mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 00:24:12 +08:00
b15c87263a
We have received a bug report that an injected MCE about faulty memory prevents memory offline to succeed on 4.4 base kernel. The underlying reason was that the HWPoison page has an elevated reference count and the migration keeps failing. There are two problems with that. First of all it is dubious to migrate the poisoned page because we know that accessing that memory is possible to fail. Secondly it doesn't make any sense to migrate a potentially broken content and preserve the memory corruption over to a new location. Oscar has found out that 4.4 and the current upstream kernels behave slightly differently with his simply testcase === int main(void) { int ret; int i; int fd; char *array = malloc(4096); char *array_locked = malloc(4096); fd = open("/tmp/data", O_RDONLY); read(fd, array, 4095); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked)); if (ret) perror("mlock"); sleep (20); ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON); if (ret) perror("madvise"); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; return 0; } === + offline this memory. In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU list kernel: [<ffffffff81019ac9>] dump_trace+0x59/0x340 kernel: [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170 kernel: [<ffffffff8101ac71>] show_stack+0x21/0x40 kernel: [<ffffffff8132bb90>] dump_stack+0x5c/0x7c kernel: [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0 kernel: [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160 kernel: [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100 kernel: [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0 kernel: [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70 kernel: [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs] kernel: [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200 kernel: [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0 kernel: [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660 kernel: [<ffffffff8120e50d>] __vfs_read+0xcd/0x140 kernel: [<ffffffff8120e9ea>] vfs_read+0x7a/0x120 kernel: [<ffffffff8121404b>] kernel_read+0x3b/0x50 kernel: [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0 kernel: [<ffffffff81215f08>] do_execve+0x28/0x30 kernel: [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130 kernel: [<ffffffff8161c045>] ret_from_fork+0x55/0x80 And that latter confuses the hotremove path because an LRU page is attempted to be migrated and that fails due to an elevated reference count. It is quite possible that the reuse of the HWPoisoned page is some kind of fixed race condition but I am not really sure about that. With the upstream kernel the failure is slightly different. The page doesn't seem to have LRU bit set but isolate_movable_page simply fails and do_migrate_range simply puts all the isolated pages back to LRU and therefore no progress is made and scan_movable_pages finds same set of pages over and over again. Fix both cases by explicitly checking HWPoisoned pages before we even try to get reference on the page, try to unmap it if it is still mapped. As explained by Naoya: : Hwpoison code never unmapped those for no big reason because : Ksm pages never dominate memory, so we simply didn't have strong : motivation to save the pages. Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU HWPoison pages which shouldn't happen but I couldn't convince myself about that. Naoya has noted the following: : Theoretically no such gurantee, because try_to_unmap() doesn't have a : guarantee of success and then memory_failure() returns immediately : when hwpoison_user_mappings fails. : Or the following code (comes after hwpoison_user_mappings block) also impli= : es : that the target page can still have PageLRU flag. : : /* : * Torn down by someone else? : */ : if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) { : action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); : res =3D -EBUSY; : goto out; : } : : So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in : current version of your patch. Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.com> Debugged-by: Oscar Salvador <osalvador@suse.com> Tested-by: Oscar Salvador <osalvador@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1874 lines
48 KiB
C
1874 lines
48 KiB
C
/*
|
|
* linux/mm/memory_hotplug.c
|
|
*
|
|
* Copyright (C)
|
|
*/
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/firmware-map.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/rmap.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* online_page_callback contains pointer to current page onlining function.
|
|
* Initially it is generic_online_page(). If it is required it could be
|
|
* changed by calling set_online_page_callback() for callback registration
|
|
* and restore_online_page_callback() for generic callback restore.
|
|
*/
|
|
|
|
static void generic_online_page(struct page *page);
|
|
|
|
static online_page_callback_t online_page_callback = generic_online_page;
|
|
static DEFINE_MUTEX(online_page_callback_lock);
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
|
|
|
|
void get_online_mems(void)
|
|
{
|
|
percpu_down_read(&mem_hotplug_lock);
|
|
}
|
|
|
|
void put_online_mems(void)
|
|
{
|
|
percpu_up_read(&mem_hotplug_lock);
|
|
}
|
|
|
|
bool movable_node_enabled = false;
|
|
|
|
#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
|
|
bool memhp_auto_online;
|
|
#else
|
|
bool memhp_auto_online = true;
|
|
#endif
|
|
EXPORT_SYMBOL_GPL(memhp_auto_online);
|
|
|
|
static int __init setup_memhp_default_state(char *str)
|
|
{
|
|
if (!strcmp(str, "online"))
|
|
memhp_auto_online = true;
|
|
else if (!strcmp(str, "offline"))
|
|
memhp_auto_online = false;
|
|
|
|
return 1;
|
|
}
|
|
__setup("memhp_default_state=", setup_memhp_default_state);
|
|
|
|
void mem_hotplug_begin(void)
|
|
{
|
|
cpus_read_lock();
|
|
percpu_down_write(&mem_hotplug_lock);
|
|
}
|
|
|
|
void mem_hotplug_done(void)
|
|
{
|
|
percpu_up_write(&mem_hotplug_lock);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
/* add this memory to iomem resource */
|
|
static struct resource *register_memory_resource(u64 start, u64 size)
|
|
{
|
|
struct resource *res, *conflict;
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
if (!res)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
res->name = "System RAM";
|
|
res->start = start;
|
|
res->end = start + size - 1;
|
|
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
|
|
conflict = request_resource_conflict(&iomem_resource, res);
|
|
if (conflict) {
|
|
if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
|
|
pr_debug("Device unaddressable memory block "
|
|
"memory hotplug at %#010llx !\n",
|
|
(unsigned long long)start);
|
|
}
|
|
pr_debug("System RAM resource %pR cannot be added\n", res);
|
|
kfree(res);
|
|
return ERR_PTR(-EEXIST);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void release_memory_resource(struct resource *res)
|
|
{
|
|
if (!res)
|
|
return;
|
|
release_resource(res);
|
|
kfree(res);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
|
|
void get_page_bootmem(unsigned long info, struct page *page,
|
|
unsigned long type)
|
|
{
|
|
page->freelist = (void *)type;
|
|
SetPagePrivate(page);
|
|
set_page_private(page, info);
|
|
page_ref_inc(page);
|
|
}
|
|
|
|
void put_page_bootmem(struct page *page)
|
|
{
|
|
unsigned long type;
|
|
|
|
type = (unsigned long) page->freelist;
|
|
BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
|
|
type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
|
|
|
|
if (page_ref_dec_return(page) == 1) {
|
|
page->freelist = NULL;
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
INIT_LIST_HEAD(&page->lru);
|
|
free_reserved_page(page);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
static void register_page_bootmem_info_section(unsigned long start_pfn)
|
|
{
|
|
unsigned long *usemap, mapsize, section_nr, i;
|
|
struct mem_section *ms;
|
|
struct page *page, *memmap;
|
|
|
|
section_nr = pfn_to_section_nr(start_pfn);
|
|
ms = __nr_to_section(section_nr);
|
|
|
|
/* Get section's memmap address */
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
|
|
|
|
/*
|
|
* Get page for the memmap's phys address
|
|
* XXX: need more consideration for sparse_vmemmap...
|
|
*/
|
|
page = virt_to_page(memmap);
|
|
mapsize = sizeof(struct page) * PAGES_PER_SECTION;
|
|
mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
|
|
|
|
/* remember memmap's page */
|
|
for (i = 0; i < mapsize; i++, page++)
|
|
get_page_bootmem(section_nr, page, SECTION_INFO);
|
|
|
|
usemap = ms->pageblock_flags;
|
|
page = virt_to_page(usemap);
|
|
|
|
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < mapsize; i++, page++)
|
|
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
|
|
|
|
}
|
|
#else /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
static void register_page_bootmem_info_section(unsigned long start_pfn)
|
|
{
|
|
unsigned long *usemap, mapsize, section_nr, i;
|
|
struct mem_section *ms;
|
|
struct page *page, *memmap;
|
|
|
|
section_nr = pfn_to_section_nr(start_pfn);
|
|
ms = __nr_to_section(section_nr);
|
|
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
|
|
|
|
register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
|
|
|
|
usemap = ms->pageblock_flags;
|
|
page = virt_to_page(usemap);
|
|
|
|
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < mapsize; i++, page++)
|
|
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
|
|
{
|
|
unsigned long i, pfn, end_pfn, nr_pages;
|
|
int node = pgdat->node_id;
|
|
struct page *page;
|
|
|
|
nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
|
|
page = virt_to_page(pgdat);
|
|
|
|
for (i = 0; i < nr_pages; i++, page++)
|
|
get_page_bootmem(node, page, NODE_INFO);
|
|
|
|
pfn = pgdat->node_start_pfn;
|
|
end_pfn = pgdat_end_pfn(pgdat);
|
|
|
|
/* register section info */
|
|
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
/*
|
|
* Some platforms can assign the same pfn to multiple nodes - on
|
|
* node0 as well as nodeN. To avoid registering a pfn against
|
|
* multiple nodes we check that this pfn does not already
|
|
* reside in some other nodes.
|
|
*/
|
|
if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
|
|
register_page_bootmem_info_section(pfn);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
|
|
|
|
static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
|
|
struct vmem_altmap *altmap, bool want_memblock)
|
|
{
|
|
int ret;
|
|
|
|
if (pfn_valid(phys_start_pfn))
|
|
return -EEXIST;
|
|
|
|
ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!want_memblock)
|
|
return 0;
|
|
|
|
return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
|
|
}
|
|
|
|
/*
|
|
* Reasonably generic function for adding memory. It is
|
|
* expected that archs that support memory hotplug will
|
|
* call this function after deciding the zone to which to
|
|
* add the new pages.
|
|
*/
|
|
int __ref __add_pages(int nid, unsigned long phys_start_pfn,
|
|
unsigned long nr_pages, struct vmem_altmap *altmap,
|
|
bool want_memblock)
|
|
{
|
|
unsigned long i;
|
|
int err = 0;
|
|
int start_sec, end_sec;
|
|
|
|
/* during initialize mem_map, align hot-added range to section */
|
|
start_sec = pfn_to_section_nr(phys_start_pfn);
|
|
end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
|
|
|
|
if (altmap) {
|
|
/*
|
|
* Validate altmap is within bounds of the total request
|
|
*/
|
|
if (altmap->base_pfn != phys_start_pfn
|
|
|| vmem_altmap_offset(altmap) > nr_pages) {
|
|
pr_warn_once("memory add fail, invalid altmap\n");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
altmap->alloc = 0;
|
|
}
|
|
|
|
for (i = start_sec; i <= end_sec; i++) {
|
|
err = __add_section(nid, section_nr_to_pfn(i), altmap,
|
|
want_memblock);
|
|
|
|
/*
|
|
* EEXIST is finally dealt with by ioresource collision
|
|
* check. see add_memory() => register_memory_resource()
|
|
* Warning will be printed if there is collision.
|
|
*/
|
|
if (err && (err != -EEXIST))
|
|
break;
|
|
err = 0;
|
|
cond_resched();
|
|
}
|
|
vmemmap_populate_print_last();
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
|
|
static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
|
|
unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
struct mem_section *ms;
|
|
|
|
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
|
|
ms = __pfn_to_section(start_pfn);
|
|
|
|
if (unlikely(!valid_section(ms)))
|
|
continue;
|
|
|
|
if (unlikely(pfn_to_nid(start_pfn) != nid))
|
|
continue;
|
|
|
|
if (zone && zone != page_zone(pfn_to_page(start_pfn)))
|
|
continue;
|
|
|
|
return start_pfn;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
|
|
static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
|
|
unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
struct mem_section *ms;
|
|
unsigned long pfn;
|
|
|
|
/* pfn is the end pfn of a memory section. */
|
|
pfn = end_pfn - 1;
|
|
for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
|
|
ms = __pfn_to_section(pfn);
|
|
|
|
if (unlikely(!valid_section(ms)))
|
|
continue;
|
|
|
|
if (unlikely(pfn_to_nid(pfn) != nid))
|
|
continue;
|
|
|
|
if (zone && zone != page_zone(pfn_to_page(pfn)))
|
|
continue;
|
|
|
|
return pfn;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long zone_start_pfn = zone->zone_start_pfn;
|
|
unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
|
|
unsigned long zone_end_pfn = z;
|
|
unsigned long pfn;
|
|
struct mem_section *ms;
|
|
int nid = zone_to_nid(zone);
|
|
|
|
zone_span_writelock(zone);
|
|
if (zone_start_pfn == start_pfn) {
|
|
/*
|
|
* If the section is smallest section in the zone, it need
|
|
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
|
|
* In this case, we find second smallest valid mem_section
|
|
* for shrinking zone.
|
|
*/
|
|
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
|
|
zone_end_pfn);
|
|
if (pfn) {
|
|
zone->zone_start_pfn = pfn;
|
|
zone->spanned_pages = zone_end_pfn - pfn;
|
|
}
|
|
} else if (zone_end_pfn == end_pfn) {
|
|
/*
|
|
* If the section is biggest section in the zone, it need
|
|
* shrink zone->spanned_pages.
|
|
* In this case, we find second biggest valid mem_section for
|
|
* shrinking zone.
|
|
*/
|
|
pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
|
|
start_pfn);
|
|
if (pfn)
|
|
zone->spanned_pages = pfn - zone_start_pfn + 1;
|
|
}
|
|
|
|
/*
|
|
* The section is not biggest or smallest mem_section in the zone, it
|
|
* only creates a hole in the zone. So in this case, we need not
|
|
* change the zone. But perhaps, the zone has only hole data. Thus
|
|
* it check the zone has only hole or not.
|
|
*/
|
|
pfn = zone_start_pfn;
|
|
for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
|
|
ms = __pfn_to_section(pfn);
|
|
|
|
if (unlikely(!valid_section(ms)))
|
|
continue;
|
|
|
|
if (page_zone(pfn_to_page(pfn)) != zone)
|
|
continue;
|
|
|
|
/* If the section is current section, it continues the loop */
|
|
if (start_pfn == pfn)
|
|
continue;
|
|
|
|
/* If we find valid section, we have nothing to do */
|
|
zone_span_writeunlock(zone);
|
|
return;
|
|
}
|
|
|
|
/* The zone has no valid section */
|
|
zone->zone_start_pfn = 0;
|
|
zone->spanned_pages = 0;
|
|
zone_span_writeunlock(zone);
|
|
}
|
|
|
|
static void shrink_pgdat_span(struct pglist_data *pgdat,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
|
|
unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
|
|
unsigned long pgdat_end_pfn = p;
|
|
unsigned long pfn;
|
|
struct mem_section *ms;
|
|
int nid = pgdat->node_id;
|
|
|
|
if (pgdat_start_pfn == start_pfn) {
|
|
/*
|
|
* If the section is smallest section in the pgdat, it need
|
|
* shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
|
|
* In this case, we find second smallest valid mem_section
|
|
* for shrinking zone.
|
|
*/
|
|
pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
|
|
pgdat_end_pfn);
|
|
if (pfn) {
|
|
pgdat->node_start_pfn = pfn;
|
|
pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
|
|
}
|
|
} else if (pgdat_end_pfn == end_pfn) {
|
|
/*
|
|
* If the section is biggest section in the pgdat, it need
|
|
* shrink pgdat->node_spanned_pages.
|
|
* In this case, we find second biggest valid mem_section for
|
|
* shrinking zone.
|
|
*/
|
|
pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
|
|
start_pfn);
|
|
if (pfn)
|
|
pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
|
|
}
|
|
|
|
/*
|
|
* If the section is not biggest or smallest mem_section in the pgdat,
|
|
* it only creates a hole in the pgdat. So in this case, we need not
|
|
* change the pgdat.
|
|
* But perhaps, the pgdat has only hole data. Thus it check the pgdat
|
|
* has only hole or not.
|
|
*/
|
|
pfn = pgdat_start_pfn;
|
|
for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
|
|
ms = __pfn_to_section(pfn);
|
|
|
|
if (unlikely(!valid_section(ms)))
|
|
continue;
|
|
|
|
if (pfn_to_nid(pfn) != nid)
|
|
continue;
|
|
|
|
/* If the section is current section, it continues the loop */
|
|
if (start_pfn == pfn)
|
|
continue;
|
|
|
|
/* If we find valid section, we have nothing to do */
|
|
return;
|
|
}
|
|
|
|
/* The pgdat has no valid section */
|
|
pgdat->node_start_pfn = 0;
|
|
pgdat->node_spanned_pages = 0;
|
|
}
|
|
|
|
static void __remove_zone(struct zone *zone, unsigned long start_pfn)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
int nr_pages = PAGES_PER_SECTION;
|
|
unsigned long flags;
|
|
|
|
pgdat_resize_lock(zone->zone_pgdat, &flags);
|
|
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
|
|
shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
|
|
pgdat_resize_unlock(zone->zone_pgdat, &flags);
|
|
}
|
|
|
|
static int __remove_section(struct zone *zone, struct mem_section *ms,
|
|
unsigned long map_offset, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start_pfn;
|
|
int scn_nr;
|
|
int ret = -EINVAL;
|
|
|
|
if (!valid_section(ms))
|
|
return ret;
|
|
|
|
ret = unregister_memory_section(ms);
|
|
if (ret)
|
|
return ret;
|
|
|
|
scn_nr = __section_nr(ms);
|
|
start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
|
|
__remove_zone(zone, start_pfn);
|
|
|
|
sparse_remove_one_section(zone, ms, map_offset, altmap);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __remove_pages() - remove sections of pages from a zone
|
|
* @zone: zone from which pages need to be removed
|
|
* @phys_start_pfn: starting pageframe (must be aligned to start of a section)
|
|
* @nr_pages: number of pages to remove (must be multiple of section size)
|
|
* @altmap: alternative device page map or %NULL if default memmap is used
|
|
*
|
|
* Generic helper function to remove section mappings and sysfs entries
|
|
* for the section of the memory we are removing. Caller needs to make
|
|
* sure that pages are marked reserved and zones are adjust properly by
|
|
* calling offline_pages().
|
|
*/
|
|
int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
|
|
unsigned long nr_pages, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long i;
|
|
unsigned long map_offset = 0;
|
|
int sections_to_remove, ret = 0;
|
|
|
|
/* In the ZONE_DEVICE case device driver owns the memory region */
|
|
if (is_dev_zone(zone)) {
|
|
if (altmap)
|
|
map_offset = vmem_altmap_offset(altmap);
|
|
} else {
|
|
resource_size_t start, size;
|
|
|
|
start = phys_start_pfn << PAGE_SHIFT;
|
|
size = nr_pages * PAGE_SIZE;
|
|
|
|
ret = release_mem_region_adjustable(&iomem_resource, start,
|
|
size);
|
|
if (ret) {
|
|
resource_size_t endres = start + size - 1;
|
|
|
|
pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
|
|
&start, &endres, ret);
|
|
}
|
|
}
|
|
|
|
clear_zone_contiguous(zone);
|
|
|
|
/*
|
|
* We can only remove entire sections
|
|
*/
|
|
BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
|
|
BUG_ON(nr_pages % PAGES_PER_SECTION);
|
|
|
|
sections_to_remove = nr_pages / PAGES_PER_SECTION;
|
|
for (i = 0; i < sections_to_remove; i++) {
|
|
unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
|
|
|
|
cond_resched();
|
|
ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
|
|
altmap);
|
|
map_offset = 0;
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
set_zone_contiguous(zone);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
int set_online_page_callback(online_page_callback_t callback)
|
|
{
|
|
int rc = -EINVAL;
|
|
|
|
get_online_mems();
|
|
mutex_lock(&online_page_callback_lock);
|
|
|
|
if (online_page_callback == generic_online_page) {
|
|
online_page_callback = callback;
|
|
rc = 0;
|
|
}
|
|
|
|
mutex_unlock(&online_page_callback_lock);
|
|
put_online_mems();
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_online_page_callback);
|
|
|
|
int restore_online_page_callback(online_page_callback_t callback)
|
|
{
|
|
int rc = -EINVAL;
|
|
|
|
get_online_mems();
|
|
mutex_lock(&online_page_callback_lock);
|
|
|
|
if (online_page_callback == callback) {
|
|
online_page_callback = generic_online_page;
|
|
rc = 0;
|
|
}
|
|
|
|
mutex_unlock(&online_page_callback_lock);
|
|
put_online_mems();
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(restore_online_page_callback);
|
|
|
|
void __online_page_set_limits(struct page *page)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL_GPL(__online_page_set_limits);
|
|
|
|
void __online_page_increment_counters(struct page *page)
|
|
{
|
|
adjust_managed_page_count(page, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__online_page_increment_counters);
|
|
|
|
void __online_page_free(struct page *page)
|
|
{
|
|
__free_reserved_page(page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__online_page_free);
|
|
|
|
static void generic_online_page(struct page *page)
|
|
{
|
|
__online_page_set_limits(page);
|
|
__online_page_increment_counters(page);
|
|
__online_page_free(page);
|
|
}
|
|
|
|
static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
|
|
void *arg)
|
|
{
|
|
unsigned long i;
|
|
unsigned long onlined_pages = *(unsigned long *)arg;
|
|
struct page *page;
|
|
|
|
if (PageReserved(pfn_to_page(start_pfn)))
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = pfn_to_page(start_pfn + i);
|
|
(*online_page_callback)(page);
|
|
onlined_pages++;
|
|
}
|
|
|
|
online_mem_sections(start_pfn, start_pfn + nr_pages);
|
|
|
|
*(unsigned long *)arg = onlined_pages;
|
|
return 0;
|
|
}
|
|
|
|
/* check which state of node_states will be changed when online memory */
|
|
static void node_states_check_changes_online(unsigned long nr_pages,
|
|
struct zone *zone, struct memory_notify *arg)
|
|
{
|
|
int nid = zone_to_nid(zone);
|
|
|
|
arg->status_change_nid = -1;
|
|
arg->status_change_nid_normal = -1;
|
|
arg->status_change_nid_high = -1;
|
|
|
|
if (!node_state(nid, N_MEMORY))
|
|
arg->status_change_nid = nid;
|
|
if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
|
|
arg->status_change_nid_normal = nid;
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
|
|
arg->status_change_nid_high = nid;
|
|
#endif
|
|
}
|
|
|
|
static void node_states_set_node(int node, struct memory_notify *arg)
|
|
{
|
|
if (arg->status_change_nid_normal >= 0)
|
|
node_set_state(node, N_NORMAL_MEMORY);
|
|
|
|
if (arg->status_change_nid_high >= 0)
|
|
node_set_state(node, N_HIGH_MEMORY);
|
|
|
|
if (arg->status_change_nid >= 0)
|
|
node_set_state(node, N_MEMORY);
|
|
}
|
|
|
|
static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
unsigned long old_end_pfn = zone_end_pfn(zone);
|
|
|
|
if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
|
|
zone->zone_start_pfn = start_pfn;
|
|
|
|
zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
|
|
}
|
|
|
|
static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
|
|
|
|
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
|
|
pgdat->node_start_pfn = start_pfn;
|
|
|
|
pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
|
|
}
|
|
|
|
void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
|
|
unsigned long nr_pages, struct vmem_altmap *altmap)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
int nid = pgdat->node_id;
|
|
unsigned long flags;
|
|
|
|
clear_zone_contiguous(zone);
|
|
|
|
/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
zone_span_writelock(zone);
|
|
if (zone_is_empty(zone))
|
|
init_currently_empty_zone(zone, start_pfn, nr_pages);
|
|
resize_zone_range(zone, start_pfn, nr_pages);
|
|
zone_span_writeunlock(zone);
|
|
resize_pgdat_range(pgdat, start_pfn, nr_pages);
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
|
|
/*
|
|
* TODO now we have a visible range of pages which are not associated
|
|
* with their zone properly. Not nice but set_pfnblock_flags_mask
|
|
* expects the zone spans the pfn range. All the pages in the range
|
|
* are reserved so nobody should be touching them so we should be safe
|
|
*/
|
|
memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
|
|
MEMMAP_HOTPLUG, altmap);
|
|
|
|
set_zone_contiguous(zone);
|
|
}
|
|
|
|
/*
|
|
* Returns a default kernel memory zone for the given pfn range.
|
|
* If no kernel zone covers this pfn range it will automatically go
|
|
* to the ZONE_NORMAL.
|
|
*/
|
|
static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
int zid;
|
|
|
|
for (zid = 0; zid <= ZONE_NORMAL; zid++) {
|
|
struct zone *zone = &pgdat->node_zones[zid];
|
|
|
|
if (zone_intersects(zone, start_pfn, nr_pages))
|
|
return zone;
|
|
}
|
|
|
|
return &pgdat->node_zones[ZONE_NORMAL];
|
|
}
|
|
|
|
static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
|
|
nr_pages);
|
|
struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
|
|
bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
|
|
bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
|
|
|
|
/*
|
|
* We inherit the existing zone in a simple case where zones do not
|
|
* overlap in the given range
|
|
*/
|
|
if (in_kernel ^ in_movable)
|
|
return (in_kernel) ? kernel_zone : movable_zone;
|
|
|
|
/*
|
|
* If the range doesn't belong to any zone or two zones overlap in the
|
|
* given range then we use movable zone only if movable_node is
|
|
* enabled because we always online to a kernel zone by default.
|
|
*/
|
|
return movable_node_enabled ? movable_zone : kernel_zone;
|
|
}
|
|
|
|
struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
if (online_type == MMOP_ONLINE_KERNEL)
|
|
return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
|
|
|
|
if (online_type == MMOP_ONLINE_MOVABLE)
|
|
return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
|
|
|
|
return default_zone_for_pfn(nid, start_pfn, nr_pages);
|
|
}
|
|
|
|
/*
|
|
* Associates the given pfn range with the given node and the zone appropriate
|
|
* for the given online type.
|
|
*/
|
|
static struct zone * __meminit move_pfn_range(int online_type, int nid,
|
|
unsigned long start_pfn, unsigned long nr_pages)
|
|
{
|
|
struct zone *zone;
|
|
|
|
zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
|
|
move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
|
|
return zone;
|
|
}
|
|
|
|
int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long onlined_pages = 0;
|
|
struct zone *zone;
|
|
int need_zonelists_rebuild = 0;
|
|
int nid;
|
|
int ret;
|
|
struct memory_notify arg;
|
|
struct memory_block *mem;
|
|
|
|
mem_hotplug_begin();
|
|
|
|
/*
|
|
* We can't use pfn_to_nid() because nid might be stored in struct page
|
|
* which is not yet initialized. Instead, we find nid from memory block.
|
|
*/
|
|
mem = find_memory_block(__pfn_to_section(pfn));
|
|
nid = mem->nid;
|
|
|
|
/* associate pfn range with the zone */
|
|
zone = move_pfn_range(online_type, nid, pfn, nr_pages);
|
|
|
|
arg.start_pfn = pfn;
|
|
arg.nr_pages = nr_pages;
|
|
node_states_check_changes_online(nr_pages, zone, &arg);
|
|
|
|
ret = memory_notify(MEM_GOING_ONLINE, &arg);
|
|
ret = notifier_to_errno(ret);
|
|
if (ret)
|
|
goto failed_addition;
|
|
|
|
/*
|
|
* If this zone is not populated, then it is not in zonelist.
|
|
* This means the page allocator ignores this zone.
|
|
* So, zonelist must be updated after online.
|
|
*/
|
|
if (!populated_zone(zone)) {
|
|
need_zonelists_rebuild = 1;
|
|
setup_zone_pageset(zone);
|
|
}
|
|
|
|
ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
|
|
online_pages_range);
|
|
if (ret) {
|
|
if (need_zonelists_rebuild)
|
|
zone_pcp_reset(zone);
|
|
goto failed_addition;
|
|
}
|
|
|
|
zone->present_pages += onlined_pages;
|
|
|
|
pgdat_resize_lock(zone->zone_pgdat, &flags);
|
|
zone->zone_pgdat->node_present_pages += onlined_pages;
|
|
pgdat_resize_unlock(zone->zone_pgdat, &flags);
|
|
|
|
if (onlined_pages) {
|
|
node_states_set_node(nid, &arg);
|
|
if (need_zonelists_rebuild)
|
|
build_all_zonelists(NULL);
|
|
else
|
|
zone_pcp_update(zone);
|
|
}
|
|
|
|
init_per_zone_wmark_min();
|
|
|
|
if (onlined_pages) {
|
|
kswapd_run(nid);
|
|
kcompactd_run(nid);
|
|
}
|
|
|
|
vm_total_pages = nr_free_pagecache_pages();
|
|
|
|
writeback_set_ratelimit();
|
|
|
|
if (onlined_pages)
|
|
memory_notify(MEM_ONLINE, &arg);
|
|
mem_hotplug_done();
|
|
return 0;
|
|
|
|
failed_addition:
|
|
pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
|
|
(unsigned long long) pfn << PAGE_SHIFT,
|
|
(((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
|
|
memory_notify(MEM_CANCEL_ONLINE, &arg);
|
|
mem_hotplug_done();
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
|
|
|
|
static void reset_node_present_pages(pg_data_t *pgdat)
|
|
{
|
|
struct zone *z;
|
|
|
|
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
|
|
z->present_pages = 0;
|
|
|
|
pgdat->node_present_pages = 0;
|
|
}
|
|
|
|
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
|
|
static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
unsigned long start_pfn = PFN_DOWN(start);
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
if (!pgdat) {
|
|
pgdat = arch_alloc_nodedata(nid);
|
|
if (!pgdat)
|
|
return NULL;
|
|
|
|
arch_refresh_nodedata(nid, pgdat);
|
|
} else {
|
|
/*
|
|
* Reset the nr_zones, order and classzone_idx before reuse.
|
|
* Note that kswapd will init kswapd_classzone_idx properly
|
|
* when it starts in the near future.
|
|
*/
|
|
pgdat->nr_zones = 0;
|
|
pgdat->kswapd_order = 0;
|
|
pgdat->kswapd_classzone_idx = 0;
|
|
}
|
|
|
|
/* we can use NODE_DATA(nid) from here */
|
|
|
|
pgdat->node_id = nid;
|
|
pgdat->node_start_pfn = start_pfn;
|
|
|
|
/* init node's zones as empty zones, we don't have any present pages.*/
|
|
free_area_init_core_hotplug(nid);
|
|
pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
|
|
|
|
/*
|
|
* The node we allocated has no zone fallback lists. For avoiding
|
|
* to access not-initialized zonelist, build here.
|
|
*/
|
|
build_all_zonelists(pgdat);
|
|
|
|
/*
|
|
* When memory is hot-added, all the memory is in offline state. So
|
|
* clear all zones' present_pages because they will be updated in
|
|
* online_pages() and offline_pages().
|
|
*/
|
|
reset_node_managed_pages(pgdat);
|
|
reset_node_present_pages(pgdat);
|
|
|
|
return pgdat;
|
|
}
|
|
|
|
static void rollback_node_hotadd(int nid)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
|
|
arch_refresh_nodedata(nid, NULL);
|
|
free_percpu(pgdat->per_cpu_nodestats);
|
|
arch_free_nodedata(pgdat);
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* try_online_node - online a node if offlined
|
|
* @nid: the node ID
|
|
* @start: start addr of the node
|
|
* @set_node_online: Whether we want to online the node
|
|
* called by cpu_up() to online a node without onlined memory.
|
|
*
|
|
* Returns:
|
|
* 1 -> a new node has been allocated
|
|
* 0 -> the node is already online
|
|
* -ENOMEM -> the node could not be allocated
|
|
*/
|
|
static int __try_online_node(int nid, u64 start, bool set_node_online)
|
|
{
|
|
pg_data_t *pgdat;
|
|
int ret = 1;
|
|
|
|
if (node_online(nid))
|
|
return 0;
|
|
|
|
pgdat = hotadd_new_pgdat(nid, start);
|
|
if (!pgdat) {
|
|
pr_err("Cannot online node %d due to NULL pgdat\n", nid);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (set_node_online) {
|
|
node_set_online(nid);
|
|
ret = register_one_node(nid);
|
|
BUG_ON(ret);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Users of this function always want to online/register the node
|
|
*/
|
|
int try_online_node(int nid)
|
|
{
|
|
int ret;
|
|
|
|
mem_hotplug_begin();
|
|
ret = __try_online_node(nid, 0, true);
|
|
mem_hotplug_done();
|
|
return ret;
|
|
}
|
|
|
|
static int check_hotplug_memory_range(u64 start, u64 size)
|
|
{
|
|
unsigned long block_sz = memory_block_size_bytes();
|
|
u64 block_nr_pages = block_sz >> PAGE_SHIFT;
|
|
u64 nr_pages = size >> PAGE_SHIFT;
|
|
u64 start_pfn = PFN_DOWN(start);
|
|
|
|
/* memory range must be block size aligned */
|
|
if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
|
|
!IS_ALIGNED(nr_pages, block_nr_pages)) {
|
|
pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
|
|
block_sz, start, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int online_memory_block(struct memory_block *mem, void *arg)
|
|
{
|
|
return device_online(&mem->dev);
|
|
}
|
|
|
|
/*
|
|
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
|
|
* and online/offline operations (triggered e.g. by sysfs).
|
|
*
|
|
* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
|
|
*/
|
|
int __ref add_memory_resource(int nid, struct resource *res)
|
|
{
|
|
u64 start, size;
|
|
bool new_node = false;
|
|
int ret;
|
|
|
|
start = res->start;
|
|
size = resource_size(res);
|
|
|
|
ret = check_hotplug_memory_range(start, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mem_hotplug_begin();
|
|
|
|
/*
|
|
* Add new range to memblock so that when hotadd_new_pgdat() is called
|
|
* to allocate new pgdat, get_pfn_range_for_nid() will be able to find
|
|
* this new range and calculate total pages correctly. The range will
|
|
* be removed at hot-remove time.
|
|
*/
|
|
memblock_add_node(start, size, nid);
|
|
|
|
ret = __try_online_node(nid, start, false);
|
|
if (ret < 0)
|
|
goto error;
|
|
new_node = ret;
|
|
|
|
/* call arch's memory hotadd */
|
|
ret = arch_add_memory(nid, start, size, NULL, true);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
if (new_node) {
|
|
/* If sysfs file of new node can't be created, cpu on the node
|
|
* can't be hot-added. There is no rollback way now.
|
|
* So, check by BUG_ON() to catch it reluctantly..
|
|
* We online node here. We can't roll back from here.
|
|
*/
|
|
node_set_online(nid);
|
|
ret = __register_one_node(nid);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/* link memory sections under this node.*/
|
|
ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
|
|
BUG_ON(ret);
|
|
|
|
/* create new memmap entry */
|
|
firmware_map_add_hotplug(start, start + size, "System RAM");
|
|
|
|
/* device_online() will take the lock when calling online_pages() */
|
|
mem_hotplug_done();
|
|
|
|
/* online pages if requested */
|
|
if (memhp_auto_online)
|
|
walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
|
|
NULL, online_memory_block);
|
|
|
|
return ret;
|
|
error:
|
|
/* rollback pgdat allocation and others */
|
|
if (new_node)
|
|
rollback_node_hotadd(nid);
|
|
memblock_remove(start, size);
|
|
mem_hotplug_done();
|
|
return ret;
|
|
}
|
|
|
|
/* requires device_hotplug_lock, see add_memory_resource() */
|
|
int __ref __add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
struct resource *res;
|
|
int ret;
|
|
|
|
res = register_memory_resource(start, size);
|
|
if (IS_ERR(res))
|
|
return PTR_ERR(res);
|
|
|
|
ret = add_memory_resource(nid, res);
|
|
if (ret < 0)
|
|
release_memory_resource(res);
|
|
return ret;
|
|
}
|
|
|
|
int add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
int rc;
|
|
|
|
lock_device_hotplug();
|
|
rc = __add_memory(nid, start, size);
|
|
unlock_device_hotplug();
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_memory);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
/*
|
|
* A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
|
|
* set and the size of the free page is given by page_order(). Using this,
|
|
* the function determines if the pageblock contains only free pages.
|
|
* Due to buddy contraints, a free page at least the size of a pageblock will
|
|
* be located at the start of the pageblock
|
|
*/
|
|
static inline int pageblock_free(struct page *page)
|
|
{
|
|
return PageBuddy(page) && page_order(page) >= pageblock_order;
|
|
}
|
|
|
|
/* Return the start of the next active pageblock after a given page */
|
|
static struct page *next_active_pageblock(struct page *page)
|
|
{
|
|
/* Ensure the starting page is pageblock-aligned */
|
|
BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
|
|
|
|
/* If the entire pageblock is free, move to the end of free page */
|
|
if (pageblock_free(page)) {
|
|
int order;
|
|
/* be careful. we don't have locks, page_order can be changed.*/
|
|
order = page_order(page);
|
|
if ((order < MAX_ORDER) && (order >= pageblock_order))
|
|
return page + (1 << order);
|
|
}
|
|
|
|
return page + pageblock_nr_pages;
|
|
}
|
|
|
|
static bool is_pageblock_removable_nolock(struct page *page)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long pfn;
|
|
|
|
/*
|
|
* We have to be careful here because we are iterating over memory
|
|
* sections which are not zone aware so we might end up outside of
|
|
* the zone but still within the section.
|
|
* We have to take care about the node as well. If the node is offline
|
|
* its NODE_DATA will be NULL - see page_zone.
|
|
*/
|
|
if (!node_online(page_to_nid(page)))
|
|
return false;
|
|
|
|
zone = page_zone(page);
|
|
pfn = page_to_pfn(page);
|
|
if (!zone_spans_pfn(zone, pfn))
|
|
return false;
|
|
|
|
return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
|
|
}
|
|
|
|
/* Checks if this range of memory is likely to be hot-removable. */
|
|
bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
|
|
{
|
|
struct page *page = pfn_to_page(start_pfn);
|
|
struct page *end_page = page + nr_pages;
|
|
|
|
/* Check the starting page of each pageblock within the range */
|
|
for (; page < end_page; page = next_active_pageblock(page)) {
|
|
if (!is_pageblock_removable_nolock(page))
|
|
return false;
|
|
cond_resched();
|
|
}
|
|
|
|
/* All pageblocks in the memory block are likely to be hot-removable */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Confirm all pages in a range [start, end) belong to the same zone.
|
|
* When true, return its valid [start, end).
|
|
*/
|
|
int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
|
|
unsigned long *valid_start, unsigned long *valid_end)
|
|
{
|
|
unsigned long pfn, sec_end_pfn;
|
|
unsigned long start, end;
|
|
struct zone *zone = NULL;
|
|
struct page *page;
|
|
int i;
|
|
for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
|
|
pfn < end_pfn;
|
|
pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
|
|
/* Make sure the memory section is present first */
|
|
if (!present_section_nr(pfn_to_section_nr(pfn)))
|
|
continue;
|
|
for (; pfn < sec_end_pfn && pfn < end_pfn;
|
|
pfn += MAX_ORDER_NR_PAGES) {
|
|
i = 0;
|
|
/* This is just a CONFIG_HOLES_IN_ZONE check.*/
|
|
while ((i < MAX_ORDER_NR_PAGES) &&
|
|
!pfn_valid_within(pfn + i))
|
|
i++;
|
|
if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
|
|
continue;
|
|
page = pfn_to_page(pfn + i);
|
|
if (zone && page_zone(page) != zone)
|
|
return 0;
|
|
if (!zone)
|
|
start = pfn + i;
|
|
zone = page_zone(page);
|
|
end = pfn + MAX_ORDER_NR_PAGES;
|
|
}
|
|
}
|
|
|
|
if (zone) {
|
|
*valid_start = start;
|
|
*valid_end = min(end, end_pfn);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
|
|
* non-lru movable pages and hugepages). We scan pfn because it's much
|
|
* easier than scanning over linked list. This function returns the pfn
|
|
* of the first found movable page if it's found, otherwise 0.
|
|
*/
|
|
static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
for (pfn = start; pfn < end; pfn++) {
|
|
if (pfn_valid(pfn)) {
|
|
page = pfn_to_page(pfn);
|
|
if (PageLRU(page))
|
|
return pfn;
|
|
if (__PageMovable(page))
|
|
return pfn;
|
|
if (PageHuge(page)) {
|
|
if (hugepage_migration_supported(page_hstate(page)) &&
|
|
page_huge_active(page))
|
|
return pfn;
|
|
else
|
|
pfn = round_up(pfn + 1,
|
|
1 << compound_order(page)) - 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct page *new_node_page(struct page *page, unsigned long private)
|
|
{
|
|
int nid = page_to_nid(page);
|
|
nodemask_t nmask = node_states[N_MEMORY];
|
|
|
|
/*
|
|
* try to allocate from a different node but reuse this node if there
|
|
* are no other online nodes to be used (e.g. we are offlining a part
|
|
* of the only existing node)
|
|
*/
|
|
node_clear(nid, nmask);
|
|
if (nodes_empty(nmask))
|
|
node_set(nid, nmask);
|
|
|
|
return new_page_nodemask(page, nid, &nmask);
|
|
}
|
|
|
|
#define NR_OFFLINE_AT_ONCE_PAGES (256)
|
|
static int
|
|
do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
|
|
int not_managed = 0;
|
|
int ret = 0;
|
|
LIST_HEAD(source);
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
page = pfn_to_page(pfn);
|
|
|
|
if (PageHuge(page)) {
|
|
struct page *head = compound_head(page);
|
|
pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
|
|
if (compound_order(head) > PFN_SECTION_SHIFT) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
if (isolate_huge_page(page, &source))
|
|
move_pages -= 1 << compound_order(head);
|
|
continue;
|
|
} else if (PageTransHuge(page))
|
|
pfn = page_to_pfn(compound_head(page))
|
|
+ hpage_nr_pages(page) - 1;
|
|
|
|
/*
|
|
* HWPoison pages have elevated reference counts so the migration would
|
|
* fail on them. It also doesn't make any sense to migrate them in the
|
|
* first place. Still try to unmap such a page in case it is still mapped
|
|
* (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
|
|
* the unmap as the catch all safety net).
|
|
*/
|
|
if (PageHWPoison(page)) {
|
|
if (WARN_ON(PageLRU(page)))
|
|
isolate_lru_page(page);
|
|
if (page_mapped(page))
|
|
try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
|
|
continue;
|
|
}
|
|
|
|
if (!get_page_unless_zero(page))
|
|
continue;
|
|
/*
|
|
* We can skip free pages. And we can deal with pages on
|
|
* LRU and non-lru movable pages.
|
|
*/
|
|
if (PageLRU(page))
|
|
ret = isolate_lru_page(page);
|
|
else
|
|
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
|
|
if (!ret) { /* Success */
|
|
put_page(page);
|
|
list_add_tail(&page->lru, &source);
|
|
move_pages--;
|
|
if (!__PageMovable(page))
|
|
inc_node_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
|
|
} else {
|
|
pr_warn("failed to isolate pfn %lx\n", pfn);
|
|
dump_page(page, "isolation failed");
|
|
put_page(page);
|
|
/* Because we don't have big zone->lock. we should
|
|
check this again here. */
|
|
if (page_count(page)) {
|
|
not_managed++;
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!list_empty(&source)) {
|
|
if (not_managed) {
|
|
putback_movable_pages(&source);
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate a new page from the nearest neighbor node */
|
|
ret = migrate_pages(&source, new_node_page, NULL, 0,
|
|
MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
|
|
if (ret) {
|
|
list_for_each_entry(page, &source, lru) {
|
|
pr_warn("migrating pfn %lx failed ret:%d ",
|
|
page_to_pfn(page), ret);
|
|
dump_page(page, "migration failure");
|
|
}
|
|
putback_movable_pages(&source);
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* remove from free_area[] and mark all as Reserved.
|
|
*/
|
|
static int
|
|
offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
|
|
void *data)
|
|
{
|
|
__offline_isolated_pages(start, start + nr_pages);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
|
|
offline_isolated_pages_cb);
|
|
}
|
|
|
|
/*
|
|
* Check all pages in range, recoreded as memory resource, are isolated.
|
|
*/
|
|
static int
|
|
check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
|
|
void *data)
|
|
{
|
|
int ret;
|
|
long offlined = *(long *)data;
|
|
ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
|
|
offlined = nr_pages;
|
|
if (!ret)
|
|
*(long *)data += offlined;
|
|
return ret;
|
|
}
|
|
|
|
static long
|
|
check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
long offlined = 0;
|
|
int ret;
|
|
|
|
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
|
|
check_pages_isolated_cb);
|
|
if (ret < 0)
|
|
offlined = (long)ret;
|
|
return offlined;
|
|
}
|
|
|
|
static int __init cmdline_parse_movable_node(char *p)
|
|
{
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
movable_node_enabled = true;
|
|
#else
|
|
pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
early_param("movable_node", cmdline_parse_movable_node);
|
|
|
|
/* check which state of node_states will be changed when offline memory */
|
|
static void node_states_check_changes_offline(unsigned long nr_pages,
|
|
struct zone *zone, struct memory_notify *arg)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
unsigned long present_pages = 0;
|
|
enum zone_type zt;
|
|
|
|
arg->status_change_nid = -1;
|
|
arg->status_change_nid_normal = -1;
|
|
arg->status_change_nid_high = -1;
|
|
|
|
/*
|
|
* Check whether node_states[N_NORMAL_MEMORY] will be changed.
|
|
* If the memory to be offline is within the range
|
|
* [0..ZONE_NORMAL], and it is the last present memory there,
|
|
* the zones in that range will become empty after the offlining,
|
|
* thus we can determine that we need to clear the node from
|
|
* node_states[N_NORMAL_MEMORY].
|
|
*/
|
|
for (zt = 0; zt <= ZONE_NORMAL; zt++)
|
|
present_pages += pgdat->node_zones[zt].present_pages;
|
|
if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
|
|
arg->status_change_nid_normal = zone_to_nid(zone);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* node_states[N_HIGH_MEMORY] contains nodes which
|
|
* have normal memory or high memory.
|
|
* Here we add the present_pages belonging to ZONE_HIGHMEM.
|
|
* If the zone is within the range of [0..ZONE_HIGHMEM), and
|
|
* we determine that the zones in that range become empty,
|
|
* we need to clear the node for N_HIGH_MEMORY.
|
|
*/
|
|
present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
|
|
if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
|
|
arg->status_change_nid_high = zone_to_nid(zone);
|
|
#endif
|
|
|
|
/*
|
|
* We have accounted the pages from [0..ZONE_NORMAL), and
|
|
* in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
|
|
* as well.
|
|
* Here we count the possible pages from ZONE_MOVABLE.
|
|
* If after having accounted all the pages, we see that the nr_pages
|
|
* to be offlined is over or equal to the accounted pages,
|
|
* we know that the node will become empty, and so, we can clear
|
|
* it for N_MEMORY as well.
|
|
*/
|
|
present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
|
|
|
|
if (nr_pages >= present_pages)
|
|
arg->status_change_nid = zone_to_nid(zone);
|
|
}
|
|
|
|
static void node_states_clear_node(int node, struct memory_notify *arg)
|
|
{
|
|
if (arg->status_change_nid_normal >= 0)
|
|
node_clear_state(node, N_NORMAL_MEMORY);
|
|
|
|
if (arg->status_change_nid_high >= 0)
|
|
node_clear_state(node, N_HIGH_MEMORY);
|
|
|
|
if (arg->status_change_nid >= 0)
|
|
node_clear_state(node, N_MEMORY);
|
|
}
|
|
|
|
static int __ref __offline_pages(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn, nr_pages;
|
|
long offlined_pages;
|
|
int ret, node;
|
|
unsigned long flags;
|
|
unsigned long valid_start, valid_end;
|
|
struct zone *zone;
|
|
struct memory_notify arg;
|
|
char *reason;
|
|
|
|
mem_hotplug_begin();
|
|
|
|
/* This makes hotplug much easier...and readable.
|
|
we assume this for now. .*/
|
|
if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
|
|
&valid_end)) {
|
|
mem_hotplug_done();
|
|
ret = -EINVAL;
|
|
reason = "multizone range";
|
|
goto failed_removal;
|
|
}
|
|
|
|
zone = page_zone(pfn_to_page(valid_start));
|
|
node = zone_to_nid(zone);
|
|
nr_pages = end_pfn - start_pfn;
|
|
|
|
/* set above range as isolated */
|
|
ret = start_isolate_page_range(start_pfn, end_pfn,
|
|
MIGRATE_MOVABLE,
|
|
SKIP_HWPOISON | REPORT_FAILURE);
|
|
if (ret) {
|
|
mem_hotplug_done();
|
|
reason = "failure to isolate range";
|
|
goto failed_removal;
|
|
}
|
|
|
|
arg.start_pfn = start_pfn;
|
|
arg.nr_pages = nr_pages;
|
|
node_states_check_changes_offline(nr_pages, zone, &arg);
|
|
|
|
ret = memory_notify(MEM_GOING_OFFLINE, &arg);
|
|
ret = notifier_to_errno(ret);
|
|
if (ret) {
|
|
reason = "notifier failure";
|
|
goto failed_removal_isolated;
|
|
}
|
|
|
|
pfn = start_pfn;
|
|
repeat:
|
|
/* start memory hot removal */
|
|
ret = -EINTR;
|
|
if (signal_pending(current)) {
|
|
reason = "signal backoff";
|
|
goto failed_removal_isolated;
|
|
}
|
|
|
|
cond_resched();
|
|
lru_add_drain_all();
|
|
drain_all_pages(zone);
|
|
|
|
pfn = scan_movable_pages(start_pfn, end_pfn);
|
|
if (pfn) { /* We have movable pages */
|
|
ret = do_migrate_range(pfn, end_pfn);
|
|
goto repeat;
|
|
}
|
|
|
|
/*
|
|
* dissolve free hugepages in the memory block before doing offlining
|
|
* actually in order to make hugetlbfs's object counting consistent.
|
|
*/
|
|
ret = dissolve_free_huge_pages(start_pfn, end_pfn);
|
|
if (ret) {
|
|
reason = "failure to dissolve huge pages";
|
|
goto failed_removal_isolated;
|
|
}
|
|
/* check again */
|
|
offlined_pages = check_pages_isolated(start_pfn, end_pfn);
|
|
if (offlined_pages < 0)
|
|
goto repeat;
|
|
pr_info("Offlined Pages %ld\n", offlined_pages);
|
|
/* Ok, all of our target is isolated.
|
|
We cannot do rollback at this point. */
|
|
offline_isolated_pages(start_pfn, end_pfn);
|
|
/* reset pagetype flags and makes migrate type to be MOVABLE */
|
|
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
|
|
/* removal success */
|
|
adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
|
|
zone->present_pages -= offlined_pages;
|
|
|
|
pgdat_resize_lock(zone->zone_pgdat, &flags);
|
|
zone->zone_pgdat->node_present_pages -= offlined_pages;
|
|
pgdat_resize_unlock(zone->zone_pgdat, &flags);
|
|
|
|
init_per_zone_wmark_min();
|
|
|
|
if (!populated_zone(zone)) {
|
|
zone_pcp_reset(zone);
|
|
build_all_zonelists(NULL);
|
|
} else
|
|
zone_pcp_update(zone);
|
|
|
|
node_states_clear_node(node, &arg);
|
|
if (arg.status_change_nid >= 0) {
|
|
kswapd_stop(node);
|
|
kcompactd_stop(node);
|
|
}
|
|
|
|
vm_total_pages = nr_free_pagecache_pages();
|
|
writeback_set_ratelimit();
|
|
|
|
memory_notify(MEM_OFFLINE, &arg);
|
|
mem_hotplug_done();
|
|
return 0;
|
|
|
|
failed_removal_isolated:
|
|
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
|
|
failed_removal:
|
|
pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
|
|
(unsigned long long) start_pfn << PAGE_SHIFT,
|
|
((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
|
|
reason);
|
|
memory_notify(MEM_CANCEL_OFFLINE, &arg);
|
|
/* pushback to free area */
|
|
mem_hotplug_done();
|
|
return ret;
|
|
}
|
|
|
|
int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
|
|
{
|
|
return __offline_pages(start_pfn, start_pfn + nr_pages);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
/**
|
|
* walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
|
|
* @start_pfn: start pfn of the memory range
|
|
* @end_pfn: end pfn of the memory range
|
|
* @arg: argument passed to func
|
|
* @func: callback for each memory section walked
|
|
*
|
|
* This function walks through all present mem sections in range
|
|
* [start_pfn, end_pfn) and call func on each mem section.
|
|
*
|
|
* Returns the return value of func.
|
|
*/
|
|
int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
|
|
void *arg, int (*func)(struct memory_block *, void *))
|
|
{
|
|
struct memory_block *mem = NULL;
|
|
struct mem_section *section;
|
|
unsigned long pfn, section_nr;
|
|
int ret;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
section_nr = pfn_to_section_nr(pfn);
|
|
if (!present_section_nr(section_nr))
|
|
continue;
|
|
|
|
section = __nr_to_section(section_nr);
|
|
/* same memblock? */
|
|
if (mem)
|
|
if ((section_nr >= mem->start_section_nr) &&
|
|
(section_nr <= mem->end_section_nr))
|
|
continue;
|
|
|
|
mem = find_memory_block_hinted(section, mem);
|
|
if (!mem)
|
|
continue;
|
|
|
|
ret = func(mem, arg);
|
|
if (ret) {
|
|
kobject_put(&mem->dev.kobj);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (mem)
|
|
kobject_put(&mem->dev.kobj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
|
|
{
|
|
int ret = !is_memblock_offlined(mem);
|
|
|
|
if (unlikely(ret)) {
|
|
phys_addr_t beginpa, endpa;
|
|
|
|
beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
|
|
endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
|
|
pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
|
|
&beginpa, &endpa);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int check_cpu_on_node(pg_data_t *pgdat)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (cpu_to_node(cpu) == pgdat->node_id)
|
|
/*
|
|
* the cpu on this node isn't removed, and we can't
|
|
* offline this node.
|
|
*/
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* try_offline_node
|
|
* @nid: the node ID
|
|
*
|
|
* Offline a node if all memory sections and cpus of the node are removed.
|
|
*
|
|
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
|
|
* and online/offline operations before this call.
|
|
*/
|
|
void try_offline_node(int nid)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
unsigned long start_pfn = pgdat->node_start_pfn;
|
|
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section_nr = pfn_to_section_nr(pfn);
|
|
|
|
if (!present_section_nr(section_nr))
|
|
continue;
|
|
|
|
if (pfn_to_nid(pfn) != nid)
|
|
continue;
|
|
|
|
/*
|
|
* some memory sections of this node are not removed, and we
|
|
* can't offline node now.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (check_cpu_on_node(pgdat))
|
|
return;
|
|
|
|
/*
|
|
* all memory/cpu of this node are removed, we can offline this
|
|
* node now.
|
|
*/
|
|
node_set_offline(nid);
|
|
unregister_one_node(nid);
|
|
}
|
|
EXPORT_SYMBOL(try_offline_node);
|
|
|
|
/**
|
|
* remove_memory
|
|
* @nid: the node ID
|
|
* @start: physical address of the region to remove
|
|
* @size: size of the region to remove
|
|
*
|
|
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
|
|
* and online/offline operations before this call, as required by
|
|
* try_offline_node().
|
|
*/
|
|
void __ref __remove_memory(int nid, u64 start, u64 size)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(check_hotplug_memory_range(start, size));
|
|
|
|
mem_hotplug_begin();
|
|
|
|
/*
|
|
* All memory blocks must be offlined before removing memory. Check
|
|
* whether all memory blocks in question are offline and trigger a BUG()
|
|
* if this is not the case.
|
|
*/
|
|
ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
|
|
check_memblock_offlined_cb);
|
|
if (ret)
|
|
BUG();
|
|
|
|
/* remove memmap entry */
|
|
firmware_map_remove(start, start + size, "System RAM");
|
|
memblock_free(start, size);
|
|
memblock_remove(start, size);
|
|
|
|
arch_remove_memory(nid, start, size, NULL);
|
|
|
|
try_offline_node(nid);
|
|
|
|
mem_hotplug_done();
|
|
}
|
|
|
|
void remove_memory(int nid, u64 start, u64 size)
|
|
{
|
|
lock_device_hotplug();
|
|
__remove_memory(nid, start, size);
|
|
unlock_device_hotplug();
|
|
}
|
|
EXPORT_SYMBOL_GPL(remove_memory);
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|