linux/fs/btrfs/extent_map.c
Filipe Manana ab094670fa btrfs: reduce size and overhead of extent_map_block_end()
At extent_map_block_end() we are calling the inline functions
extent_map_block_start() and extent_map_block_len() multiple times, which
results in expanding their code multiple times, increasing the compiled
code size and repeating the computations those functions do.

Improve this by caching their results in local variables.

The size of the module before this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755770	 163800	  16920	1936490	 1d8c6a	fs/btrfs/btrfs.ko

And after this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755656	 163800	  16920	1936376	 1d8bf8	fs/btrfs/btrfs.ko

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00

1343 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "messages.h"
#include "ctree.h"
#include "extent_map.h"
#include "compression.h"
#include "btrfs_inode.h"
#include "disk-io.h"
static struct kmem_cache *extent_map_cache;
int __init extent_map_init(void)
{
extent_map_cache = kmem_cache_create("btrfs_extent_map",
sizeof(struct extent_map), 0, 0, NULL);
if (!extent_map_cache)
return -ENOMEM;
return 0;
}
void __cold extent_map_exit(void)
{
kmem_cache_destroy(extent_map_cache);
}
/*
* Initialize the extent tree @tree. Should be called for each new inode or
* other user of the extent_map interface.
*/
void extent_map_tree_init(struct extent_map_tree *tree)
{
tree->root = RB_ROOT;
INIT_LIST_HEAD(&tree->modified_extents);
rwlock_init(&tree->lock);
}
/*
* Allocate a new extent_map structure. The new structure is returned with a
* reference count of one and needs to be freed using free_extent_map()
*/
struct extent_map *alloc_extent_map(void)
{
struct extent_map *em;
em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
if (!em)
return NULL;
RB_CLEAR_NODE(&em->rb_node);
refcount_set(&em->refs, 1);
INIT_LIST_HEAD(&em->list);
return em;
}
/*
* Drop the reference out on @em by one and free the structure if the reference
* count hits zero.
*/
void free_extent_map(struct extent_map *em)
{
if (!em)
return;
if (refcount_dec_and_test(&em->refs)) {
WARN_ON(extent_map_in_tree(em));
WARN_ON(!list_empty(&em->list));
kmem_cache_free(extent_map_cache, em);
}
}
/* Do the math around the end of an extent, handling wrapping. */
static u64 range_end(u64 start, u64 len)
{
if (start + len < start)
return (u64)-1;
return start + len;
}
static void dec_evictable_extent_maps(struct btrfs_inode *inode)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
percpu_counter_dec(&fs_info->evictable_extent_maps);
}
static int tree_insert(struct rb_root *root, struct extent_map *em)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct extent_map *entry = NULL;
struct rb_node *orig_parent = NULL;
u64 end = range_end(em->start, em->len);
while (*p) {
parent = *p;
entry = rb_entry(parent, struct extent_map, rb_node);
if (em->start < entry->start)
p = &(*p)->rb_left;
else if (em->start >= extent_map_end(entry))
p = &(*p)->rb_right;
else
return -EEXIST;
}
orig_parent = parent;
while (parent && em->start >= extent_map_end(entry)) {
parent = rb_next(parent);
entry = rb_entry(parent, struct extent_map, rb_node);
}
if (parent)
if (end > entry->start && em->start < extent_map_end(entry))
return -EEXIST;
parent = orig_parent;
entry = rb_entry(parent, struct extent_map, rb_node);
while (parent && em->start < entry->start) {
parent = rb_prev(parent);
entry = rb_entry(parent, struct extent_map, rb_node);
}
if (parent)
if (end > entry->start && em->start < extent_map_end(entry))
return -EEXIST;
rb_link_node(&em->rb_node, orig_parent, p);
rb_insert_color(&em->rb_node, root);
return 0;
}
/*
* Search through the tree for an extent_map with a given offset. If it can't
* be found, try to find some neighboring extents
*/
static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
struct rb_node **prev_or_next_ret)
{
struct rb_node *n = root->rb_node;
struct rb_node *prev = NULL;
struct rb_node *orig_prev = NULL;
struct extent_map *entry;
struct extent_map *prev_entry = NULL;
ASSERT(prev_or_next_ret);
while (n) {
entry = rb_entry(n, struct extent_map, rb_node);
prev = n;
prev_entry = entry;
if (offset < entry->start)
n = n->rb_left;
else if (offset >= extent_map_end(entry))
n = n->rb_right;
else
return n;
}
orig_prev = prev;
while (prev && offset >= extent_map_end(prev_entry)) {
prev = rb_next(prev);
prev_entry = rb_entry(prev, struct extent_map, rb_node);
}
/*
* Previous extent map found, return as in this case the caller does not
* care about the next one.
*/
if (prev) {
*prev_or_next_ret = prev;
return NULL;
}
prev = orig_prev;
prev_entry = rb_entry(prev, struct extent_map, rb_node);
while (prev && offset < prev_entry->start) {
prev = rb_prev(prev);
prev_entry = rb_entry(prev, struct extent_map, rb_node);
}
*prev_or_next_ret = prev;
return NULL;
}
static inline u64 extent_map_block_len(const struct extent_map *em)
{
if (extent_map_is_compressed(em))
return em->disk_num_bytes;
return em->len;
}
static inline u64 extent_map_block_end(const struct extent_map *em)
{
const u64 block_start = extent_map_block_start(em);
const u64 block_end = block_start + extent_map_block_len(em);
if (block_end < block_start)
return (u64)-1;
return block_end;
}
static bool can_merge_extent_map(const struct extent_map *em)
{
if (em->flags & EXTENT_FLAG_PINNED)
return false;
/* Don't merge compressed extents, we need to know their actual size. */
if (extent_map_is_compressed(em))
return false;
if (em->flags & EXTENT_FLAG_LOGGING)
return false;
/*
* We don't want to merge stuff that hasn't been written to the log yet
* since it may not reflect exactly what is on disk, and that would be
* bad.
*/
if (!list_empty(&em->list))
return false;
return true;
}
/* Check to see if two extent_map structs are adjacent and safe to merge. */
static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
{
if (extent_map_end(prev) != next->start)
return false;
if (prev->flags != next->flags)
return false;
if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
return extent_map_block_start(next) == extent_map_block_end(prev);
/* HOLES and INLINE extents. */
return next->disk_bytenr == prev->disk_bytenr;
}
/*
* Handle the on-disk data extents merge for @prev and @next.
*
* Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
* For now only uncompressed regular extent can be merged.
*
* @prev and @next will be both updated to point to the new merged range.
* Thus one of them should be removed by the caller.
*/
static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next)
{
u64 new_disk_bytenr;
u64 new_disk_num_bytes;
u64 new_offset;
/* @prev and @next should not be compressed. */
ASSERT(!extent_map_is_compressed(prev));
ASSERT(!extent_map_is_compressed(next));
/*
* There are two different cases where @prev and @next can be merged.
*
* 1) They are referring to the same data extent:
*
* |<----- data extent A ----->|
* |<- prev ->|<- next ->|
*
* 2) They are referring to different data extents but still adjacent:
*
* |<-- data extent A -->|<-- data extent B -->|
* |<- prev ->|<- next ->|
*
* The calculation here always merges the data extents first, then updates
* @offset using the new data extents.
*
* For case 1), the merged data extent would be the same.
* For case 2), we just merge the two data extents into one.
*/
new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
next->disk_bytenr + next->disk_num_bytes) -
new_disk_bytenr;
new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
prev->disk_bytenr = new_disk_bytenr;
prev->disk_num_bytes = new_disk_num_bytes;
prev->ram_bytes = new_disk_num_bytes;
prev->offset = new_offset;
next->disk_bytenr = new_disk_bytenr;
next->disk_num_bytes = new_disk_num_bytes;
next->ram_bytes = new_disk_num_bytes;
next->offset = new_offset;
}
static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
struct extent_map *em)
{
if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
return;
btrfs_crit(fs_info,
"%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
em->ram_bytes, em->offset, em->flags);
ASSERT(0);
}
/* Internal sanity checks for btrfs debug builds. */
static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
{
if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
return;
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
if (em->disk_num_bytes == 0)
dump_extent_map(fs_info, "zero disk_num_bytes", em);
if (em->offset + em->len > em->ram_bytes)
dump_extent_map(fs_info, "ram_bytes too small", em);
if (em->offset + em->len > em->disk_num_bytes &&
!extent_map_is_compressed(em))
dump_extent_map(fs_info, "disk_num_bytes too small", em);
if (!extent_map_is_compressed(em) &&
em->ram_bytes != em->disk_num_bytes)
dump_extent_map(fs_info,
"ram_bytes mismatch with disk_num_bytes for non-compressed em",
em);
} else if (em->offset) {
dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
}
}
static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct extent_map_tree *tree = &inode->extent_tree;
struct extent_map *merge = NULL;
struct rb_node *rb;
/*
* We can't modify an extent map that is in the tree and that is being
* used by another task, as it can cause that other task to see it in
* inconsistent state during the merging. We always have 1 reference for
* the tree and 1 for this task (which is unpinning the extent map or
* clearing the logging flag), so anything > 2 means it's being used by
* other tasks too.
*/
if (refcount_read(&em->refs) > 2)
return;
if (!can_merge_extent_map(em))
return;
if (em->start != 0) {
rb = rb_prev(&em->rb_node);
if (rb)
merge = rb_entry(rb, struct extent_map, rb_node);
if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
em->start = merge->start;
em->len += merge->len;
em->generation = max(em->generation, merge->generation);
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
merge_ondisk_extents(merge, em);
em->flags |= EXTENT_FLAG_MERGED;
validate_extent_map(fs_info, em);
rb_erase(&merge->rb_node, &tree->root);
RB_CLEAR_NODE(&merge->rb_node);
free_extent_map(merge);
dec_evictable_extent_maps(inode);
}
}
rb = rb_next(&em->rb_node);
if (rb)
merge = rb_entry(rb, struct extent_map, rb_node);
if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
em->len += merge->len;
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
merge_ondisk_extents(em, merge);
validate_extent_map(fs_info, em);
rb_erase(&merge->rb_node, &tree->root);
RB_CLEAR_NODE(&merge->rb_node);
em->generation = max(em->generation, merge->generation);
em->flags |= EXTENT_FLAG_MERGED;
free_extent_map(merge);
dec_evictable_extent_maps(inode);
}
}
/*
* Unpin an extent from the cache.
*
* @inode: the inode from which we are unpinning an extent range
* @start: logical offset in the file
* @len: length of the extent
* @gen: generation that this extent has been modified in
*
* Called after an extent has been written to disk properly. Set the generation
* to the generation that actually added the file item to the inode so we know
* we need to sync this extent when we call fsync().
*
* Returns: 0 on success
* -ENOENT when the extent is not found in the tree
* -EUCLEAN if the found extent does not match the expected start
*/
int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct extent_map_tree *tree = &inode->extent_tree;
int ret = 0;
struct extent_map *em;
write_lock(&tree->lock);
em = lookup_extent_mapping(tree, start, len);
if (WARN_ON(!em)) {
btrfs_warn(fs_info,
"no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
btrfs_ino(inode), btrfs_root_id(inode->root),
start, start + len, gen);
ret = -ENOENT;
goto out;
}
if (WARN_ON(em->start != start)) {
btrfs_warn(fs_info,
"found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
btrfs_ino(inode), btrfs_root_id(inode->root),
em->start, start, start + len, gen);
ret = -EUCLEAN;
goto out;
}
em->generation = gen;
em->flags &= ~EXTENT_FLAG_PINNED;
try_merge_map(inode, em);
out:
write_unlock(&tree->lock);
free_extent_map(em);
return ret;
}
void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
{
lockdep_assert_held_write(&inode->extent_tree.lock);
em->flags &= ~EXTENT_FLAG_LOGGING;
if (extent_map_in_tree(em))
try_merge_map(inode, em);
}
static inline void setup_extent_mapping(struct btrfs_inode *inode,
struct extent_map *em,
int modified)
{
refcount_inc(&em->refs);
ASSERT(list_empty(&em->list));
if (modified)
list_add(&em->list, &inode->extent_tree.modified_extents);
else
try_merge_map(inode, em);
}
/*
* Add a new extent map to an inode's extent map tree.
*
* @inode: the target inode
* @em: map to insert
* @modified: indicate whether the given @em should be added to the
* modified list, which indicates the extent needs to be logged
*
* Insert @em into the @inode's extent map tree or perform a simple
* forward/backward merge with existing mappings. The extent_map struct passed
* in will be inserted into the tree directly, with an additional reference
* taken, or a reference dropped if the merge attempt was successful.
*/
static int add_extent_mapping(struct btrfs_inode *inode,
struct extent_map *em, int modified)
{
struct extent_map_tree *tree = &inode->extent_tree;
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
lockdep_assert_held_write(&tree->lock);
validate_extent_map(fs_info, em);
ret = tree_insert(&tree->root, em);
if (ret)
return ret;
setup_extent_mapping(inode, em, modified);
if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
percpu_counter_inc(&fs_info->evictable_extent_maps);
return 0;
}
static struct extent_map *
__lookup_extent_mapping(struct extent_map_tree *tree,
u64 start, u64 len, int strict)
{
struct extent_map *em;
struct rb_node *rb_node;
struct rb_node *prev_or_next = NULL;
u64 end = range_end(start, len);
rb_node = __tree_search(&tree->root, start, &prev_or_next);
if (!rb_node) {
if (prev_or_next)
rb_node = prev_or_next;
else
return NULL;
}
em = rb_entry(rb_node, struct extent_map, rb_node);
if (strict && !(end > em->start && start < extent_map_end(em)))
return NULL;
refcount_inc(&em->refs);
return em;
}
/*
* Lookup extent_map that intersects @start + @len range.
*
* @tree: tree to lookup in
* @start: byte offset to start the search
* @len: length of the lookup range
*
* Find and return the first extent_map struct in @tree that intersects the
* [start, len] range. There may be additional objects in the tree that
* intersect, so check the object returned carefully to make sure that no
* additional lookups are needed.
*/
struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
u64 start, u64 len)
{
return __lookup_extent_mapping(tree, start, len, 1);
}
/*
* Find a nearby extent map intersecting @start + @len (not an exact search).
*
* @tree: tree to lookup in
* @start: byte offset to start the search
* @len: length of the lookup range
*
* Find and return the first extent_map struct in @tree that intersects the
* [start, len] range.
*
* If one can't be found, any nearby extent may be returned
*/
struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
u64 start, u64 len)
{
return __lookup_extent_mapping(tree, start, len, 0);
}
/*
* Remove an extent_map from its inode's extent tree.
*
* @inode: the inode the extent map belongs to
* @em: extent map being removed
*
* Remove @em from the extent tree of @inode. No reference counts are dropped,
* and no checks are done to see if the range is in use.
*/
void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
{
struct extent_map_tree *tree = &inode->extent_tree;
lockdep_assert_held_write(&tree->lock);
WARN_ON(em->flags & EXTENT_FLAG_PINNED);
rb_erase(&em->rb_node, &tree->root);
if (!(em->flags & EXTENT_FLAG_LOGGING))
list_del_init(&em->list);
RB_CLEAR_NODE(&em->rb_node);
dec_evictable_extent_maps(inode);
}
static void replace_extent_mapping(struct btrfs_inode *inode,
struct extent_map *cur,
struct extent_map *new,
int modified)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct extent_map_tree *tree = &inode->extent_tree;
lockdep_assert_held_write(&tree->lock);
validate_extent_map(fs_info, new);
WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
ASSERT(extent_map_in_tree(cur));
if (!(cur->flags & EXTENT_FLAG_LOGGING))
list_del_init(&cur->list);
rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
RB_CLEAR_NODE(&cur->rb_node);
setup_extent_mapping(inode, new, modified);
}
static struct extent_map *next_extent_map(const struct extent_map *em)
{
struct rb_node *next;
next = rb_next(&em->rb_node);
if (!next)
return NULL;
return container_of(next, struct extent_map, rb_node);
}
static struct extent_map *prev_extent_map(struct extent_map *em)
{
struct rb_node *prev;
prev = rb_prev(&em->rb_node);
if (!prev)
return NULL;
return container_of(prev, struct extent_map, rb_node);
}
/*
* Helper for btrfs_get_extent. Given an existing extent in the tree,
* the existing extent is the nearest extent to map_start,
* and an extent that you want to insert, deal with overlap and insert
* the best fitted new extent into the tree.
*/
static noinline int merge_extent_mapping(struct btrfs_inode *inode,
struct extent_map *existing,
struct extent_map *em,
u64 map_start)
{
struct extent_map *prev;
struct extent_map *next;
u64 start;
u64 end;
u64 start_diff;
if (map_start < em->start || map_start >= extent_map_end(em))
return -EINVAL;
if (existing->start > map_start) {
next = existing;
prev = prev_extent_map(next);
} else {
prev = existing;
next = next_extent_map(prev);
}
start = prev ? extent_map_end(prev) : em->start;
start = max_t(u64, start, em->start);
end = next ? next->start : extent_map_end(em);
end = min_t(u64, end, extent_map_end(em));
start_diff = start - em->start;
em->start = start;
em->len = end - start;
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
em->offset += start_diff;
return add_extent_mapping(inode, em, 0);
}
/*
* Add extent mapping into an inode's extent map tree.
*
* @inode: target inode
* @em_in: extent we are inserting
* @start: start of the logical range btrfs_get_extent() is requesting
* @len: length of the logical range btrfs_get_extent() is requesting
*
* Note that @em_in's range may be different from [start, start+len),
* but they must be overlapped.
*
* Insert @em_in into the inode's extent map tree. In case there is an
* overlapping range, handle the -EEXIST by either:
* a) Returning the existing extent in @em_in if @start is within the
* existing em.
* b) Merge the existing extent with @em_in passed in.
*
* Return 0 on success, otherwise -EEXIST.
*
*/
int btrfs_add_extent_mapping(struct btrfs_inode *inode,
struct extent_map **em_in, u64 start, u64 len)
{
int ret;
struct extent_map *em = *em_in;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
/*
* Tree-checker should have rejected any inline extent with non-zero
* file offset. Here just do a sanity check.
*/
if (em->disk_bytenr == EXTENT_MAP_INLINE)
ASSERT(em->start == 0);
ret = add_extent_mapping(inode, em, 0);
/* it is possible that someone inserted the extent into the tree
* while we had the lock dropped. It is also possible that
* an overlapping map exists in the tree
*/
if (ret == -EEXIST) {
struct extent_map *existing;
existing = search_extent_mapping(&inode->extent_tree, start, len);
trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
/*
* existing will always be non-NULL, since there must be
* extent causing the -EEXIST.
*/
if (start >= existing->start &&
start < extent_map_end(existing)) {
free_extent_map(em);
*em_in = existing;
ret = 0;
} else {
u64 orig_start = em->start;
u64 orig_len = em->len;
/*
* The existing extent map is the one nearest to
* the [start, start + len) range which overlaps
*/
ret = merge_extent_mapping(inode, existing, em, start);
if (WARN_ON(ret)) {
free_extent_map(em);
*em_in = NULL;
btrfs_warn(fs_info,
"extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
existing->start, extent_map_end(existing),
orig_start, orig_start + orig_len, start);
}
free_extent_map(existing);
}
}
ASSERT(ret == 0 || ret == -EEXIST);
return ret;
}
/*
* Drop all extent maps from a tree in the fastest possible way, rescheduling
* if needed. This avoids searching the tree, from the root down to the first
* extent map, before each deletion.
*/
static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
{
struct extent_map_tree *tree = &inode->extent_tree;
struct rb_node *node;
write_lock(&tree->lock);
node = rb_first(&tree->root);
while (node) {
struct extent_map *em;
struct rb_node *next = rb_next(node);
em = rb_entry(node, struct extent_map, rb_node);
em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
remove_extent_mapping(inode, em);
free_extent_map(em);
if (cond_resched_rwlock_write(&tree->lock))
node = rb_first(&tree->root);
else
node = next;
}
write_unlock(&tree->lock);
}
/*
* Drop all extent maps in a given range.
*
* @inode: The target inode.
* @start: Start offset of the range.
* @end: End offset of the range (inclusive value).
* @skip_pinned: Indicate if pinned extent maps should be ignored or not.
*
* This drops all the extent maps that intersect the given range [@start, @end].
* Extent maps that partially overlap the range and extend behind or beyond it,
* are split.
* The caller should have locked an appropriate file range in the inode's io
* tree before calling this function.
*/
void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
bool skip_pinned)
{
struct extent_map *split;
struct extent_map *split2;
struct extent_map *em;
struct extent_map_tree *em_tree = &inode->extent_tree;
u64 len = end - start + 1;
WARN_ON(end < start);
if (end == (u64)-1) {
if (start == 0 && !skip_pinned) {
drop_all_extent_maps_fast(inode);
return;
}
len = (u64)-1;
} else {
/* Make end offset exclusive for use in the loop below. */
end++;
}
/*
* It's ok if we fail to allocate the extent maps, see the comment near
* the bottom of the loop below. We only need two spare extent maps in
* the worst case, where the first extent map that intersects our range
* starts before the range and the last extent map that intersects our
* range ends after our range (and they might be the same extent map),
* because we need to split those two extent maps at the boundaries.
*/
split = alloc_extent_map();
split2 = alloc_extent_map();
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
while (em) {
/* extent_map_end() returns exclusive value (last byte + 1). */
const u64 em_end = extent_map_end(em);
struct extent_map *next_em = NULL;
u64 gen;
unsigned long flags;
bool modified;
if (em_end < end) {
next_em = next_extent_map(em);
if (next_em) {
if (next_em->start < end)
refcount_inc(&next_em->refs);
else
next_em = NULL;
}
}
if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
start = em_end;
goto next;
}
flags = em->flags;
/*
* In case we split the extent map, we want to preserve the
* EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
* it on the new extent maps.
*/
em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
modified = !list_empty(&em->list);
/*
* The extent map does not cross our target range, so no need to
* split it, we can remove it directly.
*/
if (em->start >= start && em_end <= end)
goto remove_em;
gen = em->generation;
if (em->start < start) {
if (!split) {
split = split2;
split2 = NULL;
if (!split)
goto remove_em;
}
split->start = em->start;
split->len = start - em->start;
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
split->disk_bytenr = em->disk_bytenr;
split->disk_num_bytes = em->disk_num_bytes;
split->offset = em->offset;
split->ram_bytes = em->ram_bytes;
} else {
split->disk_bytenr = em->disk_bytenr;
split->disk_num_bytes = 0;
split->offset = 0;
split->ram_bytes = split->len;
}
split->generation = gen;
split->flags = flags;
replace_extent_mapping(inode, em, split, modified);
free_extent_map(split);
split = split2;
split2 = NULL;
}
if (em_end > end) {
if (!split) {
split = split2;
split2 = NULL;
if (!split)
goto remove_em;
}
split->start = end;
split->len = em_end - end;
split->disk_bytenr = em->disk_bytenr;
split->flags = flags;
split->generation = gen;
if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
split->disk_num_bytes = em->disk_num_bytes;
split->offset = em->offset + end - em->start;
split->ram_bytes = em->ram_bytes;
} else {
split->disk_num_bytes = 0;
split->offset = 0;
split->ram_bytes = split->len;
}
if (extent_map_in_tree(em)) {
replace_extent_mapping(inode, em, split, modified);
} else {
int ret;
ret = add_extent_mapping(inode, split, modified);
/* Logic error, shouldn't happen. */
ASSERT(ret == 0);
if (WARN_ON(ret != 0) && modified)
btrfs_set_inode_full_sync(inode);
}
free_extent_map(split);
split = NULL;
}
remove_em:
if (extent_map_in_tree(em)) {
/*
* If the extent map is still in the tree it means that
* either of the following is true:
*
* 1) It fits entirely in our range (doesn't end beyond
* it or starts before it);
*
* 2) It starts before our range and/or ends after our
* range, and we were not able to allocate the extent
* maps for split operations, @split and @split2.
*
* If we are at case 2) then we just remove the entire
* extent map - this is fine since if anyone needs it to
* access the subranges outside our range, will just
* load it again from the subvolume tree's file extent
* item. However if the extent map was in the list of
* modified extents, then we must mark the inode for a
* full fsync, otherwise a fast fsync will miss this
* extent if it's new and needs to be logged.
*/
if ((em->start < start || em_end > end) && modified) {
ASSERT(!split);
btrfs_set_inode_full_sync(inode);
}
remove_extent_mapping(inode, em);
}
/*
* Once for the tree reference (we replaced or removed the
* extent map from the tree).
*/
free_extent_map(em);
next:
/* Once for us (for our lookup reference). */
free_extent_map(em);
em = next_em;
}
write_unlock(&em_tree->lock);
free_extent_map(split);
free_extent_map(split2);
}
/*
* Replace a range in the inode's extent map tree with a new extent map.
*
* @inode: The target inode.
* @new_em: The new extent map to add to the inode's extent map tree.
* @modified: Indicate if the new extent map should be added to the list of
* modified extents (for fast fsync tracking).
*
* Drops all the extent maps in the inode's extent map tree that intersect the
* range of the new extent map and adds the new extent map to the tree.
* The caller should have locked an appropriate file range in the inode's io
* tree before calling this function.
*/
int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
struct extent_map *new_em,
bool modified)
{
const u64 end = new_em->start + new_em->len - 1;
struct extent_map_tree *tree = &inode->extent_tree;
int ret;
ASSERT(!extent_map_in_tree(new_em));
/*
* The caller has locked an appropriate file range in the inode's io
* tree, but getting -EEXIST when adding the new extent map can still
* happen in case there are extents that partially cover the range, and
* this is due to two tasks operating on different parts of the extent.
* See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
* btrfs_get_extent") for an example and details.
*/
do {
btrfs_drop_extent_map_range(inode, new_em->start, end, false);
write_lock(&tree->lock);
ret = add_extent_mapping(inode, new_em, modified);
write_unlock(&tree->lock);
} while (ret == -EEXIST);
return ret;
}
/*
* Split off the first pre bytes from the extent_map at [start, start + len],
* and set the block_start for it to new_logical.
*
* This function is used when an ordered_extent needs to be split.
*/
int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
u64 new_logical)
{
struct extent_map_tree *em_tree = &inode->extent_tree;
struct extent_map *em;
struct extent_map *split_pre = NULL;
struct extent_map *split_mid = NULL;
int ret = 0;
unsigned long flags;
ASSERT(pre != 0);
ASSERT(pre < len);
split_pre = alloc_extent_map();
if (!split_pre)
return -ENOMEM;
split_mid = alloc_extent_map();
if (!split_mid) {
ret = -ENOMEM;
goto out_free_pre;
}
lock_extent(&inode->io_tree, start, start + len - 1, NULL);
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (!em) {
ret = -EIO;
goto out_unlock;
}
ASSERT(em->len == len);
ASSERT(!extent_map_is_compressed(em));
ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
ASSERT(em->flags & EXTENT_FLAG_PINNED);
ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
ASSERT(!list_empty(&em->list));
flags = em->flags;
em->flags &= ~EXTENT_FLAG_PINNED;
/* First, replace the em with a new extent_map starting from * em->start */
split_pre->start = em->start;
split_pre->len = pre;
split_pre->disk_bytenr = new_logical;
split_pre->disk_num_bytes = split_pre->len;
split_pre->offset = 0;
split_pre->ram_bytes = split_pre->len;
split_pre->flags = flags;
split_pre->generation = em->generation;
replace_extent_mapping(inode, em, split_pre, 1);
/*
* Now we only have an extent_map at:
* [em->start, em->start + pre]
*/
/* Insert the middle extent_map. */
split_mid->start = em->start + pre;
split_mid->len = em->len - pre;
split_mid->disk_bytenr = extent_map_block_start(em) + pre;
split_mid->disk_num_bytes = split_mid->len;
split_mid->offset = 0;
split_mid->ram_bytes = split_mid->len;
split_mid->flags = flags;
split_mid->generation = em->generation;
add_extent_mapping(inode, split_mid, 1);
/* Once for us */
free_extent_map(em);
/* Once for the tree */
free_extent_map(em);
out_unlock:
write_unlock(&em_tree->lock);
unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
free_extent_map(split_mid);
out_free_pre:
free_extent_map(split_pre);
return ret;
}
struct btrfs_em_shrink_ctx {
long nr_to_scan;
long scanned;
u64 last_ino;
u64 last_root;
};
static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
{
const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
struct extent_map_tree *tree = &inode->extent_tree;
long nr_dropped = 0;
struct rb_node *node;
/*
* Take the mmap lock so that we serialize with the inode logging phase
* of fsync because we may need to set the full sync flag on the inode,
* in case we have to remove extent maps in the tree's list of modified
* extents. If we set the full sync flag in the inode while an fsync is
* in progress, we may risk missing new extents because before the flag
* is set, fsync decides to only wait for writeback to complete and then
* during inode logging it sees the flag set and uses the subvolume tree
* to find new extents, which may not be there yet because ordered
* extents haven't completed yet.
*
* We also do a try lock because otherwise we could deadlock. This is
* because the shrinker for this filesystem may be invoked while we are
* in a path that is holding the mmap lock in write mode. For example in
* a reflink operation while COWing an extent buffer, when allocating
* pages for a new extent buffer and under memory pressure, the shrinker
* may be invoked, and therefore we would deadlock by attempting to read
* lock the mmap lock while we are holding already a write lock on it.
*/
if (!down_read_trylock(&inode->i_mmap_lock))
return 0;
/*
* We want to be fast so if the lock is busy we don't want to spend time
* waiting for it - either some task is about to do IO for the inode or
* we may have another task shrinking extent maps, here in this code, so
* skip this inode.
*/
if (!write_trylock(&tree->lock)) {
up_read(&inode->i_mmap_lock);
return 0;
}
node = rb_first(&tree->root);
while (node) {
struct rb_node *next = rb_next(node);
struct extent_map *em;
em = rb_entry(node, struct extent_map, rb_node);
ctx->scanned++;
if (em->flags & EXTENT_FLAG_PINNED)
goto next;
/*
* If the inode is in the list of modified extents (new) and its
* generation is the same (or is greater than) the current fs
* generation, it means it was not yet persisted so we have to
* set the full sync flag so that the next fsync will not miss
* it.
*/
if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
btrfs_set_inode_full_sync(inode);
remove_extent_mapping(inode, em);
trace_btrfs_extent_map_shrinker_remove_em(inode, em);
/* Drop the reference for the tree. */
free_extent_map(em);
nr_dropped++;
next:
if (ctx->scanned >= ctx->nr_to_scan)
break;
/*
* Stop if we need to reschedule or there's contention on the
* lock. This is to avoid slowing other tasks trying to take the
* lock.
*/
if (need_resched() || rwlock_needbreak(&tree->lock))
break;
node = next;
}
write_unlock(&tree->lock);
up_read(&inode->i_mmap_lock);
return nr_dropped;
}
static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
{
struct btrfs_inode *inode;
long nr_dropped = 0;
u64 min_ino = ctx->last_ino + 1;
inode = btrfs_find_first_inode(root, min_ino);
while (inode) {
nr_dropped += btrfs_scan_inode(inode, ctx);
min_ino = btrfs_ino(inode) + 1;
ctx->last_ino = btrfs_ino(inode);
btrfs_add_delayed_iput(inode);
if (ctx->scanned >= ctx->nr_to_scan)
break;
cond_resched();
inode = btrfs_find_first_inode(root, min_ino);
}
if (inode) {
/*
* There are still inodes in this root or we happened to process
* the last one and reached the scan limit. In either case set
* the current root to this one, so we'll resume from the next
* inode if there is one or we will find out this was the last
* one and move to the next root.
*/
ctx->last_root = btrfs_root_id(root);
} else {
/*
* No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
* that when processing the next root we start from its first inode.
*/
ctx->last_ino = 0;
ctx->last_root = btrfs_root_id(root) + 1;
}
return nr_dropped;
}
long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
{
struct btrfs_em_shrink_ctx ctx;
u64 start_root_id;
u64 next_root_id;
bool cycled = false;
long nr_dropped = 0;
ctx.scanned = 0;
ctx.nr_to_scan = nr_to_scan;
/*
* In case we have multiple tasks running this shrinker, make the next
* one start from the next inode in case it starts before we finish.
*/
spin_lock(&fs_info->extent_map_shrinker_lock);
ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
fs_info->extent_map_shrinker_last_ino++;
ctx.last_root = fs_info->extent_map_shrinker_last_root;
spin_unlock(&fs_info->extent_map_shrinker_lock);
start_root_id = ctx.last_root;
next_root_id = ctx.last_root;
if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
nr, ctx.last_root,
ctx.last_ino);
}
while (ctx.scanned < ctx.nr_to_scan) {
struct btrfs_root *root;
unsigned long count;
cond_resched();
spin_lock(&fs_info->fs_roots_radix_lock);
count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)&root,
(unsigned long)next_root_id, 1);
if (count == 0) {
spin_unlock(&fs_info->fs_roots_radix_lock);
if (start_root_id > 0 && !cycled) {
next_root_id = 0;
ctx.last_root = 0;
ctx.last_ino = 0;
cycled = true;
continue;
}
break;
}
next_root_id = btrfs_root_id(root) + 1;
root = btrfs_grab_root(root);
spin_unlock(&fs_info->fs_roots_radix_lock);
if (!root)
continue;
if (is_fstree(btrfs_root_id(root)))
nr_dropped += btrfs_scan_root(root, &ctx);
btrfs_put_root(root);
}
/*
* In case of multiple tasks running this extent map shrinking code this
* isn't perfect but it's simple and silences things like KCSAN. It's
* not possible to know which task made more progress because we can
* cycle back to the first root and first inode if it's not the first
* time the shrinker ran, see the above logic. Also a task that started
* later may finish ealier than another task and made less progress. So
* make this simple and update to the progress of the last task that
* finished, with the occasional possiblity of having two consecutive
* runs of the shrinker process the same inodes.
*/
spin_lock(&fs_info->extent_map_shrinker_lock);
fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
fs_info->extent_map_shrinker_last_root = ctx.last_root;
spin_unlock(&fs_info->extent_map_shrinker_lock);
if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
nr, ctx.last_root,
ctx.last_ino);
}
return nr_dropped;
}