mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 05:04:09 +08:00
ab23a77687
Move inode inactivation to background work contexts so that it no longer runs in the context that releases the final reference to an inode. This will allow process work that ends up blocking on inactivation to continue doing work while the filesytem processes the inactivation in the background. A typical demonstration of this is unlinking an inode with lots of extents. The extents are removed during inactivation, so this blocks the process that unlinked the inode from the directory structure. By moving the inactivation to the background process, the userspace applicaiton can keep working (e.g. unlinking the next inode in the directory) while the inactivation work on the previous inode is done by a different CPU. The implementation of the queue is relatively simple. We use a per-cpu lockless linked list (llist) to queue inodes for inactivation without requiring serialisation mechanisms, and a work item to allow the queue to be processed by a CPU bound worker thread. We also keep a count of the queue depth so that we can trigger work after a number of deferred inactivations have been queued. The use of a bound workqueue with a single work depth allows the workqueue to run one work item per CPU. We queue the work item on the CPU we are currently running on, and so this essentially gives us affine per-cpu worker threads for the per-cpu queues. THis maintains the effective CPU affinity that occurs within XFS at the AG level due to all objects in a directory being local to an AG. Hence inactivation work tends to run on the same CPU that last accessed all the objects that inactivation accesses and this maintains hot CPU caches for unlink workloads. A depth of 32 inodes was chosen to match the number of inodes in an inode cluster buffer. This hopefully allows sequential allocation/unlink behaviours to defering inactivation of all the inodes in a single cluster buffer at a time, further helping maintain hot CPU and buffer cache accesses while running inactivations. A hard per-cpu queue throttle of 256 inode has been set to avoid runaway queuing when inodes that take a long to time inactivate are being processed. For example, when unlinking inodes with large numbers of extents that can take a lot of processing to free. Signed-off-by: Dave Chinner <dchinner@redhat.com> [djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2077 lines
51 KiB
C
2077 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ag.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
/* Radix tree tags for incore inode tree. */
|
|
|
|
/* inode is to be reclaimed */
|
|
#define XFS_ICI_RECLAIM_TAG 0
|
|
/* Inode has speculative preallocations (posteof or cow) to clean. */
|
|
#define XFS_ICI_BLOCKGC_TAG 1
|
|
|
|
/*
|
|
* The goal for walking incore inodes. These can correspond with incore inode
|
|
* radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
|
|
*/
|
|
enum xfs_icwalk_goal {
|
|
/* Goals directly associated with tagged inodes. */
|
|
XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
|
|
XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
|
|
};
|
|
|
|
#define XFS_ICWALK_NULL_TAG (-1U)
|
|
|
|
/* Compute the inode radix tree tag for this goal. */
|
|
static inline unsigned int
|
|
xfs_icwalk_tag(enum xfs_icwalk_goal goal)
|
|
{
|
|
return goal < 0 ? XFS_ICWALK_NULL_TAG : goal;
|
|
}
|
|
|
|
static int xfs_icwalk(struct xfs_mount *mp,
|
|
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
|
|
static int xfs_icwalk_ag(struct xfs_perag *pag,
|
|
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
|
|
|
|
/*
|
|
* Private inode cache walk flags for struct xfs_icwalk. Must not
|
|
* coincide with XFS_ICWALK_FLAGS_VALID.
|
|
*/
|
|
|
|
/* Stop scanning after icw_scan_limit inodes. */
|
|
#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
|
|
|
|
#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
|
|
#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
|
|
|
|
#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
|
|
XFS_ICWALK_FLAG_RECLAIM_SICK | \
|
|
XFS_ICWALK_FLAG_UNION)
|
|
|
|
/*
|
|
* Allocate and initialise an xfs_inode.
|
|
*/
|
|
struct xfs_inode *
|
|
xfs_inode_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/*
|
|
* XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
|
|
* and return NULL here on ENOMEM.
|
|
*/
|
|
ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
return NULL;
|
|
}
|
|
|
|
/* VFS doesn't initialise i_mode! */
|
|
VFS_I(ip)->i_mode = 0;
|
|
|
|
XFS_STATS_INC(mp, vn_active);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(ip->i_ino == 0);
|
|
|
|
/* initialise the xfs inode */
|
|
ip->i_ino = ino;
|
|
ip->i_mount = mp;
|
|
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
ip->i_afp = NULL;
|
|
ip->i_cowfp = NULL;
|
|
memset(&ip->i_df, 0, sizeof(ip->i_df));
|
|
ip->i_flags = 0;
|
|
ip->i_delayed_blks = 0;
|
|
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
|
|
ip->i_nblocks = 0;
|
|
ip->i_forkoff = 0;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
|
|
INIT_LIST_HEAD(&ip->i_ioend_list);
|
|
spin_lock_init(&ip->i_ioend_lock);
|
|
|
|
return ip;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_free_callback(
|
|
struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
switch (VFS_I(ip)->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
case S_IFLNK:
|
|
xfs_idestroy_fork(&ip->i_df);
|
|
break;
|
|
}
|
|
|
|
if (ip->i_afp) {
|
|
xfs_idestroy_fork(ip->i_afp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_afp);
|
|
}
|
|
if (ip->i_cowfp) {
|
|
xfs_idestroy_fork(ip->i_cowfp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
|
|
}
|
|
if (ip->i_itemp) {
|
|
ASSERT(!test_bit(XFS_LI_IN_AIL,
|
|
&ip->i_itemp->ili_item.li_flags));
|
|
xfs_inode_item_destroy(ip);
|
|
ip->i_itemp = NULL;
|
|
}
|
|
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/* asserts to verify all state is correct here */
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
|
|
XFS_STATS_DEC(ip->i_mount, vn_active);
|
|
|
|
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
|
}
|
|
|
|
void
|
|
xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always
|
|
* appears to be reclaimed with an invalid inode number when in the
|
|
* free state. The ip->i_flags_lock provides the barrier against lookup
|
|
* races.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
__xfs_inode_free(ip);
|
|
}
|
|
|
|
/*
|
|
* Queue background inode reclaim work if there are reclaimable inodes and there
|
|
* isn't reclaim work already scheduled or in progress.
|
|
*/
|
|
static void
|
|
xfs_reclaim_work_queue(
|
|
struct xfs_mount *mp)
|
|
{
|
|
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
|
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Background scanning to trim preallocated space. This is queued based on the
|
|
* 'speculative_prealloc_lifetime' tunable (5m by default).
|
|
*/
|
|
static inline void
|
|
xfs_blockgc_queue(
|
|
struct xfs_perag *pag)
|
|
{
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
|
|
queue_delayed_work(pag->pag_mount->m_blockgc_wq,
|
|
&pag->pag_blockgc_work,
|
|
msecs_to_jiffies(xfs_blockgc_secs * 1000));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Set a tag on both the AG incore inode tree and the AG radix tree. */
|
|
static void
|
|
xfs_perag_set_inode_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino,
|
|
unsigned int tag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
bool was_tagged;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
|
|
was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
|
|
radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
|
|
|
|
if (tag == XFS_ICI_RECLAIM_TAG)
|
|
pag->pag_ici_reclaimable++;
|
|
|
|
if (was_tagged)
|
|
return;
|
|
|
|
/* propagate the tag up into the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
/* start background work */
|
|
switch (tag) {
|
|
case XFS_ICI_RECLAIM_TAG:
|
|
xfs_reclaim_work_queue(mp);
|
|
break;
|
|
case XFS_ICI_BLOCKGC_TAG:
|
|
xfs_blockgc_queue(pag);
|
|
break;
|
|
}
|
|
|
|
trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
|
|
}
|
|
|
|
/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
|
|
static void
|
|
xfs_perag_clear_inode_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino,
|
|
unsigned int tag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Reclaim can signal (with a null agino) that it cleared its own tag
|
|
* by removing the inode from the radix tree.
|
|
*/
|
|
if (agino != NULLAGINO)
|
|
radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
|
|
else
|
|
ASSERT(tag == XFS_ICI_RECLAIM_TAG);
|
|
|
|
if (tag == XFS_ICI_RECLAIM_TAG)
|
|
pag->pag_ici_reclaimable--;
|
|
|
|
if (radix_tree_tagged(&pag->pag_ici_root, tag))
|
|
return;
|
|
|
|
/* clear the tag from the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
|
|
}
|
|
|
|
static inline void
|
|
xfs_inew_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (!xfs_iflags_test(ip, XFS_INEW))
|
|
break;
|
|
schedule();
|
|
} while (true);
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
/*
|
|
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
|
|
* part of the structure. This is made more complex by the fact we store
|
|
* information about the on-disk values in the VFS inode and so we can't just
|
|
* overwrite the values unconditionally. Hence we save the parameters we
|
|
* need to retain across reinitialisation, and rewrite them into the VFS inode
|
|
* after reinitialisation even if it fails.
|
|
*/
|
|
static int
|
|
xfs_reinit_inode(
|
|
struct xfs_mount *mp,
|
|
struct inode *inode)
|
|
{
|
|
int error;
|
|
uint32_t nlink = inode->i_nlink;
|
|
uint32_t generation = inode->i_generation;
|
|
uint64_t version = inode_peek_iversion(inode);
|
|
umode_t mode = inode->i_mode;
|
|
dev_t dev = inode->i_rdev;
|
|
kuid_t uid = inode->i_uid;
|
|
kgid_t gid = inode->i_gid;
|
|
|
|
error = inode_init_always(mp->m_super, inode);
|
|
|
|
set_nlink(inode, nlink);
|
|
inode->i_generation = generation;
|
|
inode_set_iversion_queried(inode, version);
|
|
inode->i_mode = mode;
|
|
inode->i_rdev = dev;
|
|
inode->i_uid = uid;
|
|
inode->i_gid = gid;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Carefully nudge an inode whose VFS state has been torn down back into a
|
|
* usable state. Drops the i_flags_lock and the rcu read lock.
|
|
*/
|
|
static int
|
|
xfs_iget_recycle(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip) __releases(&ip->i_flags_lock)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct inode *inode = VFS_I(ip);
|
|
int error;
|
|
|
|
trace_xfs_iget_recycle(ip);
|
|
|
|
/*
|
|
* We need to make it look like the inode is being reclaimed to prevent
|
|
* the actual reclaim workers from stomping over us while we recycle
|
|
* the inode. We can't clear the radix tree tag yet as it requires
|
|
* pag_ici_lock to be held exclusive.
|
|
*/
|
|
ip->i_flags |= XFS_IRECLAIM;
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
|
|
error = xfs_reinit_inode(mp, inode);
|
|
if (error) {
|
|
bool wake;
|
|
|
|
/*
|
|
* Re-initializing the inode failed, and we are in deep
|
|
* trouble. Try to re-add it to the reclaim list.
|
|
*/
|
|
rcu_read_lock();
|
|
spin_lock(&ip->i_flags_lock);
|
|
wake = !!__xfs_iflags_test(ip, XFS_INEW);
|
|
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
|
if (wake)
|
|
wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
|
|
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
trace_xfs_iget_recycle_fail(ip);
|
|
return error;
|
|
}
|
|
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Clear the per-lifetime state in the inode as we are now effectively
|
|
* a new inode and need to return to the initial state before reuse
|
|
* occurs.
|
|
*/
|
|
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
|
ip->i_flags |= XFS_INEW;
|
|
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
inode->i_state = I_NEW;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are allocating a new inode, then check what was returned is
|
|
* actually a free, empty inode. If we are not allocating an inode,
|
|
* then check we didn't find a free inode.
|
|
*
|
|
* Returns:
|
|
* 0 if the inode free state matches the lookup context
|
|
* -ENOENT if the inode is free and we are not allocating
|
|
* -EFSCORRUPTED if there is any state mismatch at all
|
|
*/
|
|
static int
|
|
xfs_iget_check_free_state(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
if (flags & XFS_IGET_CREATE) {
|
|
/* should be a free inode */
|
|
if (VFS_I(ip)->i_mode != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
|
|
ip->i_ino, VFS_I(ip)->i_mode);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (ip->i_nblocks != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx has blocks allocated!",
|
|
ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* should be an allocated inode */
|
|
if (VFS_I(ip)->i_mode == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make all pending inactivation work start immediately. */
|
|
static void
|
|
xfs_inodegc_queue_all(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
if (!llist_empty(&gc->list))
|
|
queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the inode we just found it the cache
|
|
*/
|
|
static int
|
|
xfs_iget_cache_hit(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip,
|
|
xfs_ino_t ino,
|
|
int flags,
|
|
int lock_flags) __releases(RCU)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
/*
|
|
* check for re-use of an inode within an RCU grace period due to the
|
|
* radix tree nodes not being updated yet. We monitor for this by
|
|
* setting the inode number to zero before freeing the inode structure.
|
|
* If the inode has been reallocated and set up, then the inode number
|
|
* will not match, so check for that, too.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != ino)
|
|
goto out_skip;
|
|
|
|
/*
|
|
* If we are racing with another cache hit that is currently
|
|
* instantiating this inode or currently recycling it out of
|
|
* reclaimable state, wait for the initialisation to complete
|
|
* before continuing.
|
|
*
|
|
* If we're racing with the inactivation worker we also want to wait.
|
|
* If we're creating a new file, it's possible that the worker
|
|
* previously marked the inode as free on disk but hasn't finished
|
|
* updating the incore state yet. The AGI buffer will be dirty and
|
|
* locked to the icreate transaction, so a synchronous push of the
|
|
* inodegc workers would result in deadlock. For a regular iget, the
|
|
* worker is running already, so we might as well wait.
|
|
*
|
|
* XXX(hch): eventually we should do something equivalent to
|
|
* wait_on_inode to wait for these flags to be cleared
|
|
* instead of polling for it.
|
|
*/
|
|
if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
|
|
goto out_skip;
|
|
|
|
if (ip->i_flags & XFS_NEED_INACTIVE) {
|
|
/* Unlinked inodes cannot be re-grabbed. */
|
|
if (VFS_I(ip)->i_nlink == 0) {
|
|
error = -ENOENT;
|
|
goto out_error;
|
|
}
|
|
goto out_inodegc_flush;
|
|
}
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
/* Skip inodes that have no vfs state. */
|
|
if ((flags & XFS_IGET_INCORE) &&
|
|
(ip->i_flags & XFS_IRECLAIMABLE))
|
|
goto out_skip;
|
|
|
|
/* The inode fits the selection criteria; process it. */
|
|
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
/* Drops i_flags_lock and RCU read lock. */
|
|
error = xfs_iget_recycle(pag, ip);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
/* If the VFS inode is being torn down, pause and try again. */
|
|
if (!igrab(inode))
|
|
goto out_skip;
|
|
|
|
/* We've got a live one. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
trace_xfs_iget_hit(ip);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
if (!(flags & XFS_IGET_INCORE))
|
|
xfs_iflags_clear(ip, XFS_ISTALE);
|
|
XFS_STATS_INC(mp, xs_ig_found);
|
|
|
|
return 0;
|
|
|
|
out_skip:
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
out_error:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
return error;
|
|
|
|
out_inodegc_flush:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
/*
|
|
* Do not wait for the workers, because the caller could hold an AGI
|
|
* buffer lock. We're just going to sleep in a loop anyway.
|
|
*/
|
|
if (xfs_is_inodegc_enabled(mp))
|
|
xfs_inodegc_queue_all(mp);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int
|
|
xfs_iget_cache_miss(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
struct xfs_inode **ipp,
|
|
int flags,
|
|
int lock_flags)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
int iflags;
|
|
|
|
ip = xfs_inode_alloc(mp, ino);
|
|
if (!ip)
|
|
return -ENOMEM;
|
|
|
|
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* For version 5 superblocks, if we are initialising a new inode and we
|
|
* are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
|
|
* simply build the new inode core with a random generation number.
|
|
*
|
|
* For version 4 (and older) superblocks, log recovery is dependent on
|
|
* the i_flushiter field being initialised from the current on-disk
|
|
* value and hence we must also read the inode off disk even when
|
|
* initializing new inodes.
|
|
*/
|
|
if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
|
|
(flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
|
|
VFS_I(ip)->i_generation = prandom_u32();
|
|
} else {
|
|
struct xfs_buf *bp;
|
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
error = xfs_inode_from_disk(ip,
|
|
xfs_buf_offset(bp, ip->i_imap.im_boffset));
|
|
if (!error)
|
|
xfs_buf_set_ref(bp, XFS_INO_REF);
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
if (error)
|
|
goto out_destroy;
|
|
}
|
|
|
|
trace_xfs_iget_miss(ip);
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* Preload the radix tree so we can insert safely under the
|
|
* write spinlock. Note that we cannot sleep inside the preload
|
|
* region. Since we can be called from transaction context, don't
|
|
* recurse into the file system.
|
|
*/
|
|
if (radix_tree_preload(GFP_NOFS)) {
|
|
error = -EAGAIN;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Because the inode hasn't been added to the radix-tree yet it can't
|
|
* be found by another thread, so we can do the non-sleeping lock here.
|
|
*/
|
|
if (lock_flags) {
|
|
if (!xfs_ilock_nowait(ip, lock_flags))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* These values must be set before inserting the inode into the radix
|
|
* tree as the moment it is inserted a concurrent lookup (allowed by the
|
|
* RCU locking mechanism) can find it and that lookup must see that this
|
|
* is an inode currently under construction (i.e. that XFS_INEW is set).
|
|
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
|
* memory barrier that ensures this detection works correctly at lookup
|
|
* time.
|
|
*/
|
|
iflags = XFS_INEW;
|
|
if (flags & XFS_IGET_DONTCACHE)
|
|
d_mark_dontcache(VFS_I(ip));
|
|
ip->i_udquot = NULL;
|
|
ip->i_gdquot = NULL;
|
|
ip->i_pdquot = NULL;
|
|
xfs_iflags_set(ip, iflags);
|
|
|
|
/* insert the new inode */
|
|
spin_lock(&pag->pag_ici_lock);
|
|
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != -EEXIST);
|
|
XFS_STATS_INC(mp, xs_ig_dup);
|
|
error = -EAGAIN;
|
|
goto out_preload_end;
|
|
}
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_preload_end:
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
out_destroy:
|
|
__destroy_inode(VFS_I(ip));
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system. The inode is looked up
|
|
* in the cache held in each AG. If the inode is found in the cache, initialise
|
|
* the vfs inode if necessary.
|
|
*
|
|
* If it is not in core, read it in from the file system's device, add it to the
|
|
* cache and initialise the vfs inode.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* Inode lookup is only done during metadata operations and not as part of the
|
|
* data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_inode *ip;
|
|
struct xfs_perag *pag;
|
|
xfs_agino_t agino;
|
|
int error;
|
|
|
|
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
|
|
|
/* reject inode numbers outside existing AGs */
|
|
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
|
return -EINVAL;
|
|
|
|
XFS_STATS_INC(mp, xs_ig_attempts);
|
|
|
|
/* get the perag structure and ensure that it's inode capable */
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
again:
|
|
error = 0;
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
if (ip) {
|
|
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
} else {
|
|
rcu_read_unlock();
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -ENODATA;
|
|
goto out_error_or_again;
|
|
}
|
|
XFS_STATS_INC(mp, xs_ig_missed);
|
|
|
|
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
|
flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
|
|
*ipp = ip;
|
|
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can setup the inode
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
|
|
xfs_setup_existing_inode(ip);
|
|
return 0;
|
|
|
|
out_error_or_again:
|
|
if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* "Is this a cached inode that's also allocated?"
|
|
*
|
|
* Look up an inode by number in the given file system. If the inode is
|
|
* in cache and isn't in purgatory, return 1 if the inode is allocated
|
|
* and 0 if it is not. For all other cases (not in cache, being torn
|
|
* down, etc.), return a negative error code.
|
|
*
|
|
* The caller has to prevent inode allocation and freeing activity,
|
|
* presumably by locking the AGI buffer. This is to ensure that an
|
|
* inode cannot transition from allocated to freed until the caller is
|
|
* ready to allow that. If the inode is in an intermediate state (new,
|
|
* reclaimable, or being reclaimed), -EAGAIN will be returned; if the
|
|
* inode is not in the cache, -ENOENT will be returned. The caller must
|
|
* deal with these scenarios appropriately.
|
|
*
|
|
* This is a specialized use case for the online scrubber; if you're
|
|
* reading this, you probably want xfs_iget.
|
|
*/
|
|
int
|
|
xfs_icache_inode_is_allocated(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
bool *inuse)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
*inuse = !!(VFS_I(ip)->i_mode);
|
|
xfs_irele(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Grab the inode for reclaim exclusively.
|
|
*
|
|
* We have found this inode via a lookup under RCU, so the inode may have
|
|
* already been freed, or it may be in the process of being recycled by
|
|
* xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
|
|
* has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
|
|
* will not be set. Hence we need to check for both these flag conditions to
|
|
* avoid inodes that are no longer reclaim candidates.
|
|
*
|
|
* Note: checking for other state flags here, under the i_flags_lock or not, is
|
|
* racy and should be avoided. Those races should be resolved only after we have
|
|
* ensured that we are able to reclaim this inode and the world can see that we
|
|
* are going to reclaim it.
|
|
*
|
|
* Return true if we grabbed it, false otherwise.
|
|
*/
|
|
static bool
|
|
xfs_reclaim_igrab(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
|
|
/* not a reclaim candidate. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
/* Don't reclaim a sick inode unless the caller asked for it. */
|
|
if (ip->i_sick &&
|
|
(!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
__xfs_iflags_set(ip, XFS_IRECLAIM);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Inode reclaim is non-blocking, so the default action if progress cannot be
|
|
* made is to "requeue" the inode for reclaim by unlocking it and clearing the
|
|
* XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
|
|
* blocking anymore and hence we can wait for the inode to be able to reclaim
|
|
* it.
|
|
*
|
|
* We do no IO here - if callers require inodes to be cleaned they must push the
|
|
* AIL first to trigger writeback of dirty inodes. This enables writeback to be
|
|
* done in the background in a non-blocking manner, and enables memory reclaim
|
|
* to make progress without blocking.
|
|
*/
|
|
static void
|
|
xfs_reclaim_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag)
|
|
{
|
|
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
|
|
goto out;
|
|
if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
|
|
goto out_iunlock;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_iunpin_wait(ip);
|
|
xfs_iflush_abort(ip);
|
|
goto reclaim;
|
|
}
|
|
if (xfs_ipincount(ip))
|
|
goto out_clear_flush;
|
|
if (!xfs_inode_clean(ip))
|
|
goto out_clear_flush;
|
|
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
reclaim:
|
|
trace_xfs_inode_reclaiming(ip);
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always appears
|
|
* to be reclaimed with an invalid inode number when in the free state.
|
|
* We do this as early as possible under the ILOCK so that
|
|
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
|
|
* detect races with us here. By doing this, we guarantee that once
|
|
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
|
|
* it will see either a valid inode that will serialise correctly, or it
|
|
* will see an invalid inode that it can skip.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
|
|
/*
|
|
* Remove the inode from the per-AG radix tree.
|
|
*
|
|
* Because radix_tree_delete won't complain even if the item was never
|
|
* added to the tree assert that it's been there before to catch
|
|
* problems with the inode life time early on.
|
|
*/
|
|
spin_lock(&pag->pag_ici_lock);
|
|
if (!radix_tree_delete(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ino)))
|
|
ASSERT(0);
|
|
xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Here we do an (almost) spurious inode lock in order to coordinate
|
|
* with inode cache radix tree lookups. This is because the lookup
|
|
* can reference the inodes in the cache without taking references.
|
|
*
|
|
* We make that OK here by ensuring that we wait until the inode is
|
|
* unlocked after the lookup before we go ahead and free it.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(xfs_inode_clean(ip));
|
|
|
|
__xfs_inode_free(ip);
|
|
return;
|
|
|
|
out_clear_flush:
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
out_iunlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out:
|
|
xfs_iflags_clear(ip, XFS_IRECLAIM);
|
|
}
|
|
|
|
/* Reclaim sick inodes if we're unmounting or the fs went down. */
|
|
static inline bool
|
|
xfs_want_reclaim_sick(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return (mp->m_flags & XFS_MOUNT_UNMOUNTING) ||
|
|
(mp->m_flags & XFS_MOUNT_NORECOVERY) ||
|
|
XFS_FORCED_SHUTDOWN(mp);
|
|
}
|
|
|
|
void
|
|
xfs_reclaim_inodes(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_icwalk icw = {
|
|
.icw_flags = 0,
|
|
};
|
|
|
|
if (xfs_want_reclaim_sick(mp))
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
|
|
|
|
while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
xfs_ail_push_all_sync(mp->m_ail);
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The shrinker infrastructure determines how many inodes we should scan for
|
|
* reclaim. We want as many clean inodes ready to reclaim as possible, so we
|
|
* push the AIL here. We also want to proactively free up memory if we can to
|
|
* minimise the amount of work memory reclaim has to do so we kick the
|
|
* background reclaim if it isn't already scheduled.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_nr(
|
|
struct xfs_mount *mp,
|
|
unsigned long nr_to_scan)
|
|
{
|
|
struct xfs_icwalk icw = {
|
|
.icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
|
|
.icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
|
|
};
|
|
|
|
if (xfs_want_reclaim_sick(mp))
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
|
|
|
|
/* kick background reclaimer and push the AIL */
|
|
xfs_reclaim_work_queue(mp);
|
|
xfs_ail_push_all(mp->m_ail);
|
|
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the number of reclaimable inodes in the filesystem for
|
|
* the shrinker to determine how much to reclaim.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_count(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t ag = 0;
|
|
long reclaimable = 0;
|
|
|
|
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
|
|
ag = pag->pag_agno + 1;
|
|
reclaimable += pag->pag_ici_reclaimable;
|
|
xfs_perag_put(pag);
|
|
}
|
|
return reclaimable;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_icwalk_match_id(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
|
|
!uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
|
|
return false;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
|
|
!gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
|
|
return false;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
|
|
ip->i_projid != icw->icw_prid)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* A union-based inode filtering algorithm. Process the inode if any of the
|
|
* criteria match. This is for global/internal scans only.
|
|
*/
|
|
STATIC bool
|
|
xfs_icwalk_match_id_union(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
|
|
uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
|
|
return true;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
|
|
gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
|
|
return true;
|
|
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
|
|
ip->i_projid == icw->icw_prid)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Is this inode @ip eligible for eof/cow block reclamation, given some
|
|
* filtering parameters @icw? The inode is eligible if @icw is null or
|
|
* if the predicate functions match.
|
|
*/
|
|
static bool
|
|
xfs_icwalk_match(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
bool match;
|
|
|
|
if (!icw)
|
|
return true;
|
|
|
|
if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
|
|
match = xfs_icwalk_match_id_union(ip, icw);
|
|
else
|
|
match = xfs_icwalk_match_id(ip, icw);
|
|
if (!match)
|
|
return false;
|
|
|
|
/* skip the inode if the file size is too small */
|
|
if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
|
|
XFS_ISIZE(ip) < icw->icw_min_file_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
|
* many inodes as possible in a short period of time. It kicks itself every few
|
|
* seconds, as well as being kicked by the inode cache shrinker when memory
|
|
* goes low.
|
|
*/
|
|
void
|
|
xfs_reclaim_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_reclaim_work);
|
|
|
|
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
|
|
xfs_reclaim_work_queue(mp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_free_eofblocks(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw,
|
|
unsigned int *lockflags)
|
|
{
|
|
bool wait;
|
|
|
|
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
|
|
return 0;
|
|
|
|
/*
|
|
* If the mapping is dirty the operation can block and wait for some
|
|
* time. Unless we are waiting, skip it.
|
|
*/
|
|
if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
|
|
return 0;
|
|
|
|
if (!xfs_icwalk_match(ip, icw))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (xfs_can_free_eofblocks(ip, false))
|
|
return xfs_free_eofblocks(ip);
|
|
|
|
/* inode could be preallocated or append-only */
|
|
trace_xfs_inode_free_eofblocks_invalid(ip);
|
|
xfs_inode_clear_eofblocks_tag(ip);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_set_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
/*
|
|
* Don't bother locking the AG and looking up in the radix trees
|
|
* if we already know that we have the tag set.
|
|
*/
|
|
if (ip->i_flags & iflag)
|
|
return;
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= iflag;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_eofblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_clear_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
bool clear_tag;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags &= ~iflag;
|
|
clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
if (!clear_tag)
|
|
return;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_eofblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
/*
|
|
* Set ourselves up to free CoW blocks from this file. If it's already clean
|
|
* then we can bail out quickly, but otherwise we must back off if the file
|
|
* is undergoing some kind of write.
|
|
*/
|
|
static bool
|
|
xfs_prep_free_cowblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* Just clear the tag if we have an empty cow fork or none at all. It's
|
|
* possible the inode was fully unshared since it was originally tagged.
|
|
*/
|
|
if (!xfs_inode_has_cow_data(ip)) {
|
|
trace_xfs_inode_free_cowblocks_invalid(ip);
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the mapping is dirty or under writeback we cannot touch the
|
|
* CoW fork. Leave it alone if we're in the midst of a directio.
|
|
*/
|
|
if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
|
|
atomic_read(&VFS_I(ip)->i_dio_count))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Automatic CoW Reservation Freeing
|
|
*
|
|
* These functions automatically garbage collect leftover CoW reservations
|
|
* that were made on behalf of a cowextsize hint when we start to run out
|
|
* of quota or when the reservations sit around for too long. If the file
|
|
* has dirty pages or is undergoing writeback, its CoW reservations will
|
|
* be retained.
|
|
*
|
|
* The actual garbage collection piggybacks off the same code that runs
|
|
* the speculative EOF preallocation garbage collector.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_free_cowblocks(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw,
|
|
unsigned int *lockflags)
|
|
{
|
|
bool wait;
|
|
int ret = 0;
|
|
|
|
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
|
|
return 0;
|
|
|
|
if (!xfs_prep_free_cowblocks(ip))
|
|
return 0;
|
|
|
|
if (!xfs_icwalk_match(ip, icw))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!(*lockflags & XFS_IOLOCK_EXCL) &&
|
|
!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_MMAPLOCK_EXCL;
|
|
|
|
/*
|
|
* Check again, nobody else should be able to dirty blocks or change
|
|
* the reflink iflag now that we have the first two locks held.
|
|
*/
|
|
if (xfs_prep_free_cowblocks(ip))
|
|
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_cowblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_cowblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
/* Disable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_stop(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
cancel_delayed_work_sync(&pag->pag_blockgc_work);
|
|
}
|
|
|
|
/* Enable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_start(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/* Don't try to run block gc on an inode that's in any of these states. */
|
|
#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
|
|
XFS_NEED_INACTIVE | \
|
|
XFS_INACTIVATING | \
|
|
XFS_IRECLAIMABLE | \
|
|
XFS_IRECLAIM)
|
|
/*
|
|
* Decide if the given @ip is eligible for garbage collection of speculative
|
|
* preallocations, and grab it if so. Returns true if it's ready to go or
|
|
* false if we should just ignore it.
|
|
*/
|
|
static bool
|
|
xfs_blockgc_igrab(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
/* Check for stale RCU freed inode */
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!ip->i_ino)
|
|
goto out_unlock_noent;
|
|
|
|
if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
|
|
goto out_unlock_noent;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/* nothing to sync during shutdown */
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
return false;
|
|
|
|
/* If we can't grab the inode, it must on it's way to reclaim. */
|
|
if (!igrab(inode))
|
|
return false;
|
|
|
|
/* inode is valid */
|
|
return true;
|
|
|
|
out_unlock_noent:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
/* Scan one incore inode for block preallocations that we can remove. */
|
|
static int
|
|
xfs_blockgc_scan_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
unsigned int lockflags = 0;
|
|
int error;
|
|
|
|
error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
|
|
if (error)
|
|
goto unlock;
|
|
|
|
error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
|
|
unlock:
|
|
if (lockflags)
|
|
xfs_iunlock(ip, lockflags);
|
|
xfs_irele(ip);
|
|
return error;
|
|
}
|
|
|
|
/* Background worker that trims preallocated space. */
|
|
void
|
|
xfs_blockgc_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_perag *pag = container_of(to_delayed_work(work),
|
|
struct xfs_perag, pag_blockgc_work);
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
int error;
|
|
|
|
if (!sb_start_write_trylock(mp->m_super))
|
|
return;
|
|
error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
|
|
if (error)
|
|
xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
|
|
pag->pag_agno, error);
|
|
sb_end_write(mp->m_super);
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/*
|
|
* Try to free space in the filesystem by purging eofblocks and cowblocks.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_space(
|
|
struct xfs_mount *mp,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
|
|
|
|
return xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
|
|
}
|
|
|
|
/*
|
|
* Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
|
|
* quota caused an allocation failure, so we make a best effort by including
|
|
* each quota under low free space conditions (less than 1% free space) in the
|
|
* scan.
|
|
*
|
|
* Callers must not hold any inode's ILOCK. If requesting a synchronous scan
|
|
* (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
|
|
* MMAPLOCK.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_dquots(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *udqp,
|
|
struct xfs_dquot *gdqp,
|
|
struct xfs_dquot *pdqp,
|
|
unsigned int iwalk_flags)
|
|
{
|
|
struct xfs_icwalk icw = {0};
|
|
bool do_work = false;
|
|
|
|
if (!udqp && !gdqp && !pdqp)
|
|
return 0;
|
|
|
|
/*
|
|
* Run a scan to free blocks using the union filter to cover all
|
|
* applicable quotas in a single scan.
|
|
*/
|
|
icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
|
|
icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_UID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
|
|
icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_GID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
|
|
icw.icw_prid = pdqp->q_id;
|
|
icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (!do_work)
|
|
return 0;
|
|
|
|
return xfs_blockgc_free_space(mp, &icw);
|
|
}
|
|
|
|
/* Run cow/eofblocks scans on the quotas attached to the inode. */
|
|
int
|
|
xfs_blockgc_free_quota(
|
|
struct xfs_inode *ip,
|
|
unsigned int iwalk_flags)
|
|
{
|
|
return xfs_blockgc_free_dquots(ip->i_mount,
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_USER),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
|
|
}
|
|
|
|
/* XFS Inode Cache Walking Code */
|
|
|
|
/*
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
* lookup reduction and stack usage. This is in the reclaim path, so we can't
|
|
* be too greedy.
|
|
*/
|
|
#define XFS_LOOKUP_BATCH 32
|
|
|
|
|
|
/*
|
|
* Decide if we want to grab this inode in anticipation of doing work towards
|
|
* the goal.
|
|
*/
|
|
static inline bool
|
|
xfs_icwalk_igrab(
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_inode *ip,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
switch (goal) {
|
|
case XFS_ICWALK_BLOCKGC:
|
|
return xfs_blockgc_igrab(ip);
|
|
case XFS_ICWALK_RECLAIM:
|
|
return xfs_reclaim_igrab(ip, icw);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an inode. Each processing function must handle any state changes
|
|
* made by the icwalk igrab function. Return -EAGAIN to skip an inode.
|
|
*/
|
|
static inline int
|
|
xfs_icwalk_process_inode(
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (goal) {
|
|
case XFS_ICWALK_BLOCKGC:
|
|
error = xfs_blockgc_scan_inode(ip, icw);
|
|
break;
|
|
case XFS_ICWALK_RECLAIM:
|
|
xfs_reclaim_inode(ip, pag);
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* For a given per-AG structure @pag and a goal, grab qualifying inodes and
|
|
* process them in some manner.
|
|
*/
|
|
static int
|
|
xfs_icwalk_ag(
|
|
struct xfs_perag *pag,
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
uint32_t first_index;
|
|
int last_error = 0;
|
|
int skipped;
|
|
bool done;
|
|
int nr_found;
|
|
|
|
restart:
|
|
done = false;
|
|
skipped = 0;
|
|
if (goal == XFS_ICWALK_RECLAIM)
|
|
first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
|
|
else
|
|
first_index = 0;
|
|
nr_found = 0;
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
unsigned int tag = xfs_icwalk_tag(goal);
|
|
int error = 0;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (tag == XFS_ICWALK_NULL_TAG)
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
|
|
(void **)batch, first_index,
|
|
XFS_LOOKUP_BATCH);
|
|
else
|
|
nr_found = radix_tree_gang_lookup_tag(
|
|
&pag->pag_ici_root,
|
|
(void **) batch, first_index,
|
|
XFS_LOOKUP_BATCH, tag);
|
|
|
|
if (!nr_found) {
|
|
done = true;
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || !xfs_icwalk_igrab(goal, ip, icw))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can occur if
|
|
* we have inodes in the last block of the AG and we
|
|
* are currently pointing to the last inode.
|
|
*
|
|
* Because we may see inodes that are from the wrong AG
|
|
* due to RCU freeing and reallocation, only update the
|
|
* index if it lies in this AG. It was a race that lead
|
|
* us to see this inode, so another lookup from the
|
|
* same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = true;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!batch[i])
|
|
continue;
|
|
error = xfs_icwalk_process_inode(goal, batch[i], pag,
|
|
icw);
|
|
if (error == -EAGAIN) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
if (error && last_error != -EFSCORRUPTED)
|
|
last_error = error;
|
|
}
|
|
|
|
/* bail out if the filesystem is corrupted. */
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
|
|
icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
|
|
if (icw->icw_scan_limit <= 0)
|
|
break;
|
|
}
|
|
} while (nr_found && !done);
|
|
|
|
if (goal == XFS_ICWALK_RECLAIM) {
|
|
if (done)
|
|
first_index = 0;
|
|
WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
|
|
}
|
|
|
|
if (skipped) {
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/* Fetch the next (possibly tagged) per-AG structure. */
|
|
static inline struct xfs_perag *
|
|
xfs_icwalk_get_perag(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
enum xfs_icwalk_goal goal)
|
|
{
|
|
unsigned int tag = xfs_icwalk_tag(goal);
|
|
|
|
if (tag == XFS_ICWALK_NULL_TAG)
|
|
return xfs_perag_get(mp, agno);
|
|
return xfs_perag_get_tag(mp, agno, tag);
|
|
}
|
|
|
|
/* Walk all incore inodes to achieve a given goal. */
|
|
static int
|
|
xfs_icwalk(
|
|
struct xfs_mount *mp,
|
|
enum xfs_icwalk_goal goal,
|
|
struct xfs_icwalk *icw)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t agno = 0;
|
|
|
|
while ((pag = xfs_icwalk_get_perag(mp, agno, goal))) {
|
|
agno = pag->pag_agno + 1;
|
|
error = xfs_icwalk_ag(pag, goal, icw);
|
|
xfs_perag_put(pag);
|
|
if (error) {
|
|
last_error = error;
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
}
|
|
}
|
|
return last_error;
|
|
BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
xfs_check_delalloc(
|
|
struct xfs_inode *ip,
|
|
int whichfork)
|
|
{
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
struct xfs_bmbt_irec got;
|
|
struct xfs_iext_cursor icur;
|
|
|
|
if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
|
|
return;
|
|
do {
|
|
if (isnullstartblock(got.br_startblock)) {
|
|
xfs_warn(ip->i_mount,
|
|
"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
|
|
ip->i_ino,
|
|
whichfork == XFS_DATA_FORK ? "data" : "cow",
|
|
got.br_startoff, got.br_blockcount);
|
|
}
|
|
} while (xfs_iext_next_extent(ifp, &icur, &got));
|
|
}
|
|
#else
|
|
#define xfs_check_delalloc(ip, whichfork) do { } while (0)
|
|
#endif
|
|
|
|
/* Schedule the inode for reclaim. */
|
|
static void
|
|
xfs_inodegc_set_reclaimable(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
if (!XFS_FORCED_SHUTDOWN(mp) && ip->i_delayed_blks) {
|
|
xfs_check_delalloc(ip, XFS_DATA_FORK);
|
|
xfs_check_delalloc(ip, XFS_COW_FORK);
|
|
ASSERT(0);
|
|
}
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
trace_xfs_inode_set_reclaimable(ip);
|
|
ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
|
|
ip->i_flags |= XFS_IRECLAIMABLE;
|
|
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
/*
|
|
* Free all speculative preallocations and possibly even the inode itself.
|
|
* This is the last chance to make changes to an otherwise unreferenced file
|
|
* before incore reclamation happens.
|
|
*/
|
|
static void
|
|
xfs_inodegc_inactivate(
|
|
struct xfs_inode *ip)
|
|
{
|
|
trace_xfs_inode_inactivating(ip);
|
|
xfs_inactive(ip);
|
|
xfs_inodegc_set_reclaimable(ip);
|
|
}
|
|
|
|
void
|
|
xfs_inodegc_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_inodegc *gc = container_of(work, struct xfs_inodegc,
|
|
work);
|
|
struct llist_node *node = llist_del_all(&gc->list);
|
|
struct xfs_inode *ip, *n;
|
|
|
|
WRITE_ONCE(gc->items, 0);
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
ip = llist_entry(node, struct xfs_inode, i_gclist);
|
|
trace_xfs_inodegc_worker(ip->i_mount, __return_address);
|
|
|
|
llist_for_each_entry_safe(ip, n, node, i_gclist) {
|
|
xfs_iflags_set(ip, XFS_INACTIVATING);
|
|
xfs_inodegc_inactivate(ip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force all currently queued inode inactivation work to run immediately, and
|
|
* wait for the work to finish. Two pass - queue all the work first pass, wait
|
|
* for it in a second pass.
|
|
*/
|
|
void
|
|
xfs_inodegc_flush(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return;
|
|
|
|
trace_xfs_inodegc_flush(mp, __return_address);
|
|
|
|
xfs_inodegc_queue_all(mp);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
flush_work(&gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all the pending work and then disable the inode inactivation background
|
|
* workers and wait for them to stop.
|
|
*/
|
|
void
|
|
xfs_inodegc_stop(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_inodegc *gc;
|
|
int cpu;
|
|
|
|
if (!xfs_clear_inodegc_enabled(mp))
|
|
return;
|
|
|
|
xfs_inodegc_queue_all(mp);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
gc = per_cpu_ptr(mp->m_inodegc, cpu);
|
|
cancel_work_sync(&gc->work);
|
|
}
|
|
trace_xfs_inodegc_stop(mp, __return_address);
|
|
}
|
|
|
|
/*
|
|
* Enable the inode inactivation background workers and schedule deferred inode
|
|
* inactivation work if there is any.
|
|
*/
|
|
void
|
|
xfs_inodegc_start(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (xfs_set_inodegc_enabled(mp))
|
|
return;
|
|
|
|
trace_xfs_inodegc_start(mp, __return_address);
|
|
xfs_inodegc_queue_all(mp);
|
|
}
|
|
|
|
/*
|
|
* Schedule the inactivation worker when:
|
|
*
|
|
* - We've accumulated more than one inode cluster buffer's worth of inodes.
|
|
*/
|
|
static inline bool
|
|
xfs_inodegc_want_queue_work(
|
|
struct xfs_inode *ip,
|
|
unsigned int items)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (items > mp->m_ino_geo.inodes_per_cluster)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Upper bound on the number of inodes in each AG that can be queued for
|
|
* inactivation at any given time, to avoid monopolizing the workqueue.
|
|
*/
|
|
#define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
|
|
|
|
/*
|
|
* Make the frontend wait for inactivations when:
|
|
*
|
|
* - The queue depth exceeds the maximum allowable percpu backlog.
|
|
*
|
|
* Note: If the current thread is running a transaction, we don't ever want to
|
|
* wait for other transactions because that could introduce a deadlock.
|
|
*/
|
|
static inline bool
|
|
xfs_inodegc_want_flush_work(
|
|
struct xfs_inode *ip,
|
|
unsigned int items)
|
|
{
|
|
if (current->journal_info)
|
|
return false;
|
|
|
|
if (items > XFS_INODEGC_MAX_BACKLOG)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Queue a background inactivation worker if there are inodes that need to be
|
|
* inactivated and higher level xfs code hasn't disabled the background
|
|
* workers.
|
|
*/
|
|
static void
|
|
xfs_inodegc_queue(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_inodegc *gc;
|
|
int items;
|
|
|
|
trace_xfs_inode_set_need_inactive(ip);
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= XFS_NEED_INACTIVE;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
gc = get_cpu_ptr(mp->m_inodegc);
|
|
llist_add(&ip->i_gclist, &gc->list);
|
|
items = READ_ONCE(gc->items);
|
|
WRITE_ONCE(gc->items, items + 1);
|
|
put_cpu_ptr(gc);
|
|
|
|
if (!xfs_is_inodegc_enabled(mp))
|
|
return;
|
|
|
|
if (xfs_inodegc_want_queue_work(ip, items)) {
|
|
trace_xfs_inodegc_queue(mp, __return_address);
|
|
queue_work(mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
|
|
if (xfs_inodegc_want_flush_work(ip, items)) {
|
|
trace_xfs_inodegc_throttle(mp, __return_address);
|
|
flush_work(&gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fold the dead CPU inodegc queue into the current CPUs queue.
|
|
*/
|
|
void
|
|
xfs_inodegc_cpu_dead(
|
|
struct xfs_mount *mp,
|
|
unsigned int dead_cpu)
|
|
{
|
|
struct xfs_inodegc *dead_gc, *gc;
|
|
struct llist_node *first, *last;
|
|
unsigned int count = 0;
|
|
|
|
dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
|
|
cancel_work_sync(&dead_gc->work);
|
|
|
|
if (llist_empty(&dead_gc->list))
|
|
return;
|
|
|
|
first = dead_gc->list.first;
|
|
last = first;
|
|
while (last->next) {
|
|
last = last->next;
|
|
count++;
|
|
}
|
|
dead_gc->list.first = NULL;
|
|
dead_gc->items = 0;
|
|
|
|
/* Add pending work to current CPU */
|
|
gc = get_cpu_ptr(mp->m_inodegc);
|
|
llist_add_batch(first, last, &gc->list);
|
|
count += READ_ONCE(gc->items);
|
|
WRITE_ONCE(gc->items, count);
|
|
put_cpu_ptr(gc);
|
|
|
|
if (xfs_is_inodegc_enabled(mp)) {
|
|
trace_xfs_inodegc_queue(mp, __return_address);
|
|
queue_work(mp->m_inodegc_wq, &gc->work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We set the inode flag atomically with the radix tree tag. Once we get tag
|
|
* lookups on the radix tree, this inode flag can go away.
|
|
*
|
|
* We always use background reclaim here because even if the inode is clean, it
|
|
* still may be under IO and hence we have wait for IO completion to occur
|
|
* before we can reclaim the inode. The background reclaim path handles this
|
|
* more efficiently than we can here, so simply let background reclaim tear down
|
|
* all inodes.
|
|
*/
|
|
void
|
|
xfs_inode_mark_reclaimable(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
bool need_inactive;
|
|
|
|
XFS_STATS_INC(mp, vn_reclaim);
|
|
|
|
/*
|
|
* We should never get here with any of the reclaim flags already set.
|
|
*/
|
|
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
|
|
|
|
need_inactive = xfs_inode_needs_inactive(ip);
|
|
if (need_inactive) {
|
|
xfs_inodegc_queue(ip);
|
|
return;
|
|
}
|
|
|
|
/* Going straight to reclaim, so drop the dquots. */
|
|
xfs_qm_dqdetach(ip);
|
|
xfs_inodegc_set_reclaimable(ip);
|
|
}
|