mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-26 05:34:13 +08:00
de4eda9de2
READ/WRITE proved to be actively confusing - the meanings are "data destination, as used with read(2)" and "data source, as used with write(2)", but people keep interpreting those as "we read data from it" and "we write data to it", i.e. exactly the wrong way. Call them ITER_DEST and ITER_SOURCE - at least that is harder to misinterpret... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
661 lines
19 KiB
C
661 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct iov_iter iter;
|
|
|
|
iov_iter_xarray(&iter, ITER_DEST, &subreq->rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
iov_iter_zero(iov_iter_count(&iter), &iter);
|
|
}
|
|
|
|
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = priv;
|
|
|
|
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
|
}
|
|
|
|
/*
|
|
* Issue a read against the cache.
|
|
* - Eats the caller's ref on subreq.
|
|
*/
|
|
static void netfs_read_from_cache(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq,
|
|
enum netfs_read_from_hole read_hole)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct iov_iter iter;
|
|
|
|
netfs_stat(&netfs_n_rh_read);
|
|
iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
|
|
cres->ops->read(cres, subreq->start, &iter, read_hole,
|
|
netfs_cache_read_terminated, subreq);
|
|
}
|
|
|
|
/*
|
|
* Fill a subrequest region with zeroes.
|
|
*/
|
|
static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_zero);
|
|
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
|
netfs_subreq_terminated(subreq, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Ask the netfs to issue a read request to the server for us.
|
|
*
|
|
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
|
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
|
* buffer prior to the transferred point as it might clobber dirty data
|
|
* obtained from the cache.
|
|
*
|
|
* Alternatively, the netfs is allowed to indicate one of two things:
|
|
*
|
|
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
|
* make progress.
|
|
*
|
|
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
|
* cleared.
|
|
*/
|
|
static void netfs_read_from_server(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_download);
|
|
rreq->netfs_ops->issue_read(subreq);
|
|
}
|
|
|
|
/*
|
|
* Release those waiting.
|
|
*/
|
|
static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_clear_subrequests(rreq, was_async);
|
|
netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
|
|
}
|
|
|
|
/*
|
|
* Deal with the completion of writing the data to the cache. We have to clear
|
|
* the PG_fscache bits on the folios involved and release the caller's ref.
|
|
*
|
|
* May be called in softirq mode and we inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct folio *folio;
|
|
pgoff_t unlocked = 0;
|
|
bool have_unlocked = false;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
|
|
|
|
xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
/* We might have multiple writes from the same huge
|
|
* folio, but we mustn't unlock a folio more than once.
|
|
*/
|
|
if (have_unlocked && folio_index(folio) <= unlocked)
|
|
continue;
|
|
unlocked = folio_index(folio);
|
|
folio_end_fscache(folio);
|
|
have_unlocked = true;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = priv;
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
netfs_stat(&netfs_n_rh_write_failed);
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_copy_to_cache);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_write_done);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
|
|
|
|
/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
|
netfs_rreq_unmark_after_write(rreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
}
|
|
|
|
/*
|
|
* Perform any outstanding writes to the cache. We inherit a ref from the
|
|
* caller.
|
|
*/
|
|
static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct netfs_io_subrequest *subreq, *next, *p;
|
|
struct iov_iter iter;
|
|
int ret;
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
|
|
|
|
/* We don't want terminating writes trying to wake us up whilst we're
|
|
* still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_copy_ops);
|
|
|
|
list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
|
|
if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
|
|
list_del_init(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false,
|
|
netfs_sreq_trace_put_no_copy);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
/* Amalgamate adjacent writes */
|
|
while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
next = list_next_entry(subreq, rreq_link);
|
|
if (next->start != subreq->start + subreq->len)
|
|
break;
|
|
subreq->len += next->len;
|
|
list_del_init(&next->rreq_link);
|
|
netfs_put_subrequest(next, false,
|
|
netfs_sreq_trace_put_merged);
|
|
}
|
|
|
|
ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
|
|
rreq->i_size, true);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
|
|
continue;
|
|
}
|
|
|
|
iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages,
|
|
subreq->start, subreq->len);
|
|
|
|
atomic_inc(&rreq->nr_copy_ops);
|
|
netfs_stat(&netfs_n_rh_write);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write);
|
|
cres->ops->write(cres, subreq->start, &iter,
|
|
netfs_rreq_copy_terminated, subreq);
|
|
}
|
|
|
|
/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
|
netfs_rreq_unmark_after_write(rreq, false);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache_work(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
|
|
netfs_rreq_do_write_to_cache(rreq);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq)
|
|
{
|
|
rreq->work.func = netfs_rreq_write_to_cache_work;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Handle a short read.
|
|
*/
|
|
static void netfs_rreq_short_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
|
|
|
netfs_stat(&netfs_n_rh_short_read);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
|
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE)
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
|
|
else
|
|
netfs_read_from_server(rreq, subreq);
|
|
}
|
|
|
|
/*
|
|
* Resubmit any short or failed operations. Returns true if we got the rreq
|
|
* ref back.
|
|
*/
|
|
static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
WARN_ON(in_interrupt());
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
/* We don't want terminating submissions trying to wake us up whilst
|
|
* we're still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error) {
|
|
if (subreq->source != NETFS_READ_FROM_CACHE)
|
|
break;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->error = 0;
|
|
netfs_stat(&netfs_n_rh_download_instead);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
netfs_read_from_server(rreq, subreq);
|
|
} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
|
|
netfs_rreq_short_read(rreq, subreq);
|
|
}
|
|
}
|
|
|
|
/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
return true;
|
|
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the data read is still valid.
|
|
*/
|
|
static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
if (!rreq->netfs_ops->is_still_valid ||
|
|
rreq->netfs_ops->is_still_valid(rreq))
|
|
return;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
subreq->error = -ESTALE;
|
|
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
|
* softirq context at this point. We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
again:
|
|
netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
|
if (netfs_rreq_perform_resubmissions(rreq))
|
|
goto again;
|
|
return;
|
|
}
|
|
|
|
netfs_rreq_unlock_folios(rreq);
|
|
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags))
|
|
return netfs_rreq_write_to_cache(rreq);
|
|
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_work(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
netfs_rreq_assess(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_terminated(struct netfs_io_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
|
was_async) {
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_assess(rreq, was_async);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
|
* indicate a failure to transfer anything that should be retried or a negative
|
|
* error code. The helper will look after reissuing I/O operations as
|
|
* appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
|
|
ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
int u;
|
|
|
|
_enter("[%u]{%llx,%lx},%zd",
|
|
subreq->debug_index, subreq->start, subreq->flags,
|
|
transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_read);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
complete:
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
|
|
set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
|
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&rreq->nr_outstanding);
|
|
if (u == 0)
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
return;
|
|
|
|
incomplete:
|
|
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
goto complete;
|
|
}
|
|
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_subreq_terminated);
|
|
|
|
static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
|
|
loff_t i_size)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops)
|
|
return cres->ops->prepare_read(subreq, i_size);
|
|
if (subreq->start >= rreq->i_size)
|
|
return NETFS_FILL_WITH_ZEROES;
|
|
return NETFS_DOWNLOAD_FROM_SERVER;
|
|
}
|
|
|
|
/*
|
|
* Work out what sort of subrequest the next one will be.
|
|
*/
|
|
static enum netfs_io_source
|
|
netfs_rreq_prepare_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
enum netfs_io_source source;
|
|
|
|
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
|
|
|
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto out;
|
|
|
|
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
|
/* Call out to the netfs to let it shrink the request to fit
|
|
* its own I/O sizes and boundaries. If it shinks it here, it
|
|
* will be called again to make simultaneous calls; if it wants
|
|
* to make serial calls, it can indicate a short read and then
|
|
* we will call it again.
|
|
*/
|
|
if (subreq->len > rreq->i_size - subreq->start)
|
|
subreq->len = rreq->i_size - subreq->start;
|
|
|
|
if (rreq->netfs_ops->clamp_length &&
|
|
!rreq->netfs_ops->clamp_length(subreq)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON(subreq->len == 0))
|
|
source = NETFS_INVALID_READ;
|
|
|
|
out:
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
return source;
|
|
}
|
|
|
|
/*
|
|
* Slice off a piece of a read request and submit an I/O request for it.
|
|
*/
|
|
static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
|
|
unsigned int *_debug_index)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
enum netfs_io_source source;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
return false;
|
|
|
|
subreq->debug_index = (*_debug_index)++;
|
|
subreq->start = rreq->start + rreq->submitted;
|
|
subreq->len = rreq->len - rreq->submitted;
|
|
|
|
_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
|
|
/* Call out to the cache to find out what it can do with the remaining
|
|
* subset. It tells us in subreq->flags what it decided should be done
|
|
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
|
*
|
|
* Then when we hand the subset, it can choose to take a subset of that
|
|
* (the starts must coincide), in which case, we go around the loop
|
|
* again and ask it to download the next piece.
|
|
*/
|
|
source = netfs_rreq_prepare_read(rreq, subreq);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto subreq_failed;
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
rreq->submitted += subreq->len;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
switch (source) {
|
|
case NETFS_FILL_WITH_ZEROES:
|
|
netfs_fill_with_zeroes(rreq, subreq);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_read_from_server(rreq, subreq);
|
|
break;
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
subreq_failed:
|
|
rreq->error = subreq->error;
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Begin the process of reading in a chunk of data, where that data may be
|
|
* stitched together from multiple sources, including multiple servers and the
|
|
* local cache.
|
|
*/
|
|
int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
|
|
{
|
|
unsigned int debug_index = 0;
|
|
int ret;
|
|
|
|
_enter("R=%x %llx-%llx",
|
|
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
|
|
|
if (rreq->len == 0) {
|
|
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len);
|
|
return -EIO;
|
|
}
|
|
|
|
INIT_WORK(&rreq->work, netfs_rreq_work);
|
|
|
|
if (sync)
|
|
netfs_get_request(rreq, netfs_rreq_trace_get_hold);
|
|
|
|
/* Chop the read into slices according to what the cache and the netfs
|
|
* want and submit each one.
|
|
*/
|
|
atomic_set(&rreq->nr_outstanding, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
if (sync) {
|
|
/* Keep nr_outstanding incremented so that the ref always belongs to
|
|
* us, and the service code isn't punted off to a random thread pool to
|
|
* process.
|
|
*/
|
|
for (;;) {
|
|
wait_var_event(&rreq->nr_outstanding,
|
|
atomic_read(&rreq->nr_outstanding) == 1);
|
|
netfs_rreq_assess(rreq, false);
|
|
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
|
|
ret = -EIO;
|
|
}
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_hold);
|
|
} else {
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_assess(rreq, false);
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|