mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-01 08:04:22 +08:00
ea3b27d8de
We already handle ERET being trapped from a L1 guest in hyp context. However, with FGT, we can also have ERET being trapped from L2, and this needs to be reinjected into L1. Add the required exception routing. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Jing Zhang <jingzhangos@google.com> Link: https://lore.kernel.org/r/20230815183903.2735724-25-maz@kernel.org
435 lines
12 KiB
C
435 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/handle_exit.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/stacktrace/nvhe.h>
|
|
#include <asm/traps.h>
|
|
|
|
#include <kvm/arm_hypercalls.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_handle_exit.h"
|
|
|
|
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
|
|
|
|
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
|
|
{
|
|
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
|
|
kvm_inject_vabt(vcpu);
|
|
}
|
|
|
|
static int handle_hvc(struct kvm_vcpu *vcpu)
|
|
{
|
|
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
|
|
kvm_vcpu_hvc_get_imm(vcpu));
|
|
vcpu->stat.hvc_exit_stat++;
|
|
|
|
/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
|
|
if (vcpu_has_nv(vcpu)) {
|
|
if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
|
|
kvm_inject_undefined(vcpu);
|
|
else
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
return 1;
|
|
}
|
|
|
|
return kvm_smccc_call_handler(vcpu);
|
|
}
|
|
|
|
static int handle_smc(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* "If an SMC instruction executed at Non-secure EL1 is
|
|
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
|
|
* Trap exception, not a Secure Monitor Call exception [...]"
|
|
*
|
|
* We need to advance the PC after the trap, as it would
|
|
* otherwise return to the same address. Furthermore, pre-incrementing
|
|
* the PC before potentially exiting to userspace maintains the same
|
|
* abstraction for both SMCs and HVCs.
|
|
*/
|
|
kvm_incr_pc(vcpu);
|
|
|
|
/*
|
|
* SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
|
|
* "SMC and HVC immediate value".
|
|
*/
|
|
if (kvm_vcpu_hvc_get_imm(vcpu)) {
|
|
vcpu_set_reg(vcpu, 0, ~0UL);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If imm is zero then it is likely an SMCCC call.
|
|
*
|
|
* Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
|
|
* at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
|
|
* being treated as UNDEFINED.
|
|
*/
|
|
return kvm_smccc_call_handler(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Guest access to FP/ASIMD registers are routed to this handler only
|
|
* when the system doesn't support FP/ASIMD.
|
|
*/
|
|
static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
|
|
* instruction executed by a guest
|
|
*
|
|
* @vcpu: the vcpu pointer
|
|
*
|
|
* WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
|
|
* decides to.
|
|
* WFI: Simply call kvm_vcpu_halt(), which will halt execution of
|
|
* world-switches and schedule other host processes until there is an
|
|
* incoming IRQ or FIQ to the VM.
|
|
* WFIT: Same as WFI, with a timed wakeup implemented as a background timer
|
|
*
|
|
* WF{I,E}T can immediately return if the deadline has already expired.
|
|
*/
|
|
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
if (esr & ESR_ELx_WFx_ISS_WFE) {
|
|
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
|
|
vcpu->stat.wfe_exit_stat++;
|
|
} else {
|
|
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
|
|
vcpu->stat.wfi_exit_stat++;
|
|
}
|
|
|
|
if (esr & ESR_ELx_WFx_ISS_WFxT) {
|
|
if (esr & ESR_ELx_WFx_ISS_RV) {
|
|
u64 val, now;
|
|
|
|
now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
|
|
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
|
|
|
|
if (now >= val)
|
|
goto out;
|
|
} else {
|
|
/* Treat WFxT as WFx if RN is invalid */
|
|
esr &= ~ESR_ELx_WFx_ISS_WFxT;
|
|
}
|
|
}
|
|
|
|
if (esr & ESR_ELx_WFx_ISS_WFE) {
|
|
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
|
|
} else {
|
|
if (esr & ESR_ELx_WFx_ISS_WFxT)
|
|
vcpu_set_flag(vcpu, IN_WFIT);
|
|
|
|
kvm_vcpu_wfi(vcpu);
|
|
}
|
|
out:
|
|
kvm_incr_pc(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_debug - handle a debug exception instruction
|
|
*
|
|
* @vcpu: the vcpu pointer
|
|
*
|
|
* We route all debug exceptions through the same handler. If both the
|
|
* guest and host are using the same debug facilities it will be up to
|
|
* userspace to re-inject the correct exception for guest delivery.
|
|
*
|
|
* @return: 0 (while setting vcpu->run->exit_reason)
|
|
*/
|
|
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
run->exit_reason = KVM_EXIT_DEBUG;
|
|
run->debug.arch.hsr = lower_32_bits(esr);
|
|
run->debug.arch.hsr_high = upper_32_bits(esr);
|
|
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_WATCHPT_LOW:
|
|
run->debug.arch.far = vcpu->arch.fault.far_el2;
|
|
break;
|
|
case ESR_ELx_EC_SOFTSTP_LOW:
|
|
vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
|
|
esr, esr_get_class_string(esr));
|
|
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Guest access to SVE registers should be routed to this handler only
|
|
* when the system doesn't support SVE.
|
|
*/
|
|
static int handle_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
|
|
* a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
|
|
* that we can do is give the guest an UNDEF.
|
|
*/
|
|
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int kvm_handle_eret(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_ERET_ISS_ERET)
|
|
return kvm_handle_ptrauth(vcpu);
|
|
|
|
/*
|
|
* If we got here, two possibilities:
|
|
*
|
|
* - the guest is in EL2, and we need to fully emulate ERET
|
|
*
|
|
* - the guest is in EL1, and we need to reinject the
|
|
* exception into the L1 hypervisor.
|
|
*
|
|
* If KVM ever traps ERET for its own use, we'll have to
|
|
* revisit this.
|
|
*/
|
|
if (is_hyp_ctxt(vcpu))
|
|
kvm_emulate_nested_eret(vcpu);
|
|
else
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int handle_svc(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
|
|
* 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
|
|
* we should only have to deal with a 64 bit exception.
|
|
*/
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
return 1;
|
|
}
|
|
|
|
static exit_handle_fn arm_exit_handlers[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
|
|
[ESR_ELx_EC_WFx] = kvm_handle_wfx,
|
|
[ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
|
|
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
|
|
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
|
|
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
|
|
[ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
|
|
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
|
|
[ESR_ELx_EC_HVC32] = handle_hvc,
|
|
[ESR_ELx_EC_SMC32] = handle_smc,
|
|
[ESR_ELx_EC_HVC64] = handle_hvc,
|
|
[ESR_ELx_EC_SMC64] = handle_smc,
|
|
[ESR_ELx_EC_SVC64] = handle_svc,
|
|
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
|
|
[ESR_ELx_EC_SVE] = handle_sve,
|
|
[ESR_ELx_EC_ERET] = kvm_handle_eret,
|
|
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
|
|
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
|
|
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
|
|
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
|
|
};
|
|
|
|
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
u8 esr_ec = ESR_ELx_EC(esr);
|
|
|
|
return arm_exit_handlers[esr_ec];
|
|
}
|
|
|
|
/*
|
|
* We may be single-stepping an emulated instruction. If the emulation
|
|
* has been completed in the kernel, we can return to userspace with a
|
|
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
|
|
* emulation first.
|
|
*/
|
|
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
|
|
{
|
|
int handled;
|
|
|
|
/*
|
|
* See ARM ARM B1.14.1: "Hyp traps on instructions
|
|
* that fail their condition code check"
|
|
*/
|
|
if (!kvm_condition_valid(vcpu)) {
|
|
kvm_incr_pc(vcpu);
|
|
handled = 1;
|
|
} else {
|
|
exit_handle_fn exit_handler;
|
|
|
|
exit_handler = kvm_get_exit_handler(vcpu);
|
|
handled = exit_handler(vcpu);
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
/*
|
|
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
|
|
* proper exit to userspace.
|
|
*/
|
|
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
if (ARM_SERROR_PENDING(exception_index)) {
|
|
/*
|
|
* The SError is handled by handle_exit_early(). If the guest
|
|
* survives it will re-execute the original instruction.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
exception_index = ARM_EXCEPTION_CODE(exception_index);
|
|
|
|
switch (exception_index) {
|
|
case ARM_EXCEPTION_IRQ:
|
|
return 1;
|
|
case ARM_EXCEPTION_EL1_SERROR:
|
|
return 1;
|
|
case ARM_EXCEPTION_TRAP:
|
|
return handle_trap_exceptions(vcpu);
|
|
case ARM_EXCEPTION_HYP_GONE:
|
|
/*
|
|
* EL2 has been reset to the hyp-stub. This happens when a guest
|
|
* is pre-emptied by kvm_reboot()'s shutdown call.
|
|
*/
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
return 0;
|
|
case ARM_EXCEPTION_IL:
|
|
/*
|
|
* We attempted an illegal exception return. Guest state must
|
|
* have been corrupted somehow. Give up.
|
|
*/
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
return -EINVAL;
|
|
default:
|
|
kvm_pr_unimpl("Unsupported exception type: %d",
|
|
exception_index);
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* For exit types that need handling before we can be preempted */
|
|
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
|
|
{
|
|
if (ARM_SERROR_PENDING(exception_index)) {
|
|
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
|
|
u64 disr = kvm_vcpu_get_disr(vcpu);
|
|
|
|
kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
|
|
} else {
|
|
kvm_inject_vabt(vcpu);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
exception_index = ARM_EXCEPTION_CODE(exception_index);
|
|
|
|
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
|
|
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
}
|
|
|
|
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
|
|
u64 elr_virt, u64 elr_phys,
|
|
u64 par, uintptr_t vcpu,
|
|
u64 far, u64 hpfar) {
|
|
u64 elr_in_kimg = __phys_to_kimg(elr_phys);
|
|
u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
|
|
u64 mode = spsr & PSR_MODE_MASK;
|
|
u64 panic_addr = elr_virt + hyp_offset;
|
|
|
|
if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
|
|
kvm_err("Invalid host exception to nVHE hyp!\n");
|
|
} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
|
|
(esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
|
|
const char *file = NULL;
|
|
unsigned int line = 0;
|
|
|
|
/* All hyp bugs, including warnings, are treated as fatal. */
|
|
if (!is_protected_kvm_enabled() ||
|
|
IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
|
|
struct bug_entry *bug = find_bug(elr_in_kimg);
|
|
|
|
if (bug)
|
|
bug_get_file_line(bug, &file, &line);
|
|
}
|
|
|
|
if (file)
|
|
kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
|
|
else
|
|
kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
|
|
(void *)(panic_addr + kaslr_offset()));
|
|
} else {
|
|
kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
|
|
(void *)(panic_addr + kaslr_offset()));
|
|
}
|
|
|
|
/* Dump the nVHE hypervisor backtrace */
|
|
kvm_nvhe_dump_backtrace(hyp_offset);
|
|
|
|
/*
|
|
* Hyp has panicked and we're going to handle that by panicking the
|
|
* kernel. The kernel offset will be revealed in the panic so we're
|
|
* also safe to reveal the hyp offset as a debugging aid for translating
|
|
* hyp VAs to vmlinux addresses.
|
|
*/
|
|
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
|
|
|
|
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
|
|
spsr, elr_virt, esr, far, hpfar, par, vcpu);
|
|
}
|