
|
|
|
/* btree table */
|
|
unsigned int depth;
|
|
unsigned int counts[MAX_DEPTH]; /* in nodes */
|
|
sector_t *index[MAX_DEPTH];
|
|
|
|
unsigned int num_targets;
|
|
unsigned int num_allocated;
|
|
sector_t *highs;
|
|
struct dm_target *targets;
|
|
|
|
struct target_type *immutable_target_type;
|
|
unsigned integrity_supported:1;
|
|
unsigned singleton:1;
|
|
|
|
/*
|
|
* Indicates the rw permissions for the new logical
|
|
* device. This should be a combination of FMODE_READ
|
|
* and FMODE_WRITE.
|
|
*/
|
|
fmode_t mode;
|
|
|
|
/* a list of devices used by this table */
|
|
struct list_head devices;
|
|
|
|
/* events get handed up using this callback */
|
|
void (*event_fn)(void *);
|
|
void *event_context;
|
|
|
|
struct dm_md_mempools *mempools;
|
|
|
|
struct list_head target_callbacks;
|
|
};
|
|
|
|
/*
|
|
* Similar to ceiling(log_size(n))
|
|
*/
|
|
static unsigned int int_log(unsigned int n, unsigned int base)
|
|
{
|
|
int result = 0;
|
|
|
|
while (n > 1) {
|
|
n = dm_div_up(n, base);
|
|
result++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Calculate the index of the child node of the n'th node k'th key.
|
|
*/
|
|
static inline unsigned int get_child(unsigned int n, unsigned int k)
|
|
{
|
|
return (n * CHILDREN_PER_NODE) + k;
|
|
}
|
|
|
|
/*
|
|
* Return the n'th node of level l from table t.
|
|
*/
|
|
static inline sector_t *get_node(struct dm_table *t,
|
|
unsigned int l, unsigned int n)
|
|
{
|
|
return t->index[l] + (n * KEYS_PER_NODE);
|
|
}
|
|
|
|
/*
|
|
* Return the highest key that you could lookup from the n'th
|
|
* node on level l of the btree.
|
|
*/
|
|
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
|
|
{
|
|
for (; l < t->depth - 1; l++)
|
|
n = get_child(n, CHILDREN_PER_NODE - 1);
|
|
|
|
if (n >= t->counts[l])
|
|
return (sector_t) - 1;
|
|
|
|
return get_node(t, l, n)[KEYS_PER_NODE - 1];
|
|
}
|
|
|
|
/*
|
|
* Fills in a level of the btree based on the highs of the level
|
|
* below it.
|
|
*/
|
|
static int setup_btree_index(unsigned int l, struct dm_table *t)
|
|
{
|
|
unsigned int n, k;
|
|
sector_t *node;
|
|
|
|
for (n = 0U; n < t->counts[l]; n++) {
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0U; k < KEYS_PER_NODE; k++)
|
|
node[k] = high(t, l + 1, get_child(n, k));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
|
|
{
|
|
unsigned long size;
|
|
void *addr;
|
|
|
|
/*
|
|
* Check that we're not going to overflow.
|
|
*/
|
|
if (nmemb > (ULONG_MAX / elem_size))
|
|
return NULL;
|
|
|
|
size = nmemb * elem_size;
|
|
addr = vzalloc(size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(dm_vcalloc);
|
|
|
|
/*
|
|
* highs, and targets are managed as dynamic arrays during a
|
|
* table load.
|
|
*/
|
|
static int alloc_targets(struct dm_table *t, unsigned int num)
|
|
{
|
|
sector_t *n_highs;
|
|
struct dm_target *n_targets;
|
|
|
|
/*
|
|
* Allocate both the target array and offset array at once.
|
|
* Append an empty entry to catch sectors beyond the end of
|
|
* the device.
|
|
*/
|
|
n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
|
|
sizeof(sector_t));
|
|
if (!n_highs)
|
|
return -ENOMEM;
|
|
|
|
n_targets = (struct dm_target *) (n_highs + num);
|
|
|
|
memset(n_highs, -1, sizeof(*n_highs) * num);
|
|
vfree(t->highs);
|
|
|
|
t->num_allocated = num;
|
|
t->highs = n_highs;
|
|
t->targets = n_targets;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_create(struct dm_table **result, fmode_t mode,
|
|
unsigned num_targets, struct mapped_device *md)
|
|
{
|
|
struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&t->devices);
|
|
INIT_LIST_HEAD(&t->target_callbacks);
|
|
|
|
if (!num_targets)
|
|
num_targets = KEYS_PER_NODE;
|
|
|
|
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
|
|
|
|
if (!num_targets) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (alloc_targets(t, num_targets)) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
t->mode = mode;
|
|
t->md = md;
|
|
*result = t;
|
|
return 0;
|
|
}
|
|
|
|
static void free_devices(struct list_head *devices, struct mapped_device *md)
|
|
{
|
|
struct list_head *tmp, *next;
|
|
|
|
list_for_each_safe(tmp, next, devices) {
|
|
struct dm_dev_internal *dd =
|
|
list_entry(tmp, struct dm_dev_internal, list);
|
|
DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
|
|
dm_device_name(md), dd->dm_dev->name);
|
|
dm_put_table_device(md, dd->dm_dev);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
|
|
void dm_table_destroy(struct dm_table *t)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!t)
|
|
return;
|
|
|
|
/* free the indexes */
|
|
if (t->depth >= 2)
|
|
vfree(t->index[t->depth - 2]);
|
|
|
|
/* free the targets */
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *tgt = t->targets + i;
|
|
|
|
if (tgt->type->dtr)
|
|
tgt->type->dtr(tgt);
|
|
|
|
dm_put_target_type(tgt->type);
|
|
}
|
|
|
|
vfree(t->highs);
|
|
|
|
/* free the device list */
|
|
free_devices(&t->devices, t->md);
|
|
|
|
dm_free_md_mempools(t->mempools);
|
|
|
|
kfree(t);
|
|
}
|
|
|
|
/*
|
|
* See if we've already got a device in the list.
|
|
*/
|
|
static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
|
|
{
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry (dd, l, list)
|
|
if (dd->dm_dev->bdev->bd_dev == dev)
|
|
return dd;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If possible, this checks an area of a destination device is invalid.
|
|
*/
|
|
static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q;
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
sector_t dev_size =
|
|
i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
|
|
unsigned short logical_block_size_sectors =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
/*
|
|
* Some devices exist without request functions,
|
|
* such as loop devices not yet bound to backing files.
|
|
* Forbid the use of such devices.
|
|
*/
|
|
q = bdev_get_queue(bdev);
|
|
if (!q || !q->make_request_fn) {
|
|
DMWARN("%s: %s is not yet initialised: "
|
|
"start=%llu, len=%llu, dev_size=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
(unsigned long long)start,
|
|
(unsigned long long)len,
|
|
(unsigned long long)dev_size);
|
|
return 1;
|
|
}
|
|
|
|
if (!dev_size)
|
|
return 0;
|
|
|
|
if ((start >= dev_size) || (start + len > dev_size)) {
|
|
DMWARN("%s: %s too small for target: "
|
|
"start=%llu, len=%llu, dev_size=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
(unsigned long long)start,
|
|
(unsigned long long)len,
|
|
(unsigned long long)dev_size);
|
|
return 1;
|
|
}
|
|
|
|
if (logical_block_size_sectors <= 1)
|
|
return 0;
|
|
|
|
if (start & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: start=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)start,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
if (len & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: len=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)len,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This upgrades the mode on an already open dm_dev, being
|
|
* careful to leave things as they were if we fail to reopen the
|
|
* device and not to touch the existing bdev field in case
|
|
* it is accessed concurrently inside dm_table_any_congested().
|
|
*/
|
|
static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
|
|
struct mapped_device *md)
|
|
{
|
|
int r;
|
|
struct dm_dev *old_dev, *new_dev;
|
|
|
|
old_dev = dd->dm_dev;
|
|
|
|
r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
|
|
dd->dm_dev->mode | new_mode, &new_dev);
|
|
if (r)
|
|
return r;
|
|
|
|
dd->dm_dev = new_dev;
|
|
dm_put_table_device(md, old_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a device to the list, or just increment the usage count if
|
|
* it's already present.
|
|
*/
|
|
int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
|
|
struct dm_dev **result)
|
|
{
|
|
int r;
|
|
dev_t uninitialized_var(dev);
|
|
struct dm_dev_internal *dd;
|
|
struct dm_table *t = ti->table;
|
|
struct block_device *bdev;
|
|
|
|
BUG_ON(!t);
|
|
|
|
/* convert the path to a device */
|
|
bdev = lookup_bdev(path);
|
|
if (IS_ERR(bdev)) {
|
|
dev = name_to_dev_t(path);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
} else {
|
|
dev = bdev->bd_dev;
|
|
bdput(bdev);
|
|
}
|
|
|
|
dd = find_device(&t->devices, dev);
|
|
if (!dd) {
|
|
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
|
|
if (!dd)
|
|
return -ENOMEM;
|
|
|
|
if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
|
|
kfree(dd);
|
|
return r;
|
|
}
|
|
|
|
atomic_set(&dd->count, 0);
|
|
list_add(&dd->list, &t->devices);
|
|
|
|
} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
|
|
r = upgrade_mode(dd, mode, t->md);
|
|
if (r)
|
|
return r;
|
|
}
|
|
atomic_inc(&dd->count);
|
|
|
|
*result = dd->dm_dev;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_get_device);
|
|
|
|
static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (unlikely(!q)) {
|
|
DMWARN("%s: Cannot set limits for nonexistent device %s",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b));
|
|
return 0;
|
|
}
|
|
|
|
if (bdev_stack_limits(limits, bdev, start) < 0)
|
|
DMWARN("%s: adding target device %s caused an alignment inconsistency: "
|
|
"physical_block_size=%u, logical_block_size=%u, "
|
|
"alignment_offset=%u, start=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
q->limits.physical_block_size,
|
|
q->limits.logical_block_size,
|
|
q->limits.alignment_offset,
|
|
(unsigned long long) start << SECTOR_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decrement a device's use count and remove it if necessary.
|
|
*/
|
|
void dm_put_device(struct dm_target *ti, struct dm_dev *d)
|
|
{
|
|
int found = 0;
|
|
struct list_head *devices = &ti->table->devices;
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
if (dd->dm_dev == d) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
DMWARN("%s: device %s not in table devices list",
|
|
dm_device_name(ti->table->md), d->name);
|
|
return;
|
|
}
|
|
if (atomic_dec_and_test(&dd->count)) {
|
|
dm_put_table_device(ti->table->md, d);
|
|
list_del(&dd->list);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dm_put_device);
|
|
|
|
/*
|
|
* Checks to see if the target joins onto the end of the table.
|
|
*/
|
|
static int adjoin(struct dm_table *table, struct dm_target *ti)
|
|
{
|
|
struct dm_target *prev;
|
|
|
|
if (!table->num_targets)
|
|
return !ti->begin;
|
|
|
|
prev = &table->targets[table->num_targets - 1];
|
|
return (ti->begin == (prev->begin + prev->len));
|
|
}
|
|
|
|
/*
|
|
* Used to dynamically allocate the arg array.
|
|
*
|
|
* We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
|
|
* process messages even if some device is suspended. These messages have a
|
|
* small fixed number of arguments.
|
|
*
|
|
* On the other hand, dm-switch needs to process bulk data using messages and
|
|
* excessive use of GFP_NOIO could cause trouble.
|
|
*/
|
|
static char **realloc_argv(unsigned *array_size, char **old_argv)
|
|
{
|
|
char **argv;
|
|
unsigned new_size;
|
|
gfp_t gfp;
|
|
|
|
if (*array_size) {
|
|
new_size = *array_size * 2;
|
|
gfp = GFP_KERNEL;
|
|
} else {
|
|
new_size = 8;
|
|
gfp = GFP_NOIO;
|
|
}
|
|
argv = kmalloc(new_size * sizeof(*argv), gfp);
|
|
if (argv) {
|
|
memcpy(argv, old_argv, *array_size * sizeof(*argv));
|
|
*array_size = new_size;
|
|
}
|
|
|
|
kfree(old_argv);
|
|
return argv;
|
|
}
|
|
|
|
/*
|
|
* Destructively splits up the argument list to pass to ctr.
|
|
*/
|
|
int dm_split_args(int *argc, char ***argvp, char *input)
|
|
{
|
|
char *start, *end = input, *out, **argv = NULL;
|
|
unsigned array_size = 0;
|
|
|
|
*argc = 0;
|
|
|
|
if (!input) {
|
|
*argvp = NULL;
|
|
return 0;
|
|
}
|
|
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
/* Skip whitespace */
|
|
start = skip_spaces(end);
|
|
|
|
if (!*start)
|
|
break; /* success, we hit the end */
|
|
|
|
/* 'out' is used to remove any back-quotes */
|
|
end = out = start;
|
|
while (*end) {
|
|
/* Everything apart from '\0' can be quoted */
|
|
if (*end == '\\' && *(end + 1)) {
|
|
*out++ = *(end + 1);
|
|
end += 2;
|
|
continue;
|
|
}
|
|
|
|
if (isspace(*end))
|
|
break; /* end of token */
|
|
|
|
*out++ = *end++;
|
|
}
|
|
|
|
/* have we already filled the array ? */
|
|
if ((*argc + 1) > array_size) {
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* we know this is whitespace */
|
|
if (*end)
|
|
end++;
|
|
|
|
/* terminate the string and put it in the array */
|
|
*out = '\0';
|
|
argv[*argc] = start;
|
|
(*argc)++;
|
|
}
|
|
|
|
*argvp = argv;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Impose necessary and sufficient conditions on a devices's table such
|
|
* that any incoming bio which respects its logical_block_size can be
|
|
* processed successfully. If it falls across the boundary between
|
|
* two or more targets, the size of each piece it gets split into must
|
|
* be compatible with the logical_block_size of the target processing it.
|
|
*/
|
|
static int validate_hardware_logical_block_alignment(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
/*
|
|
* This function uses arithmetic modulo the logical_block_size
|
|
* (in units of 512-byte sectors).
|
|
*/
|
|
unsigned short device_logical_block_size_sects =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
|
|
/*
|
|
* Offset of the start of the next table entry, mod logical_block_size.
|
|
*/
|
|
unsigned short next_target_start = 0;
|
|
|
|
/*
|
|
* Given an aligned bio that extends beyond the end of a
|
|
* target, how many sectors must the next target handle?
|
|
*/
|
|
unsigned short remaining = 0;
|
|
|
|
struct dm_target *uninitialized_var(ti);
|
|
struct queue_limits ti_limits;
|
|
unsigned i = 0;
|
|
|
|
/*
|
|
* Check each entry in the table in turn.
|
|
*/
|
|
while (i < dm_table_get_num_targets(table)) {
|
|
ti = dm_table_get_target(table, i++);
|
|
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
/* combine all target devices' limits */
|
|
if (ti->type->iterate_devices)
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
/*
|
|
* If the remaining sectors fall entirely within this
|
|
* table entry are they compatible with its logical_block_size?
|
|
*/
|
|
if (remaining < ti->len &&
|
|
remaining & ((ti_limits.logical_block_size >>
|
|
SECTOR_SHIFT) - 1))
|
|
break; /* Error */
|
|
|
|
next_target_start =
|
|
(unsigned short) ((next_target_start + ti->len) &
|
|
(device_logical_block_size_sects - 1));
|
|
remaining = next_target_start ?
|
|
device_logical_block_size_sects - next_target_start : 0;
|
|
}
|
|
|
|
if (remaining) {
|
|
DMWARN("%s: table line %u (start sect %llu len %llu) "
|
|
"not aligned to h/w logical block size %u",
|
|
dm_device_name(table->md), i,
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len,
|
|
limits->logical_block_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_add_target(struct dm_table *t, const char *type,
|
|
sector_t start, sector_t len, char *params)
|
|
{
|
|
int r = -EINVAL, argc;
|
|
char **argv;
|
|
struct dm_target *tgt;
|
|
|
|
if (t->singleton) {
|
|
DMERR("%s: target type %s must appear alone in table",
|
|
dm_device_name(t->md), t->targets->type->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUG_ON(t->num_targets >= t->num_allocated);
|
|
|
|
tgt = t->targets + t->num_targets;
|
|
memset(tgt, 0, sizeof(*tgt));
|
|
|
|
if (!len) {
|
|
DMERR("%s: zero-length target", dm_device_name(t->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
tgt->type = dm_get_target_type(type);
|
|
if (!tgt->type) {
|
|
DMERR("%s: %s: unknown target type", dm_device_name(t->md),
|
|
type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dm_target_needs_singleton(tgt->type)) {
|
|
if (t->num_targets) {
|
|
DMERR("%s: target type %s must appear alone in table",
|
|
dm_device_name(t->md), type);
|
|
return -EINVAL;
|
|
}
|
|
t->singleton = 1;
|
|
}
|
|
|
|
if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
|
|
DMERR("%s: target type %s may not be included in read-only tables",
|
|
dm_device_name(t->md), type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->immutable_target_type) {
|
|
if (t->immutable_target_type != tgt->type) {
|
|
DMERR("%s: immutable target type %s cannot be mixed with other target types",
|
|
dm_device_name(t->md), t->immutable_target_type->name);
|
|
return -EINVAL;
|
|
}
|
|
} else if (dm_target_is_immutable(tgt->type)) {
|
|
if (t->num_targets) {
|
|
DMERR("%s: immutable target type %s cannot be mixed with other target types",
|
|
dm_device_name(t->md), tgt->type->name);
|
|
return -EINVAL;
|
|
}
|
|
t->immutable_target_type = tgt->type;
|
|
}
|
|
|
|
tgt->table = t;
|
|
tgt->begin = start;
|
|
tgt->len = len;
|
|
tgt->error = "Unknown error";
|
|
|
|
/*
|
|
* Does this target adjoin the previous one ?
|
|
*/
|
|
if (!adjoin(t, tgt)) {
|
|
tgt->error = "Gap in table";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
r = dm_split_args(&argc, &argv, params);
|
|
if (r) {
|
|
tgt->error = "couldn't split parameters (insufficient memory)";
|
|
goto bad;
|
|
}
|
|
|
|
r = tgt->type->ctr(tgt, argc, argv);
|
|
kfree(argv);
|
|
if (r)
|
|
goto bad;
|
|
|
|
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
|
|
|
|
if (!tgt->num_discard_bios && tgt->discards_supported)
|
|
DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
|
|
dm_device_name(t->md), type);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
|
|
dm_put_target_type(tgt->type);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Target argument parsing helpers.
|
|
*/
|
|
static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error, unsigned grouped)
|
|
{
|
|
const char *arg_str = dm_shift_arg(arg_set);
|
|
char dummy;
|
|
|
|
if (!arg_str ||
|
|
(sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
|
|
(*value < arg->min) ||
|
|
(*value > arg->max) ||
|
|
(grouped && arg_set->argc < *value)) {
|
|
*error = arg->error;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 0);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg);
|
|
|
|
int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 1);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg_group);
|
|
|
|
const char *dm_shift_arg(struct dm_arg_set *as)
|
|
{
|
|
char *r;
|
|
|
|
if (as->argc) {
|
|
as->argc--;
|
|
r = *as->argv;
|
|
as->argv++;
|
|
return r;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dm_shift_arg);
|
|
|
|
void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
|
|
{
|
|
BUG_ON(as->argc < num_args);
|
|
as->argc -= num_args;
|
|
as->argv += num_args;
|
|
}
|
|
EXPORT_SYMBOL(dm_consume_args);
|
|
|
|
static bool __table_type_request_based(unsigned table_type)
|
|
{
|
|
return (table_type == DM_TYPE_REQUEST_BASED ||
|
|
table_type == DM_TYPE_MQ_REQUEST_BASED);
|
|
}
|
|
|
|
static int dm_table_set_type(struct dm_table *t)
|
|
{
|
|
unsigned i;
|
|
unsigned bio_based = 0, request_based = 0, hybrid = 0;
|
|
bool use_blk_mq = false;
|
|
struct dm_target *tgt;
|
|
struct dm_dev_internal *dd;
|
|
struct list_head *devices;
|
|
unsigned live_md_type = dm_get_md_type(t->md);
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
tgt = t->targets + i;
|
|
if (dm_target_hybrid(tgt))
|
|
hybrid = 1;
|
|
else if (dm_target_request_based(tgt))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
|
|
if (bio_based && request_based) {
|
|
DMWARN("Inconsistent table: different target types"
|
|
" can't be mixed up");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (hybrid && !bio_based && !request_based) {
|
|
/*
|
|
* The targets can work either way.
|
|
* Determine the type from the live device.
|
|
* Default to bio-based if device is new.
|
|
*/
|
|
if (__table_type_request_based(live_md_type))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
}
|
|
|
|
if (bio_based) {
|
|
/* We must use this table as bio-based */
|
|
t->type = DM_TYPE_BIO_BASED;
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(!request_based); /* No targets in this table */
|
|
|
|
/*
|
|
* Request-based dm supports only tables that have a single target now.
|
|
* To support multiple targets, request splitting support is needed,
|
|
* and that needs lots of changes in the block-layer.
|
|
* (e.g. request completion process for partial completion.)
|
|
*/
|
|
if (t->num_targets > 1) {
|
|
DMWARN("Request-based dm doesn't support multiple targets yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Non-request-stackable devices can't be used for request-based dm */
|
|
devices = dm_table_get_devices(t);
|
|
list_for_each_entry(dd, devices, list) {
|
|
struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
|
|
|
|
if (!blk_queue_stackable(q)) {
|
|
DMERR("table load rejected: including"
|
|
" non-request-stackable devices");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (q->mq_ops)
|
|
use_blk_mq = true;
|
|
}
|
|
|
|
if (use_blk_mq) {
|
|
/* verify _all_ devices in the table are blk-mq devices */
|
|
list_for_each_entry(dd, devices, list)
|
|
if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
|
|
DMERR("table load rejected: not all devices"
|
|
" are blk-mq request-stackable");
|
|
return -EINVAL;
|
|
}
|
|
t->type = DM_TYPE_MQ_REQUEST_BASED;
|
|
|
|
} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
|
|
/* inherit live MD type */
|
|
t->type = live_md_type;
|
|
|
|
} else
|
|
t->type = DM_TYPE_REQUEST_BASED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned dm_table_get_type(struct dm_table *t)
|
|
{
|
|
return t->type;
|
|
}
|
|
|
|
struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
|
|
{
|
|
return t->immutable_target_type;
|
|
}
|
|
|
|
bool dm_table_request_based(struct dm_table *t)
|
|
{
|
|
return __table_type_request_based(dm_table_get_type(t));
|
|
}
|
|
|
|
bool dm_table_mq_request_based(struct dm_table *t)
|
|
{
|
|
return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
|
|
}
|
|
|
|
static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
|
|
{
|
|
unsigned type = dm_table_get_type(t);
|
|
unsigned per_bio_data_size = 0;
|
|
struct dm_target *tgt;
|
|
unsigned i;
|
|
|
|
if (unlikely(type == DM_TYPE_NONE)) {
|
|
DMWARN("no table type is set, can't allocate mempools");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (type == DM_TYPE_BIO_BASED)
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
tgt = t->targets + i;
|
|
per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
|
|
}
|
|
|
|
t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
|
|
if (!t->mempools)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void dm_table_free_md_mempools(struct dm_table *t)
|
|
{
|
|
dm_free_md_mempools(t->mempools);
|
|
t->mempools = NULL;
|
|
}
|
|
|
|
struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
|
|
{
|
|
return t->mempools;
|
|
}
|
|
|
|
static int setup_indexes(struct dm_table *t)
|
|
{
|
|
int i;
|
|
unsigned int total = 0;
|
|
sector_t *indexes;
|
|
|
|
/* allocate the space for *all* the indexes */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
|
|
total += t->counts[i];
|
|
}
|
|
|
|
indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
|
|
if (!indexes)
|
|
return -ENOMEM;
|
|
|
|
/* set up internal nodes, bottom-up */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->index[i] = indexes;
|
|
indexes += (KEYS_PER_NODE * t->counts[i]);
|
|
setup_btree_index(i, t);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Builds the btree to index the map.
|
|
*/
|
|
static int dm_table_build_index(struct dm_table *t)
|
|
{
|
|
int r = 0;
|
|
unsigned int leaf_nodes;
|
|
|
|
/* how many indexes will the btree have ? */
|
|
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
|
|
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
|
|
|
|
/* leaf layer has already been set up */
|
|
t->counts[t->depth - 1] = leaf_nodes;
|
|
t->index[t->depth - 1] = t->highs;
|
|
|
|
if (t->depth >= 2)
|
|
r = setup_indexes(t);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool integrity_profile_exists(struct gendisk *disk)
|
|
{
|
|
return !!blk_get_integrity(disk);
|
|
}
|
|
|
|
/*
|
|
* Get a disk whose integrity profile reflects the table's profile.
|
|
* Returns NULL if integrity support was inconsistent or unavailable.
|
|
*/
|
|
static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
|
|
{
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
struct dm_dev_internal *dd = NULL;
|
|
struct gendisk *prev_disk = NULL, *template_disk = NULL;
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
template_disk = dd->dm_dev->bdev->bd_disk;
|
|
if (!integrity_profile_exists(template_disk))
|
|
goto no_integrity;
|
|
else if (prev_disk &&
|
|
blk_integrity_compare(prev_disk, template_disk) < 0)
|
|
goto no_integrity;
|
|
prev_disk = template_disk;
|
|
}
|
|
|
|
return template_disk;
|
|
|
|
no_integrity:
|
|
if (prev_disk)
|
|
DMWARN("%s: integrity not set: %s and %s profile mismatch",
|
|
dm_device_name(t->md),
|
|
prev_disk->disk_name,
|
|
template_disk->disk_name);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Register the mapped device for blk_integrity support if the
|
|
* underlying devices have an integrity profile. But all devices may
|
|
* not have matching profiles (checking all devices isn't reliable
|
|
* during table load because this table may use other DM device(s) which
|
|
* must be resumed before they will have an initialized integity
|
|
* profile). Consequently, stacked DM devices force a 2 stage integrity
|
|
* profile validation: First pass during table load, final pass during
|
|
* resume.
|
|
*/
|
|
static int dm_table_register_integrity(struct dm_table *t)
|
|
{
|
|
struct mapped_device *md = t->md;
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (!template_disk)
|
|
return 0;
|
|
|
|
if (!integrity_profile_exists(dm_disk(md))) {
|
|
t->integrity_supported = 1;
|
|
/*
|
|
* Register integrity profile during table load; we can do
|
|
* this because the final profile must match during resume.
|
|
*/
|
|
blk_integrity_register(dm_disk(md),
|
|
blk_get_integrity(template_disk));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If DM device already has an initialized integrity
|
|
* profile the new profile should not conflict.
|
|
*/
|
|
if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
|
|
DMWARN("%s: conflict with existing integrity profile: "
|
|
"%s profile mismatch",
|
|
dm_device_name(t->md),
|
|
template_disk->disk_name);
|
|
return 1;
|
|
}
|
|
|
|
/* Preserve existing integrity profile */
|
|
t->integrity_supported = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepares the table for use by building the indices,
|
|
* setting the type, and allocating mempools.
|
|
*/
|
|
int dm_table_complete(struct dm_table *t)
|
|
{
|
|
int r;
|
|
|
|
r = dm_table_set_type(t);
|
|
if (r) {
|
|
DMERR("unable to set table type");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_build_index(t);
|
|
if (r) {
|
|
DMERR("unable to build btrees");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_register_integrity(t);
|
|
if (r) {
|
|
DMERR("could not register integrity profile.");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_alloc_md_mempools(t, t->md);
|
|
if (r)
|
|
DMERR("unable to allocate mempools");
|
|
|
|
return r;
|
|
}
|
|
|
|
static DEFINE_MUTEX(_event_lock);
|
|
void dm_table_event_callback(struct dm_table *t,
|
|
void (*fn)(void *), void *context)
|
|
{
|
|
mutex_lock(&_event_lock);
|
|
t->event_fn = fn;
|
|
t->event_context = context;
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
|
|
void dm_table_event(struct dm_table *t)
|
|
{
|
|
/*
|
|
* You can no longer call dm_table_event() from interrupt
|
|
* context, use a bottom half instead.
|
|
*/
|
|
BUG_ON(in_interrupt());
|
|
|
|
mutex_lock(&_event_lock);
|
|
if (t->event_fn)
|
|
t->event_fn(t->event_context);
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
EXPORT_SYMBOL(dm_table_event);
|
|
|
|
sector_t dm_table_get_size(struct dm_table *t)
|
|
{
|
|
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_size);
|
|
|
|
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
|
|
{
|
|
if (index >= t->num_targets)
|
|
return NULL;
|
|
|
|
return t->targets + index;
|
|
}
|
|
|
|
/*
|
|
* Search the btree for the correct target.
|
|
*
|
|
* Caller should check returned pointer with dm_target_is_valid()
|
|
* to trap I/O beyond end of device.
|
|
*/
|
|
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
|
|
{
|
|
unsigned int l, n = 0, k = 0;
|
|
sector_t *node;
|
|
|
|
for (l = 0; l < t->depth; l++) {
|
|
n = get_child(n, k);
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0; k < KEYS_PER_NODE; k++)
|
|
if (node[k] >= sector)
|
|
break;
|
|
}
|
|
|
|
return &t->targets[(KEYS_PER_NODE * n) + k];
|
|
}
|
|
|
|
static int count_device(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned *num_devices = data;
|
|
|
|
(*num_devices)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether a table has no data devices attached using each
|
|
* target's iterate_devices method.
|
|
* Returns false if the result is unknown because a target doesn't
|
|
* support iterate_devices.
|
|
*/
|
|
bool dm_table_has_no_data_devices(struct dm_table *table)
|
|
{
|
|
struct dm_target *uninitialized_var(ti);
|
|
unsigned i = 0, num_devices = 0;
|
|
|
|
while (i < dm_table_get_num_targets(table)) {
|
|
ti = dm_table_get_target(table, i++);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
return false;
|
|
|
|
ti->type->iterate_devices(ti, count_device, &num_devices);
|
|
if (num_devices)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Establish the new table's queue_limits and validate them.
|
|
*/
|
|
int dm_calculate_queue_limits(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
struct dm_target *uninitialized_var(ti);
|
|
struct queue_limits ti_limits;
|
|
unsigned i = 0;
|
|
|
|
blk_set_stacking_limits(limits);
|
|
|
|
while (i < dm_table_get_num_targets(table)) {
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
ti = dm_table_get_target(table, i++);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
goto combine_limits;
|
|
|
|
/*
|
|
* Combine queue limits of all the devices this target uses.
|
|
*/
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
/* Set I/O hints portion of queue limits */
|
|
if (ti->type->io_hints)
|
|
ti->type->io_hints(ti, &ti_limits);
|
|
|
|
/*
|
|
* Check each device area is consistent with the target's
|
|
* overall queue limits.
|
|
*/
|
|
if (ti->type->iterate_devices(ti, device_area_is_invalid,
|
|
&ti_limits))
|
|
return -EINVAL;
|
|
|
|
combine_limits:
|
|
/*
|
|
* Merge this target's queue limits into the overall limits
|
|
* for the table.
|
|
*/
|
|
if (blk_stack_limits(limits, &ti_limits, 0) < 0)
|
|
DMWARN("%s: adding target device "
|
|
"(start sect %llu len %llu) "
|
|
"caused an alignment inconsistency",
|
|
dm_device_name(table->md),
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len);
|
|
}
|
|
|
|
return validate_hardware_logical_block_alignment(table, limits);
|
|
}
|
|
|
|
/*
|
|
* Verify that all devices have an integrity profile that matches the
|
|
* DM device's registered integrity profile. If the profiles don't
|
|
* match then unregister the DM device's integrity profile.
|
|
*/
|
|
static void dm_table_verify_integrity(struct dm_table *t)
|
|
{
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
if (t->integrity_supported) {
|
|
/*
|
|
* Verify that the original integrity profile
|
|
* matches all the devices in this table.
|
|
*/
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (template_disk &&
|
|
blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
|
|
return;
|
|
}
|
|
|
|
if (integrity_profile_exists(dm_disk(t->md))) {
|
|
DMWARN("%s: unable to establish an integrity profile",
|
|
dm_device_name(t->md));
|
|
blk_integrity_unregister(dm_disk(t->md));
|
|
}
|
|
}
|
|
|
|
static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned flush = (*(unsigned *)data);
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && (q->flush_flags & flush);
|
|
}
|
|
|
|
static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
/*
|
|
* Require at least one underlying device to support flushes.
|
|
* t->devices includes internal dm devices such as mirror logs
|
|
* so we need to use iterate_devices here, which targets
|
|
* supporting flushes must provide.
|
|
*/
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->num_flush_bios)
|
|
continue;
|
|
|
|
if (ti->flush_supported)
|
|
return true;
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, device_flush_capable, &flush))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool dm_table_discard_zeroes_data(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
/* Ensure that all targets supports discard_zeroes_data. */
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (ti->discard_zeroes_data_unsupported)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && blk_queue_nonrot(q);
|
|
}
|
|
|
|
static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && !blk_queue_add_random(q);
|
|
}
|
|
|
|
static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
|
|
}
|
|
|
|
static bool dm_table_all_devices_attribute(struct dm_table *t,
|
|
iterate_devices_callout_fn func)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
!ti->type->iterate_devices(ti, func, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && !q->limits.max_write_same_sectors;
|
|
}
|
|
|
|
static bool dm_table_supports_write_same(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->num_write_same_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return q && blk_queue_discard(q);
|
|
}
|
|
|
|
static bool dm_table_supports_discards(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
/*
|
|
* Unless any target used by the table set discards_supported,
|
|
* require at least one underlying device to support discards.
|
|
* t->devices includes internal dm devices such as mirror logs
|
|
* so we need to use iterate_devices here, which targets
|
|
* supporting discard selectively must provide.
|
|
*/
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->num_discard_bios)
|
|
continue;
|
|
|
|
if (ti->discards_supported)
|
|
return true;
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, device_discard_capable, NULL))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
|
|
struct queue_limits *limits)
|
|
{
|
|
unsigned flush = 0;
|
|
|
|
/*
|
|
* Copy table's limits to the DM device's request_queue
|
|
*/
|
|
q->limits = *limits;
|
|
|
|
if (!dm_table_supports_discards(t))
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
|
|
else
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
|
|
|
|
if (dm_table_supports_flush(t, REQ_FLUSH)) {
|
|
flush |= REQ_FLUSH;
|
|
if (dm_table_supports_flush(t, REQ_FUA))
|
|
flush |= REQ_FUA;
|
|
}
|
|
blk_queue_flush(q, flush);
|
|
|
|
if (!dm_table_discard_zeroes_data(t))
|
|
q->limits.discard_zeroes_data = 0;
|
|
|
|
/* Ensure that all underlying devices are non-rotational. */
|
|
if (dm_table_all_devices_attribute(t, device_is_nonrot))
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
|
|
else
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
|
|
|
|
if (!dm_table_supports_write_same(t))
|
|
q->limits.max_write_same_sectors = 0;
|
|
|
|
if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
|
|
else
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
|
|
|
|
dm_table_verify_integrity(t);
|
|
|
|
/*
|
|
* Determine whether or not this queue's I/O timings contribute
|
|
* to the entropy pool, Only request-based targets use this.
|
|
* Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
|
|
* have it set.
|
|
*/
|
|
if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
|
|
|
|
/*
|
|
* QUEUE_FLAG_STACKABLE must be set after all queue settings are
|
|
* visible to other CPUs because, once the flag is set, incoming bios
|
|
* are processed by request-based dm, which refers to the queue
|
|
* settings.
|
|
* Until the flag set, bios are passed to bio-based dm and queued to
|
|
* md->deferred where queue settings are not needed yet.
|
|
* Those bios are passed to request-based dm at the resume time.
|
|
*/
|
|
smp_mb();
|
|
if (dm_table_request_based(t))
|
|
queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
|
|
}
|
|
|
|
unsigned int dm_table_get_num_targets(struct dm_table *t)
|
|
{
|
|
return t->num_targets;
|
|
}
|
|
|
|
struct list_head *dm_table_get_devices(struct dm_table *t)
|
|
{
|
|
return &t->devices;
|
|
}
|
|
|
|
fmode_t dm_table_get_mode(struct dm_table *t)
|
|
{
|
|
return t->mode;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_mode);
|
|
|
|
enum suspend_mode {
|
|
PRESUSPEND,
|
|
PRESUSPEND_UNDO,
|
|
POSTSUSPEND,
|
|
};
|
|
|
|
static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
|
|
{
|
|
int i = t->num_targets;
|
|
struct dm_target *ti = t->targets;
|
|
|
|
while (i--) {
|
|
switch (mode) {
|
|
case PRESUSPEND:
|
|
if (ti->type->presuspend)
|
|
ti->type->presuspend(ti);
|
|
break;
|
|
case PRESUSPEND_UNDO:
|
|
if (ti->type->presuspend_undo)
|
|
ti->type->presuspend_undo(ti);
|
|
break;
|
|
case POSTSUSPEND:
|
|
if (ti->type->postsuspend)
|
|
ti->type->postsuspend(ti);
|
|
break;
|
|
}
|
|
ti++;
|
|
}
|
|
}
|
|
|
|
void dm_table_presuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND);
|
|
}
|
|
|
|
void dm_table_presuspend_undo_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND_UNDO);
|
|
}
|
|
|
|
void dm_table_postsuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, POSTSUSPEND);
|
|
}
|
|
|
|
int dm_table_resume_targets(struct dm_table *t)
|
|
{
|
|
int i, r = 0;
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (!ti->type->preresume)
|
|
continue;
|
|
|
|
r = ti->type->preresume(ti);
|
|
if (r) {
|
|
DMERR("%s: %s: preresume failed, error = %d",
|
|
dm_device_name(t->md), ti->type->name, r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (ti->type->resume)
|
|
ti->type->resume(ti);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
|
|
{
|
|
list_add(&cb->list, &t->target_callbacks);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
|
|
|
|
int dm_table_any_congested(struct dm_table *t, int bdi_bits)
|
|
{
|
|
struct dm_dev_internal *dd;
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
struct dm_target_callbacks *cb;
|
|
int r = 0;
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (likely(q))
|
|
r |= bdi_congested(&q->backing_dev_info, bdi_bits);
|
|
else
|
|
DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
|
|
dm_device_name(t->md),
|
|
bdevname(dd->dm_dev->bdev, b));
|
|
}
|
|
|
|
list_for_each_entry(cb, &t->target_callbacks, list)
|
|
if (cb->congested_fn)
|
|
r |= cb->congested_fn(cb, bdi_bits);
|
|
|
|
return r;
|
|
}
|
|
|
|
struct mapped_device *dm_table_get_md(struct dm_table *t)
|
|
{
|
|
return t->md;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_md);
|
|
|
|
void dm_table_run_md_queue_async(struct dm_table *t)
|
|
{
|
|
struct mapped_device *md;
|
|
struct request_queue *queue;
|
|
unsigned long flags;
|
|
|
|
if (!dm_table_request_based(t))
|
|
return;
|
|
|
|
md = dm_table_get_md(t);
|
|
queue = dm_get_md_queue(md);
|
|
if (queue) {
|
|
if (queue->mq_ops)
|
|
blk_mq_run_hw_queues(queue, true);
|
|
else {
|
|
spin_lock_irqsave(queue->queue_lock, flags);
|
|
blk_run_queue_async(queue);
|
|
spin_unlock_irqrestore(queue->queue_lock, flags);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dm_table_run_md_queue_async);
|
|
|