linux/virt/kvm/kvm_main.c
Sean Christopherson df06dae3f2 KVM: Don't actually set a request when evicting vCPUs for GFN cache invd
Don't actually set a request bit in vcpu->requests when making a request
purely to force a vCPU to exit the guest.  Logging a request but not
actually consuming it would cause the vCPU to get stuck in an infinite
loop during KVM_RUN because KVM would see the pending request and bail
from VM-Enter to service the request.

Note, it's currently impossible for KVM to set KVM_REQ_GPC_INVALIDATE as
nothing in KVM is wired up to set guest_uses_pa=true.  But, it'd be all
too easy for arch code to introduce use of kvm_gfn_to_pfn_cache_init()
without implementing handling of the request, especially since getting
test coverage of MMU notifier interaction with specific KVM features
usually requires a directed test.

Opportunistically rename gfn_to_pfn_cache_invalidate_start()'s wake_vcpus
to evict_vcpus.  The purpose of the request is to get vCPUs out of guest
mode, it's supposed to _avoid_ waking vCPUs that are blocking.

Opportunistically rename KVM_REQ_GPC_INVALIDATE to be more specific as to
what it wants to accomplish, and to genericize the name so that it can
used for similar but unrelated scenarios, should they arise in the future.
Add a comment and documentation to explain why the "no action" request
exists.

Add compile-time assertions to help detect improper usage.  Use the inner
assertless helper in the one s390 path that makes requests without a
hardcoded request.

Cc: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220223165302.3205276-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:39 -04:00

5904 lines
146 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*/
#include <kvm/iodev.h>
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <linux/reboot.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/syscore_ops.h>
#include <linux/cpu.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/sched/stat.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
#include <linux/profile.h>
#include <linux/kvm_para.h>
#include <linux/pagemap.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/srcu.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/bsearch.h>
#include <linux/io.h>
#include <linux/lockdep.h>
#include <linux/kthread.h>
#include <linux/suspend.h>
#include <asm/processor.h>
#include <asm/ioctl.h>
#include <linux/uaccess.h>
#include "coalesced_mmio.h"
#include "async_pf.h"
#include "kvm_mm.h"
#include "vfio.h"
#define CREATE_TRACE_POINTS
#include <trace/events/kvm.h>
#include <linux/kvm_dirty_ring.h>
/* Worst case buffer size needed for holding an integer. */
#define ITOA_MAX_LEN 12
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
/* Architectures should define their poll value according to the halt latency */
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_ns, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns);
/* Default doubles per-vcpu halt_poll_ns. */
unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
/* The start value to grow halt_poll_ns from */
unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
module_param(halt_poll_ns_grow_start, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
/* Default resets per-vcpu halt_poll_ns . */
unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, uint, 0644);
EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
/*
* Ordering of locks:
*
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
*/
DEFINE_MUTEX(kvm_lock);
static DEFINE_RAW_SPINLOCK(kvm_count_lock);
LIST_HEAD(vm_list);
static cpumask_var_t cpus_hardware_enabled;
static int kvm_usage_count;
static atomic_t hardware_enable_failed;
static struct kmem_cache *kvm_vcpu_cache;
static __read_mostly struct preempt_ops kvm_preempt_ops;
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
struct dentry *kvm_debugfs_dir;
EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
static const struct file_operations stat_fops_per_vm;
static struct file_operations kvm_chardev_ops;
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
#define KVM_COMPAT(c) .compat_ioctl = (c)
#else
/*
* For architectures that don't implement a compat infrastructure,
* adopt a double line of defense:
* - Prevent a compat task from opening /dev/kvm
* - If the open has been done by a 64bit task, and the KVM fd
* passed to a compat task, let the ioctls fail.
*/
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg) { return -EINVAL; }
static int kvm_no_compat_open(struct inode *inode, struct file *file)
{
return is_compat_task() ? -ENODEV : 0;
}
#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
.open = kvm_no_compat_open
#endif
static int hardware_enable_all(void);
static void hardware_disable_all(void);
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
__visible bool kvm_rebooting;
EXPORT_SYMBOL_GPL(kvm_rebooting);
#define KVM_EVENT_CREATE_VM 0
#define KVM_EVENT_DESTROY_VM 1
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
static unsigned long long kvm_createvm_count;
static unsigned long long kvm_active_vms;
static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
unsigned long start, unsigned long end)
{
}
bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
{
/*
* The metadata used by is_zone_device_page() to determine whether or
* not a page is ZONE_DEVICE is guaranteed to be valid if and only if
* the device has been pinned, e.g. by get_user_pages(). WARN if the
* page_count() is zero to help detect bad usage of this helper.
*/
if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
return false;
return is_zone_device_page(pfn_to_page(pfn));
}
bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
{
/*
* ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
* perspective they are "normal" pages, albeit with slightly different
* usage rules.
*/
if (pfn_valid(pfn))
return PageReserved(pfn_to_page(pfn)) &&
!is_zero_pfn(pfn) &&
!kvm_is_zone_device_pfn(pfn);
return true;
}
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
void vcpu_load(struct kvm_vcpu *vcpu)
{
int cpu = get_cpu();
__this_cpu_write(kvm_running_vcpu, vcpu);
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_vcpu_load(vcpu, cpu);
put_cpu();
}
EXPORT_SYMBOL_GPL(vcpu_load);
void vcpu_put(struct kvm_vcpu *vcpu)
{
preempt_disable();
kvm_arch_vcpu_put(vcpu);
preempt_notifier_unregister(&vcpu->preempt_notifier);
__this_cpu_write(kvm_running_vcpu, NULL);
preempt_enable();
}
EXPORT_SYMBOL_GPL(vcpu_put);
/* TODO: merge with kvm_arch_vcpu_should_kick */
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
{
int mode = kvm_vcpu_exiting_guest_mode(vcpu);
/*
* We need to wait for the VCPU to reenable interrupts and get out of
* READING_SHADOW_PAGE_TABLES mode.
*/
if (req & KVM_REQUEST_WAIT)
return mode != OUTSIDE_GUEST_MODE;
/*
* Need to kick a running VCPU, but otherwise there is nothing to do.
*/
return mode == IN_GUEST_MODE;
}
static void ack_flush(void *_completed)
{
}
static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
{
if (cpumask_empty(cpus))
return false;
smp_call_function_many(cpus, ack_flush, NULL, wait);
return true;
}
static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
struct cpumask *tmp, int current_cpu)
{
int cpu;
if (likely(!(req & KVM_REQUEST_NO_ACTION)))
__kvm_make_request(req, vcpu);
if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
return;
/*
* Note, the vCPU could get migrated to a different pCPU at any point
* after kvm_request_needs_ipi(), which could result in sending an IPI
* to the previous pCPU. But, that's OK because the purpose of the IPI
* is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
* satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
* after this point is also OK, as the requirement is only that KVM wait
* for vCPUs that were reading SPTEs _before_ any changes were
* finalized. See kvm_vcpu_kick() for more details on handling requests.
*/
if (kvm_request_needs_ipi(vcpu, req)) {
cpu = READ_ONCE(vcpu->cpu);
if (cpu != -1 && cpu != current_cpu)
__cpumask_set_cpu(cpu, tmp);
}
}
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
unsigned long *vcpu_bitmap)
{
struct kvm_vcpu *vcpu;
struct cpumask *cpus;
int i, me;
bool called;
me = get_cpu();
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
cpumask_clear(cpus);
for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
vcpu = kvm_get_vcpu(kvm, i);
if (!vcpu)
continue;
kvm_make_vcpu_request(vcpu, req, cpus, me);
}
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
put_cpu();
return called;
}
bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
struct kvm_vcpu *except)
{
struct kvm_vcpu *vcpu;
struct cpumask *cpus;
unsigned long i;
bool called;
int me;
me = get_cpu();
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
cpumask_clear(cpus);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu == except)
continue;
kvm_make_vcpu_request(vcpu, req, cpus, me);
}
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
put_cpu();
return called;
}
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
{
return kvm_make_all_cpus_request_except(kvm, req, NULL);
}
EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
++kvm->stat.generic.remote_tlb_flush_requests;
/*
* We want to publish modifications to the page tables before reading
* mode. Pairs with a memory barrier in arch-specific code.
* - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
* and smp_mb in walk_shadow_page_lockless_begin/end.
* - powerpc: smp_mb in kvmppc_prepare_to_enter.
*
* There is already an smp_mb__after_atomic() before
* kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
* barrier here.
*/
if (!kvm_arch_flush_remote_tlb(kvm)
|| kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
++kvm->stat.generic.remote_tlb_flush;
}
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
#endif
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
gfp_t gfp_flags)
{
gfp_flags |= mc->gfp_zero;
if (mc->kmem_cache)
return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
else
return (void *)__get_free_page(gfp_flags);
}
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
{
void *obj;
if (mc->nobjs >= min)
return 0;
while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
if (!obj)
return mc->nobjs >= min ? 0 : -ENOMEM;
mc->objects[mc->nobjs++] = obj;
}
return 0;
}
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
{
return mc->nobjs;
}
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs) {
if (mc->kmem_cache)
kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
else
free_page((unsigned long)mc->objects[--mc->nobjs]);
}
}
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
void *p;
if (WARN_ON(!mc->nobjs))
p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
else
p = mc->objects[--mc->nobjs];
BUG_ON(!p);
return p;
}
#endif
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
{
mutex_init(&vcpu->mutex);
vcpu->cpu = -1;
vcpu->kvm = kvm;
vcpu->vcpu_id = id;
vcpu->pid = NULL;
#ifndef __KVM_HAVE_ARCH_WQP
rcuwait_init(&vcpu->wait);
#endif
kvm_async_pf_vcpu_init(vcpu);
kvm_vcpu_set_in_spin_loop(vcpu, false);
kvm_vcpu_set_dy_eligible(vcpu, false);
vcpu->preempted = false;
vcpu->ready = false;
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
vcpu->last_used_slot = NULL;
}
static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_dirty_ring_free(&vcpu->dirty_ring);
kvm_arch_vcpu_destroy(vcpu);
/*
* No need for rcu_read_lock as VCPU_RUN is the only place that changes
* the vcpu->pid pointer, and at destruction time all file descriptors
* are already gone.
*/
put_pid(rcu_dereference_protected(vcpu->pid, 1));
free_page((unsigned long)vcpu->run);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
void kvm_destroy_vcpus(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_vcpu_destroy(vcpu);
xa_erase(&kvm->vcpu_array, i);
}
atomic_set(&kvm->online_vcpus, 0);
}
EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
{
return container_of(mn, struct kvm, mmu_notifier);
}
static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int idx;
idx = srcu_read_lock(&kvm->srcu);
kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
srcu_read_unlock(&kvm->srcu, idx);
}
typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
unsigned long end);
struct kvm_hva_range {
unsigned long start;
unsigned long end;
pte_t pte;
hva_handler_t handler;
on_lock_fn_t on_lock;
bool flush_on_ret;
bool may_block;
};
/*
* Use a dedicated stub instead of NULL to indicate that there is no callback
* function/handler. The compiler technically can't guarantee that a real
* function will have a non-zero address, and so it will generate code to
* check for !NULL, whereas comparing against a stub will be elided at compile
* time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
*/
static void kvm_null_fn(void)
{
}
#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
/* Iterate over each memslot intersecting [start, last] (inclusive) range */
#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
node; \
node = interval_tree_iter_next(node, start, last)) \
static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
const struct kvm_hva_range *range)
{
bool ret = false, locked = false;
struct kvm_gfn_range gfn_range;
struct kvm_memory_slot *slot;
struct kvm_memslots *slots;
int i, idx;
if (WARN_ON_ONCE(range->end <= range->start))
return 0;
/* A null handler is allowed if and only if on_lock() is provided. */
if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
IS_KVM_NULL_FN(range->handler)))
return 0;
idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
struct interval_tree_node *node;
slots = __kvm_memslots(kvm, i);
kvm_for_each_memslot_in_hva_range(node, slots,
range->start, range->end - 1) {
unsigned long hva_start, hva_end;
slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
hva_start = max(range->start, slot->userspace_addr);
hva_end = min(range->end, slot->userspace_addr +
(slot->npages << PAGE_SHIFT));
/*
* To optimize for the likely case where the address
* range is covered by zero or one memslots, don't
* bother making these conditional (to avoid writes on
* the second or later invocation of the handler).
*/
gfn_range.pte = range->pte;
gfn_range.may_block = range->may_block;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
*/
gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
gfn_range.slot = slot;
if (!locked) {
locked = true;
KVM_MMU_LOCK(kvm);
if (!IS_KVM_NULL_FN(range->on_lock))
range->on_lock(kvm, range->start, range->end);
if (IS_KVM_NULL_FN(range->handler))
break;
}
ret |= range->handler(kvm, &gfn_range);
}
}
if (range->flush_on_ret && ret)
kvm_flush_remote_tlbs(kvm);
if (locked)
KVM_MMU_UNLOCK(kvm);
srcu_read_unlock(&kvm->srcu, idx);
/* The notifiers are averse to booleans. :-( */
return (int)ret;
}
static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
unsigned long start,
unsigned long end,
pte_t pte,
hva_handler_t handler)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
const struct kvm_hva_range range = {
.start = start,
.end = end,
.pte = pte,
.handler = handler,
.on_lock = (void *)kvm_null_fn,
.flush_on_ret = true,
.may_block = false,
};
return __kvm_handle_hva_range(kvm, &range);
}
static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
unsigned long start,
unsigned long end,
hva_handler_t handler)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
const struct kvm_hva_range range = {
.start = start,
.end = end,
.pte = __pte(0),
.handler = handler,
.on_lock = (void *)kvm_null_fn,
.flush_on_ret = false,
.may_block = false,
};
return __kvm_handle_hva_range(kvm, &range);
}
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address,
pte_t pte)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
trace_kvm_set_spte_hva(address);
/*
* .change_pte() must be surrounded by .invalidate_range_{start,end}().
* If mmu_notifier_count is zero, then no in-progress invalidations,
* including this one, found a relevant memslot at start(); rechecking
* memslots here is unnecessary. Note, a false positive (count elevated
* by a different invalidation) is sub-optimal but functionally ok.
*/
WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
if (!READ_ONCE(kvm->mmu_notifier_count))
return;
kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
}
void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
unsigned long end)
{
/*
* The count increase must become visible at unlock time as no
* spte can be established without taking the mmu_lock and
* count is also read inside the mmu_lock critical section.
*/
kvm->mmu_notifier_count++;
if (likely(kvm->mmu_notifier_count == 1)) {
kvm->mmu_notifier_range_start = start;
kvm->mmu_notifier_range_end = end;
} else {
/*
* Fully tracking multiple concurrent ranges has dimishing
* returns. Keep things simple and just find the minimal range
* which includes the current and new ranges. As there won't be
* enough information to subtract a range after its invalidate
* completes, any ranges invalidated concurrently will
* accumulate and persist until all outstanding invalidates
* complete.
*/
kvm->mmu_notifier_range_start =
min(kvm->mmu_notifier_range_start, start);
kvm->mmu_notifier_range_end =
max(kvm->mmu_notifier_range_end, end);
}
}
static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
const struct mmu_notifier_range *range)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
const struct kvm_hva_range hva_range = {
.start = range->start,
.end = range->end,
.pte = __pte(0),
.handler = kvm_unmap_gfn_range,
.on_lock = kvm_inc_notifier_count,
.flush_on_ret = true,
.may_block = mmu_notifier_range_blockable(range),
};
trace_kvm_unmap_hva_range(range->start, range->end);
/*
* Prevent memslot modification between range_start() and range_end()
* so that conditionally locking provides the same result in both
* functions. Without that guarantee, the mmu_notifier_count
* adjustments will be imbalanced.
*
* Pairs with the decrement in range_end().
*/
spin_lock(&kvm->mn_invalidate_lock);
kvm->mn_active_invalidate_count++;
spin_unlock(&kvm->mn_invalidate_lock);
gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
hva_range.may_block);
__kvm_handle_hva_range(kvm, &hva_range);
return 0;
}
void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
unsigned long end)
{
/*
* This sequence increase will notify the kvm page fault that
* the page that is going to be mapped in the spte could have
* been freed.
*/
kvm->mmu_notifier_seq++;
smp_wmb();
/*
* The above sequence increase must be visible before the
* below count decrease, which is ensured by the smp_wmb above
* in conjunction with the smp_rmb in mmu_notifier_retry().
*/
kvm->mmu_notifier_count--;
}
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
const struct mmu_notifier_range *range)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
const struct kvm_hva_range hva_range = {
.start = range->start,
.end = range->end,
.pte = __pte(0),
.handler = (void *)kvm_null_fn,
.on_lock = kvm_dec_notifier_count,
.flush_on_ret = false,
.may_block = mmu_notifier_range_blockable(range),
};
bool wake;
__kvm_handle_hva_range(kvm, &hva_range);
/* Pairs with the increment in range_start(). */
spin_lock(&kvm->mn_invalidate_lock);
wake = (--kvm->mn_active_invalidate_count == 0);
spin_unlock(&kvm->mn_invalidate_lock);
/*
* There can only be one waiter, since the wait happens under
* slots_lock.
*/
if (wake)
rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
BUG_ON(kvm->mmu_notifier_count < 0);
}
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
trace_kvm_age_hva(start, end);
return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
}
static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
trace_kvm_age_hva(start, end);
/*
* Even though we do not flush TLB, this will still adversely
* affect performance on pre-Haswell Intel EPT, where there is
* no EPT Access Bit to clear so that we have to tear down EPT
* tables instead. If we find this unacceptable, we can always
* add a parameter to kvm_age_hva so that it effectively doesn't
* do anything on clear_young.
*
* Also note that currently we never issue secondary TLB flushes
* from clear_young, leaving this job up to the regular system
* cadence. If we find this inaccurate, we might come up with a
* more sophisticated heuristic later.
*/
return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
}
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
trace_kvm_test_age_hva(address);
return kvm_handle_hva_range_no_flush(mn, address, address + 1,
kvm_test_age_gfn);
}
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int idx;
idx = srcu_read_lock(&kvm->srcu);
kvm_arch_flush_shadow_all(kvm);
srcu_read_unlock(&kvm->srcu, idx);
}
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
.invalidate_range = kvm_mmu_notifier_invalidate_range,
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
.clear_young = kvm_mmu_notifier_clear_young,
.test_young = kvm_mmu_notifier_test_young,
.change_pte = kvm_mmu_notifier_change_pte,
.release = kvm_mmu_notifier_release,
};
static int kvm_init_mmu_notifier(struct kvm *kvm)
{
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
}
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
static int kvm_init_mmu_notifier(struct kvm *kvm)
{
return 0;
}
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
static int kvm_pm_notifier_call(struct notifier_block *bl,
unsigned long state,
void *unused)
{
struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
return kvm_arch_pm_notifier(kvm, state);
}
static void kvm_init_pm_notifier(struct kvm *kvm)
{
kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
/* Suspend KVM before we suspend ftrace, RCU, etc. */
kvm->pm_notifier.priority = INT_MAX;
register_pm_notifier(&kvm->pm_notifier);
}
static void kvm_destroy_pm_notifier(struct kvm *kvm)
{
unregister_pm_notifier(&kvm->pm_notifier);
}
#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
static void kvm_init_pm_notifier(struct kvm *kvm)
{
}
static void kvm_destroy_pm_notifier(struct kvm *kvm)
{
}
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
{
if (!memslot->dirty_bitmap)
return;
kvfree(memslot->dirty_bitmap);
memslot->dirty_bitmap = NULL;
}
/* This does not remove the slot from struct kvm_memslots data structures */
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
kvm_destroy_dirty_bitmap(slot);
kvm_arch_free_memslot(kvm, slot);
kfree(slot);
}
static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
{
struct hlist_node *idnode;
struct kvm_memory_slot *memslot;
int bkt;
/*
* The same memslot objects live in both active and inactive sets,
* arbitrarily free using index '1' so the second invocation of this
* function isn't operating over a structure with dangling pointers
* (even though this function isn't actually touching them).
*/
if (!slots->node_idx)
return;
hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
kvm_free_memslot(kvm, memslot);
}
static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
{
switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
case KVM_STATS_TYPE_INSTANT:
return 0444;
case KVM_STATS_TYPE_CUMULATIVE:
case KVM_STATS_TYPE_PEAK:
default:
return 0644;
}
}
static void kvm_destroy_vm_debugfs(struct kvm *kvm)
{
int i;
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
kvm_vcpu_stats_header.num_desc;
if (!kvm->debugfs_dentry)
return;
debugfs_remove_recursive(kvm->debugfs_dentry);
if (kvm->debugfs_stat_data) {
for (i = 0; i < kvm_debugfs_num_entries; i++)
kfree(kvm->debugfs_stat_data[i]);
kfree(kvm->debugfs_stat_data);
}
}
static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
{
static DEFINE_MUTEX(kvm_debugfs_lock);
struct dentry *dent;
char dir_name[ITOA_MAX_LEN * 2];
struct kvm_stat_data *stat_data;
const struct _kvm_stats_desc *pdesc;
int i, ret;
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
kvm_vcpu_stats_header.num_desc;
if (!debugfs_initialized())
return 0;
snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
mutex_lock(&kvm_debugfs_lock);
dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
if (dent) {
pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
dput(dent);
mutex_unlock(&kvm_debugfs_lock);
return 0;
}
dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
mutex_unlock(&kvm_debugfs_lock);
if (IS_ERR(dent))
return 0;
kvm->debugfs_dentry = dent;
kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
sizeof(*kvm->debugfs_stat_data),
GFP_KERNEL_ACCOUNT);
if (!kvm->debugfs_stat_data)
return -ENOMEM;
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
pdesc = &kvm_vm_stats_desc[i];
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
if (!stat_data)
return -ENOMEM;
stat_data->kvm = kvm;
stat_data->desc = pdesc;
stat_data->kind = KVM_STAT_VM;
kvm->debugfs_stat_data[i] = stat_data;
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
kvm->debugfs_dentry, stat_data,
&stat_fops_per_vm);
}
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
pdesc = &kvm_vcpu_stats_desc[i];
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
if (!stat_data)
return -ENOMEM;
stat_data->kvm = kvm;
stat_data->desc = pdesc;
stat_data->kind = KVM_STAT_VCPU;
kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
kvm->debugfs_dentry, stat_data,
&stat_fops_per_vm);
}
ret = kvm_arch_create_vm_debugfs(kvm);
if (ret) {
kvm_destroy_vm_debugfs(kvm);
return i;
}
return 0;
}
/*
* Called after the VM is otherwise initialized, but just before adding it to
* the vm_list.
*/
int __weak kvm_arch_post_init_vm(struct kvm *kvm)
{
return 0;
}
/*
* Called just after removing the VM from the vm_list, but before doing any
* other destruction.
*/
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
}
/*
* Called after per-vm debugfs created. When called kvm->debugfs_dentry should
* be setup already, so we can create arch-specific debugfs entries under it.
* Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
* a per-arch destroy interface is not needed.
*/
int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
{
return 0;
}
static struct kvm *kvm_create_vm(unsigned long type)
{
struct kvm *kvm = kvm_arch_alloc_vm();
struct kvm_memslots *slots;
int r = -ENOMEM;
int i, j;
if (!kvm)
return ERR_PTR(-ENOMEM);
KVM_MMU_LOCK_INIT(kvm);
mmgrab(current->mm);
kvm->mm = current->mm;
kvm_eventfd_init(kvm);
mutex_init(&kvm->lock);
mutex_init(&kvm->irq_lock);
mutex_init(&kvm->slots_lock);
mutex_init(&kvm->slots_arch_lock);
spin_lock_init(&kvm->mn_invalidate_lock);
rcuwait_init(&kvm->mn_memslots_update_rcuwait);
xa_init(&kvm->vcpu_array);
INIT_LIST_HEAD(&kvm->gpc_list);
spin_lock_init(&kvm->gpc_lock);
INIT_LIST_HEAD(&kvm->devices);
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
if (init_srcu_struct(&kvm->srcu))
goto out_err_no_srcu;
if (init_srcu_struct(&kvm->irq_srcu))
goto out_err_no_irq_srcu;
refcount_set(&kvm->users_count, 1);
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
for (j = 0; j < 2; j++) {
slots = &kvm->__memslots[i][j];
atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
slots->hva_tree = RB_ROOT_CACHED;
slots->gfn_tree = RB_ROOT;
hash_init(slots->id_hash);
slots->node_idx = j;
/* Generations must be different for each address space. */
slots->generation = i;
}
rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
}
for (i = 0; i < KVM_NR_BUSES; i++) {
rcu_assign_pointer(kvm->buses[i],
kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
if (!kvm->buses[i])
goto out_err_no_arch_destroy_vm;
}
kvm->max_halt_poll_ns = halt_poll_ns;
r = kvm_arch_init_vm(kvm, type);
if (r)
goto out_err_no_arch_destroy_vm;
r = hardware_enable_all();
if (r)
goto out_err_no_disable;
#ifdef CONFIG_HAVE_KVM_IRQFD
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
#endif
r = kvm_init_mmu_notifier(kvm);
if (r)
goto out_err_no_mmu_notifier;
r = kvm_arch_post_init_vm(kvm);
if (r)
goto out_err;
mutex_lock(&kvm_lock);
list_add(&kvm->vm_list, &vm_list);
mutex_unlock(&kvm_lock);
preempt_notifier_inc();
kvm_init_pm_notifier(kvm);
/*
* When the fd passed to this ioctl() is opened it pins the module,
* but try_module_get() also prevents getting a reference if the module
* is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
*/
if (!try_module_get(kvm_chardev_ops.owner)) {
r = -ENODEV;
goto out_err;
}
return kvm;
out_err:
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
if (kvm->mmu_notifier.ops)
mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
#endif
out_err_no_mmu_notifier:
hardware_disable_all();
out_err_no_disable:
kvm_arch_destroy_vm(kvm);
out_err_no_arch_destroy_vm:
WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
for (i = 0; i < KVM_NR_BUSES; i++)
kfree(kvm_get_bus(kvm, i));
cleanup_srcu_struct(&kvm->irq_srcu);
out_err_no_irq_srcu:
cleanup_srcu_struct(&kvm->srcu);
out_err_no_srcu:
kvm_arch_free_vm(kvm);
mmdrop(current->mm);
return ERR_PTR(r);
}
static void kvm_destroy_devices(struct kvm *kvm)
{
struct kvm_device *dev, *tmp;
/*
* We do not need to take the kvm->lock here, because nobody else
* has a reference to the struct kvm at this point and therefore
* cannot access the devices list anyhow.
*/
list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
list_del(&dev->vm_node);
dev->ops->destroy(dev);
}
}
static void kvm_destroy_vm(struct kvm *kvm)
{
int i;
struct mm_struct *mm = kvm->mm;
kvm_destroy_pm_notifier(kvm);
kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
kvm_destroy_vm_debugfs(kvm);
kvm_arch_sync_events(kvm);
mutex_lock(&kvm_lock);
list_del(&kvm->vm_list);
mutex_unlock(&kvm_lock);
kvm_arch_pre_destroy_vm(kvm);
kvm_free_irq_routing(kvm);
for (i = 0; i < KVM_NR_BUSES; i++) {
struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
if (bus)
kvm_io_bus_destroy(bus);
kvm->buses[i] = NULL;
}
kvm_coalesced_mmio_free(kvm);
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
/*
* At this point, pending calls to invalidate_range_start()
* have completed but no more MMU notifiers will run, so
* mn_active_invalidate_count may remain unbalanced.
* No threads can be waiting in install_new_memslots as the
* last reference on KVM has been dropped, but freeing
* memslots would deadlock without this manual intervention.
*/
WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
kvm->mn_active_invalidate_count = 0;
#else
kvm_arch_flush_shadow_all(kvm);
#endif
kvm_arch_destroy_vm(kvm);
kvm_destroy_devices(kvm);
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
}
cleanup_srcu_struct(&kvm->irq_srcu);
cleanup_srcu_struct(&kvm->srcu);
kvm_arch_free_vm(kvm);
preempt_notifier_dec();
hardware_disable_all();
mmdrop(mm);
module_put(kvm_chardev_ops.owner);
}
void kvm_get_kvm(struct kvm *kvm)
{
refcount_inc(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm);
/*
* Make sure the vm is not during destruction, which is a safe version of
* kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
*/
bool kvm_get_kvm_safe(struct kvm *kvm)
{
return refcount_inc_not_zero(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
void kvm_put_kvm(struct kvm *kvm)
{
if (refcount_dec_and_test(&kvm->users_count))
kvm_destroy_vm(kvm);
}
EXPORT_SYMBOL_GPL(kvm_put_kvm);
/*
* Used to put a reference that was taken on behalf of an object associated
* with a user-visible file descriptor, e.g. a vcpu or device, if installation
* of the new file descriptor fails and the reference cannot be transferred to
* its final owner. In such cases, the caller is still actively using @kvm and
* will fail miserably if the refcount unexpectedly hits zero.
*/
void kvm_put_kvm_no_destroy(struct kvm *kvm)
{
WARN_ON(refcount_dec_and_test(&kvm->users_count));
}
EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
static int kvm_vm_release(struct inode *inode, struct file *filp)
{
struct kvm *kvm = filp->private_data;
kvm_irqfd_release(kvm);
kvm_put_kvm(kvm);
return 0;
}
/*
* Allocation size is twice as large as the actual dirty bitmap size.
* See kvm_vm_ioctl_get_dirty_log() why this is needed.
*/
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
{
unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
if (!memslot->dirty_bitmap)
return -ENOMEM;
return 0;
}
static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
{
struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
int node_idx_inactive = active->node_idx ^ 1;
return &kvm->__memslots[as_id][node_idx_inactive];
}
/*
* Helper to get the address space ID when one of memslot pointers may be NULL.
* This also serves as a sanity that at least one of the pointers is non-NULL,
* and that their address space IDs don't diverge.
*/
static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
struct kvm_memory_slot *b)
{
if (WARN_ON_ONCE(!a && !b))
return 0;
if (!a)
return b->as_id;
if (!b)
return a->as_id;
WARN_ON_ONCE(a->as_id != b->as_id);
return a->as_id;
}
static void kvm_insert_gfn_node(struct kvm_memslots *slots,
struct kvm_memory_slot *slot)
{
struct rb_root *gfn_tree = &slots->gfn_tree;
struct rb_node **node, *parent;
int idx = slots->node_idx;
parent = NULL;
for (node = &gfn_tree->rb_node; *node; ) {
struct kvm_memory_slot *tmp;
tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
parent = *node;
if (slot->base_gfn < tmp->base_gfn)
node = &(*node)->rb_left;
else if (slot->base_gfn > tmp->base_gfn)
node = &(*node)->rb_right;
else
BUG();
}
rb_link_node(&slot->gfn_node[idx], parent, node);
rb_insert_color(&slot->gfn_node[idx], gfn_tree);
}
static void kvm_erase_gfn_node(struct kvm_memslots *slots,
struct kvm_memory_slot *slot)
{
rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
}
static void kvm_replace_gfn_node(struct kvm_memslots *slots,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new)
{
int idx = slots->node_idx;
WARN_ON_ONCE(old->base_gfn != new->base_gfn);
rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
&slots->gfn_tree);
}
/*
* Replace @old with @new in the inactive memslots.
*
* With NULL @old this simply adds @new.
* With NULL @new this simply removes @old.
*
* If @new is non-NULL its hva_node[slots_idx] range has to be set
* appropriately.
*/
static void kvm_replace_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new)
{
int as_id = kvm_memslots_get_as_id(old, new);
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
int idx = slots->node_idx;
if (old) {
hash_del(&old->id_node[idx]);
interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
if ((long)old == atomic_long_read(&slots->last_used_slot))
atomic_long_set(&slots->last_used_slot, (long)new);
if (!new) {
kvm_erase_gfn_node(slots, old);
return;
}
}
/*
* Initialize @new's hva range. Do this even when replacing an @old
* slot, kvm_copy_memslot() deliberately does not touch node data.
*/
new->hva_node[idx].start = new->userspace_addr;
new->hva_node[idx].last = new->userspace_addr +
(new->npages << PAGE_SHIFT) - 1;
/*
* (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
* hva_node needs to be swapped with remove+insert even though hva can't
* change when replacing an existing slot.
*/
hash_add(slots->id_hash, &new->id_node[idx], new->id);
interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
/*
* If the memslot gfn is unchanged, rb_replace_node() can be used to
* switch the node in the gfn tree instead of removing the old and
* inserting the new as two separate operations. Replacement is a
* single O(1) operation versus two O(log(n)) operations for
* remove+insert.
*/
if (old && old->base_gfn == new->base_gfn) {
kvm_replace_gfn_node(slots, old, new);
} else {
if (old)
kvm_erase_gfn_node(slots, old);
kvm_insert_gfn_node(slots, new);
}
}
static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
{
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
#ifdef __KVM_HAVE_READONLY_MEM
valid_flags |= KVM_MEM_READONLY;
#endif
if (mem->flags & ~valid_flags)
return -EINVAL;
return 0;
}
static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
{
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
/* Grab the generation from the activate memslots. */
u64 gen = __kvm_memslots(kvm, as_id)->generation;
WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
/*
* Do not store the new memslots while there are invalidations in
* progress, otherwise the locking in invalidate_range_start and
* invalidate_range_end will be unbalanced.
*/
spin_lock(&kvm->mn_invalidate_lock);
prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
while (kvm->mn_active_invalidate_count) {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock(&kvm->mn_invalidate_lock);
schedule();
spin_lock(&kvm->mn_invalidate_lock);
}
finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
rcu_assign_pointer(kvm->memslots[as_id], slots);
spin_unlock(&kvm->mn_invalidate_lock);
/*
* Acquired in kvm_set_memslot. Must be released before synchronize
* SRCU below in order to avoid deadlock with another thread
* acquiring the slots_arch_lock in an srcu critical section.
*/
mutex_unlock(&kvm->slots_arch_lock);
synchronize_srcu_expedited(&kvm->srcu);
/*
* Increment the new memslot generation a second time, dropping the
* update in-progress flag and incrementing the generation based on
* the number of address spaces. This provides a unique and easily
* identifiable generation number while the memslots are in flux.
*/
gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
/*
* Generations must be unique even across address spaces. We do not need
* a global counter for that, instead the generation space is evenly split
* across address spaces. For example, with two address spaces, address
* space 0 will use generations 0, 2, 4, ... while address space 1 will
* use generations 1, 3, 5, ...
*/
gen += KVM_ADDRESS_SPACE_NUM;
kvm_arch_memslots_updated(kvm, gen);
slots->generation = gen;
}
static int kvm_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
int r;
/*
* If dirty logging is disabled, nullify the bitmap; the old bitmap
* will be freed on "commit". If logging is enabled in both old and
* new, reuse the existing bitmap. If logging is enabled only in the
* new and KVM isn't using a ring buffer, allocate and initialize a
* new bitmap.
*/
if (change != KVM_MR_DELETE) {
if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
new->dirty_bitmap = NULL;
else if (old && old->dirty_bitmap)
new->dirty_bitmap = old->dirty_bitmap;
else if (!kvm->dirty_ring_size) {
r = kvm_alloc_dirty_bitmap(new);
if (r)
return r;
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
bitmap_set(new->dirty_bitmap, 0, new->npages);
}
}
r = kvm_arch_prepare_memory_region(kvm, old, new, change);
/* Free the bitmap on failure if it was allocated above. */
if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
kvm_destroy_dirty_bitmap(new);
return r;
}
static void kvm_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* Update the total number of memslot pages before calling the arch
* hook so that architectures can consume the result directly.
*/
if (change == KVM_MR_DELETE)
kvm->nr_memslot_pages -= old->npages;
else if (change == KVM_MR_CREATE)
kvm->nr_memslot_pages += new->npages;
kvm_arch_commit_memory_region(kvm, old, new, change);
switch (change) {
case KVM_MR_CREATE:
/* Nothing more to do. */
break;
case KVM_MR_DELETE:
/* Free the old memslot and all its metadata. */
kvm_free_memslot(kvm, old);
break;
case KVM_MR_MOVE:
case KVM_MR_FLAGS_ONLY:
/*
* Free the dirty bitmap as needed; the below check encompasses
* both the flags and whether a ring buffer is being used)
*/
if (old->dirty_bitmap && !new->dirty_bitmap)
kvm_destroy_dirty_bitmap(old);
/*
* The final quirk. Free the detached, old slot, but only its
* memory, not any metadata. Metadata, including arch specific
* data, may be reused by @new.
*/
kfree(old);
break;
default:
BUG();
}
}
/*
* Activate @new, which must be installed in the inactive slots by the caller,
* by swapping the active slots and then propagating @new to @old once @old is
* unreachable and can be safely modified.
*
* With NULL @old this simply adds @new to @active (while swapping the sets).
* With NULL @new this simply removes @old from @active and frees it
* (while also swapping the sets).
*/
static void kvm_activate_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new)
{
int as_id = kvm_memslots_get_as_id(old, new);
kvm_swap_active_memslots(kvm, as_id);
/* Propagate the new memslot to the now inactive memslots. */
kvm_replace_memslot(kvm, old, new);
}
static void kvm_copy_memslot(struct kvm_memory_slot *dest,
const struct kvm_memory_slot *src)
{
dest->base_gfn = src->base_gfn;
dest->npages = src->npages;
dest->dirty_bitmap = src->dirty_bitmap;
dest->arch = src->arch;
dest->userspace_addr = src->userspace_addr;
dest->flags = src->flags;
dest->id = src->id;
dest->as_id = src->as_id;
}
static void kvm_invalidate_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *invalid_slot)
{
/*
* Mark the current slot INVALID. As with all memslot modifications,
* this must be done on an unreachable slot to avoid modifying the
* current slot in the active tree.
*/
kvm_copy_memslot(invalid_slot, old);
invalid_slot->flags |= KVM_MEMSLOT_INVALID;
kvm_replace_memslot(kvm, old, invalid_slot);
/*
* Activate the slot that is now marked INVALID, but don't propagate
* the slot to the now inactive slots. The slot is either going to be
* deleted or recreated as a new slot.
*/
kvm_swap_active_memslots(kvm, old->as_id);
/*
* From this point no new shadow pages pointing to a deleted, or moved,
* memslot will be created. Validation of sp->gfn happens in:
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
* - kvm_is_visible_gfn (mmu_check_root)
*/
kvm_arch_flush_shadow_memslot(kvm, old);
/* Was released by kvm_swap_active_memslots, reacquire. */
mutex_lock(&kvm->slots_arch_lock);
/*
* Copy the arch-specific field of the newly-installed slot back to the
* old slot as the arch data could have changed between releasing
* slots_arch_lock in install_new_memslots() and re-acquiring the lock
* above. Writers are required to retrieve memslots *after* acquiring
* slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
*/
old->arch = invalid_slot->arch;
}
static void kvm_create_memslot(struct kvm *kvm,
struct kvm_memory_slot *new)
{
/* Add the new memslot to the inactive set and activate. */
kvm_replace_memslot(kvm, NULL, new);
kvm_activate_memslot(kvm, NULL, new);
}
static void kvm_delete_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *invalid_slot)
{
/*
* Remove the old memslot (in the inactive memslots) by passing NULL as
* the "new" slot, and for the invalid version in the active slots.
*/
kvm_replace_memslot(kvm, old, NULL);
kvm_activate_memslot(kvm, invalid_slot, NULL);
}
static void kvm_move_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
struct kvm_memory_slot *invalid_slot)
{
/*
* Replace the old memslot in the inactive slots, and then swap slots
* and replace the current INVALID with the new as well.
*/
kvm_replace_memslot(kvm, old, new);
kvm_activate_memslot(kvm, invalid_slot, new);
}
static void kvm_update_flags_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new)
{
/*
* Similar to the MOVE case, but the slot doesn't need to be zapped as
* an intermediate step. Instead, the old memslot is simply replaced
* with a new, updated copy in both memslot sets.
*/
kvm_replace_memslot(kvm, old, new);
kvm_activate_memslot(kvm, old, new);
}
static int kvm_set_memslot(struct kvm *kvm,
struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
struct kvm_memory_slot *invalid_slot;
int r;
/*
* Released in kvm_swap_active_memslots.
*
* Must be held from before the current memslots are copied until
* after the new memslots are installed with rcu_assign_pointer,
* then released before the synchronize srcu in kvm_swap_active_memslots.
*
* When modifying memslots outside of the slots_lock, must be held
* before reading the pointer to the current memslots until after all
* changes to those memslots are complete.
*
* These rules ensure that installing new memslots does not lose
* changes made to the previous memslots.
*/
mutex_lock(&kvm->slots_arch_lock);
/*
* Invalidate the old slot if it's being deleted or moved. This is
* done prior to actually deleting/moving the memslot to allow vCPUs to
* continue running by ensuring there are no mappings or shadow pages
* for the memslot when it is deleted/moved. Without pre-invalidation
* (and without a lock), a window would exist between effecting the
* delete/move and committing the changes in arch code where KVM or a
* guest could access a non-existent memslot.
*
* Modifications are done on a temporary, unreachable slot. The old
* slot needs to be preserved in case a later step fails and the
* invalidation needs to be reverted.
*/
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
if (!invalid_slot) {
mutex_unlock(&kvm->slots_arch_lock);
return -ENOMEM;
}
kvm_invalidate_memslot(kvm, old, invalid_slot);
}
r = kvm_prepare_memory_region(kvm, old, new, change);
if (r) {
/*
* For DELETE/MOVE, revert the above INVALID change. No
* modifications required since the original slot was preserved
* in the inactive slots. Changing the active memslots also
* release slots_arch_lock.
*/
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
kvm_activate_memslot(kvm, invalid_slot, old);
kfree(invalid_slot);
} else {
mutex_unlock(&kvm->slots_arch_lock);
}
return r;
}
/*
* For DELETE and MOVE, the working slot is now active as the INVALID
* version of the old slot. MOVE is particularly special as it reuses
* the old slot and returns a copy of the old slot (in working_slot).
* For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
* old slot is detached but otherwise preserved.
*/
if (change == KVM_MR_CREATE)
kvm_create_memslot(kvm, new);
else if (change == KVM_MR_DELETE)
kvm_delete_memslot(kvm, old, invalid_slot);
else if (change == KVM_MR_MOVE)
kvm_move_memslot(kvm, old, new, invalid_slot);
else if (change == KVM_MR_FLAGS_ONLY)
kvm_update_flags_memslot(kvm, old, new);
else
BUG();
/* Free the temporary INVALID slot used for DELETE and MOVE. */
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
kfree(invalid_slot);
/*
* No need to refresh new->arch, changes after dropping slots_arch_lock
* will directly hit the final, active memsot. Architectures are
* responsible for knowing that new->arch may be stale.
*/
kvm_commit_memory_region(kvm, old, new, change);
return 0;
}
static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
gfn_t start, gfn_t end)
{
struct kvm_memslot_iter iter;
kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
if (iter.slot->id != id)
return true;
}
return false;
}
/*
* Allocate some memory and give it an address in the guest physical address
* space.
*
* Discontiguous memory is allowed, mostly for framebuffers.
*
* Must be called holding kvm->slots_lock for write.
*/
int __kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem)
{
struct kvm_memory_slot *old, *new;
struct kvm_memslots *slots;
enum kvm_mr_change change;
unsigned long npages;
gfn_t base_gfn;
int as_id, id;
int r;
r = check_memory_region_flags(mem);
if (r)
return r;
as_id = mem->slot >> 16;
id = (u16)mem->slot;
/* General sanity checks */
if ((mem->memory_size & (PAGE_SIZE - 1)) ||
(mem->memory_size != (unsigned long)mem->memory_size))
return -EINVAL;
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
return -EINVAL;
/* We can read the guest memory with __xxx_user() later on. */
if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
(mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
!access_ok((void __user *)(unsigned long)mem->userspace_addr,
mem->memory_size))
return -EINVAL;
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
return -EINVAL;
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
return -EINVAL;
if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
return -EINVAL;
slots = __kvm_memslots(kvm, as_id);
/*
* Note, the old memslot (and the pointer itself!) may be invalidated
* and/or destroyed by kvm_set_memslot().
*/
old = id_to_memslot(slots, id);
if (!mem->memory_size) {
if (!old || !old->npages)
return -EINVAL;
if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
return -EIO;
return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
}
base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
npages = (mem->memory_size >> PAGE_SHIFT);
if (!old || !old->npages) {
change = KVM_MR_CREATE;
/*
* To simplify KVM internals, the total number of pages across
* all memslots must fit in an unsigned long.
*/
if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
return -EINVAL;
} else { /* Modify an existing slot. */
if ((mem->userspace_addr != old->userspace_addr) ||
(npages != old->npages) ||
((mem->flags ^ old->flags) & KVM_MEM_READONLY))
return -EINVAL;
if (base_gfn != old->base_gfn)
change = KVM_MR_MOVE;
else if (mem->flags != old->flags)
change = KVM_MR_FLAGS_ONLY;
else /* Nothing to change. */
return 0;
}
if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
return -EEXIST;
/* Allocate a slot that will persist in the memslot. */
new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
if (!new)
return -ENOMEM;
new->as_id = as_id;
new->id = id;
new->base_gfn = base_gfn;
new->npages = npages;
new->flags = mem->flags;
new->userspace_addr = mem->userspace_addr;
r = kvm_set_memslot(kvm, old, new, change);
if (r)
kfree(new);
return r;
}
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
int kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem)
{
int r;
mutex_lock(&kvm->slots_lock);
r = __kvm_set_memory_region(kvm, mem);
mutex_unlock(&kvm->slots_lock);
return r;
}
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
return -EINVAL;
return kvm_set_memory_region(kvm, mem);
}
#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
/**
* kvm_get_dirty_log - get a snapshot of dirty pages
* @kvm: pointer to kvm instance
* @log: slot id and address to which we copy the log
* @is_dirty: set to '1' if any dirty pages were found
* @memslot: set to the associated memslot, always valid on success
*/
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
int *is_dirty, struct kvm_memory_slot **memslot)
{
struct kvm_memslots *slots;
int i, as_id, id;
unsigned long n;
unsigned long any = 0;
/* Dirty ring tracking is exclusive to dirty log tracking */
if (kvm->dirty_ring_size)
return -ENXIO;
*memslot = NULL;
*is_dirty = 0;
as_id = log->slot >> 16;
id = (u16)log->slot;
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
return -EINVAL;
slots = __kvm_memslots(kvm, as_id);
*memslot = id_to_memslot(slots, id);
if (!(*memslot) || !(*memslot)->dirty_bitmap)
return -ENOENT;
kvm_arch_sync_dirty_log(kvm, *memslot);
n = kvm_dirty_bitmap_bytes(*memslot);
for (i = 0; !any && i < n/sizeof(long); ++i)
any = (*memslot)->dirty_bitmap[i];
if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
return -EFAULT;
if (any)
*is_dirty = 1;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
/**
* kvm_get_dirty_log_protect - get a snapshot of dirty pages
* and reenable dirty page tracking for the corresponding pages.
* @kvm: pointer to kvm instance
* @log: slot id and address to which we copy the log
*
* We need to keep it in mind that VCPU threads can write to the bitmap
* concurrently. So, to avoid losing track of dirty pages we keep the
* following order:
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Upon return caller flushes TLB's if needed.
*
* Between 2 and 4, the guest may write to the page using the remaining TLB
* entry. This is not a problem because the page is reported dirty using
* the snapshot taken before and step 4 ensures that writes done after
* exiting to userspace will be logged for the next call.
*
*/
static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int i, as_id, id;
unsigned long n;
unsigned long *dirty_bitmap;
unsigned long *dirty_bitmap_buffer;
bool flush;
/* Dirty ring tracking is exclusive to dirty log tracking */
if (kvm->dirty_ring_size)
return -ENXIO;
as_id = log->slot >> 16;
id = (u16)log->slot;
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
return -EINVAL;
slots = __kvm_memslots(kvm, as_id);
memslot = id_to_memslot(slots, id);
if (!memslot || !memslot->dirty_bitmap)
return -ENOENT;
dirty_bitmap = memslot->dirty_bitmap;
kvm_arch_sync_dirty_log(kvm, memslot);
n = kvm_dirty_bitmap_bytes(memslot);
flush = false;
if (kvm->manual_dirty_log_protect) {
/*
* Unlike kvm_get_dirty_log, we always return false in *flush,
* because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
* is some code duplication between this function and
* kvm_get_dirty_log, but hopefully all architecture
* transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
* can be eliminated.
*/
dirty_bitmap_buffer = dirty_bitmap;
} else {
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
memset(dirty_bitmap_buffer, 0, n);
KVM_MMU_LOCK(kvm);
for (i = 0; i < n / sizeof(long); i++) {
unsigned long mask;
gfn_t offset;
if (!dirty_bitmap[i])
continue;
flush = true;
mask = xchg(&dirty_bitmap[i], 0);
dirty_bitmap_buffer[i] = mask;
offset = i * BITS_PER_LONG;
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
offset, mask);
}
KVM_MMU_UNLOCK(kvm);
}
if (flush)
kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
return -EFAULT;
return 0;
}
/**
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
* Steps 1-4 below provide general overview of dirty page logging. See
* kvm_get_dirty_log_protect() function description for additional details.
*
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
* always flush the TLB (step 4) even if previous step failed and the dirty
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
* writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Flush TLB's if needed.
*/
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log_protect(kvm, log);
mutex_unlock(&kvm->slots_lock);
return r;
}
/**
* kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
* and reenable dirty page tracking for the corresponding pages.
* @kvm: pointer to kvm instance
* @log: slot id and address from which to fetch the bitmap of dirty pages
*/
static int kvm_clear_dirty_log_protect(struct kvm *kvm,
struct kvm_clear_dirty_log *log)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int as_id, id;
gfn_t offset;
unsigned long i, n;
unsigned long *dirty_bitmap;
unsigned long *dirty_bitmap_buffer;
bool flush;
/* Dirty ring tracking is exclusive to dirty log tracking */
if (kvm->dirty_ring_size)
return -ENXIO;
as_id = log->slot >> 16;
id = (u16)log->slot;
if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
return -EINVAL;
if (log->first_page & 63)
return -EINVAL;
slots = __kvm_memslots(kvm, as_id);
memslot = id_to_memslot(slots, id);
if (!memslot || !memslot->dirty_bitmap)
return -ENOENT;
dirty_bitmap = memslot->dirty_bitmap;
n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
if (log->first_page > memslot->npages ||
log->num_pages > memslot->npages - log->first_page ||
(log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
return -EINVAL;
kvm_arch_sync_dirty_log(kvm, memslot);
flush = false;
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
return -EFAULT;
KVM_MMU_LOCK(kvm);
for (offset = log->first_page, i = offset / BITS_PER_LONG,
n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
i++, offset += BITS_PER_LONG) {
unsigned long mask = *dirty_bitmap_buffer++;
atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
if (!mask)
continue;
mask &= atomic_long_fetch_andnot(mask, p);
/*
* mask contains the bits that really have been cleared. This
* never includes any bits beyond the length of the memslot (if
* the length is not aligned to 64 pages), therefore it is not
* a problem if userspace sets them in log->dirty_bitmap.
*/
if (mask) {
flush = true;
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
offset, mask);
}
}
KVM_MMU_UNLOCK(kvm);
if (flush)
kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
return 0;
}
static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
struct kvm_clear_dirty_log *log)
{
int r;
mutex_lock(&kvm->slots_lock);
r = kvm_clear_dirty_log_protect(kvm, log);
mutex_unlock(&kvm->slots_lock);
return r;
}
#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
}
EXPORT_SYMBOL_GPL(gfn_to_memslot);
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
u64 gen = slots->generation;
struct kvm_memory_slot *slot;
/*
* This also protects against using a memslot from a different address space,
* since different address spaces have different generation numbers.
*/
if (unlikely(gen != vcpu->last_used_slot_gen)) {
vcpu->last_used_slot = NULL;
vcpu->last_used_slot_gen = gen;
}
slot = try_get_memslot(vcpu->last_used_slot, gfn);
if (slot)
return slot;
/*
* Fall back to searching all memslots. We purposely use
* search_memslots() instead of __gfn_to_memslot() to avoid
* thrashing the VM-wide last_used_slot in kvm_memslots.
*/
slot = search_memslots(slots, gfn, false);
if (slot) {
vcpu->last_used_slot = slot;
return slot;
}
return NULL;
}
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
return kvm_is_visible_memslot(memslot);
}
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
return kvm_is_visible_memslot(memslot);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct vm_area_struct *vma;
unsigned long addr, size;
size = PAGE_SIZE;
addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
if (kvm_is_error_hva(addr))
return PAGE_SIZE;
mmap_read_lock(current->mm);
vma = find_vma(current->mm, addr);
if (!vma)
goto out;
size = vma_kernel_pagesize(vma);
out:
mmap_read_unlock(current->mm);
return size;
}
static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
{
return slot->flags & KVM_MEM_READONLY;
}
static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages, bool write)
{
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
return KVM_HVA_ERR_BAD;
if (memslot_is_readonly(slot) && write)
return KVM_HVA_ERR_RO_BAD;
if (nr_pages)
*nr_pages = slot->npages - (gfn - slot->base_gfn);
return __gfn_to_hva_memslot(slot, gfn);
}
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages)
{
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
}
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
gfn_t gfn)
{
return gfn_to_hva_many(slot, gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_hva);
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
/*
* Return the hva of a @gfn and the R/W attribute if possible.
*
* @slot: the kvm_memory_slot which contains @gfn
* @gfn: the gfn to be translated
* @writable: used to return the read/write attribute of the @slot if the hva
* is valid and @writable is not NULL
*/
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
gfn_t gfn, bool *writable)
{
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
if (!kvm_is_error_hva(hva) && writable)
*writable = !memslot_is_readonly(slot);
return hva;
}
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
{
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
return gfn_to_hva_memslot_prot(slot, gfn, writable);
}
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
{
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
return gfn_to_hva_memslot_prot(slot, gfn, writable);
}
static inline int check_user_page_hwpoison(unsigned long addr)
{
int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
rc = get_user_pages(addr, 1, flags, NULL, NULL);
return rc == -EHWPOISON;
}
/*
* The fast path to get the writable pfn which will be stored in @pfn,
* true indicates success, otherwise false is returned. It's also the
* only part that runs if we can in atomic context.
*/
static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
bool *writable, kvm_pfn_t *pfn)
{
struct page *page[1];
/*
* Fast pin a writable pfn only if it is a write fault request
* or the caller allows to map a writable pfn for a read fault
* request.
*/
if (!(write_fault || writable))
return false;
if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
*pfn = page_to_pfn(page[0]);
if (writable)
*writable = true;
return true;
}
return false;
}
/*
* The slow path to get the pfn of the specified host virtual address,
* 1 indicates success, -errno is returned if error is detected.
*/
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
bool *writable, kvm_pfn_t *pfn)
{
unsigned int flags = FOLL_HWPOISON;
struct page *page;
int npages = 0;
might_sleep();
if (writable)
*writable = write_fault;
if (write_fault)
flags |= FOLL_WRITE;
if (async)
flags |= FOLL_NOWAIT;
npages = get_user_pages_unlocked(addr, 1, &page, flags);
if (npages != 1)
return npages;
/* map read fault as writable if possible */
if (unlikely(!write_fault) && writable) {
struct page *wpage;
if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
*writable = true;
put_page(page);
page = wpage;
}
}
*pfn = page_to_pfn(page);
return npages;
}
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
{
if (unlikely(!(vma->vm_flags & VM_READ)))
return false;
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
return false;
return true;
}
static int kvm_try_get_pfn(kvm_pfn_t pfn)
{
if (kvm_is_reserved_pfn(pfn))
return 1;
return get_page_unless_zero(pfn_to_page(pfn));
}
static int hva_to_pfn_remapped(struct vm_area_struct *vma,
unsigned long addr, bool write_fault,
bool *writable, kvm_pfn_t *p_pfn)
{
kvm_pfn_t pfn;
pte_t *ptep;
spinlock_t *ptl;
int r;
r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
if (r) {
/*
* get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
* not call the fault handler, so do it here.
*/
bool unlocked = false;
r = fixup_user_fault(current->mm, addr,
(write_fault ? FAULT_FLAG_WRITE : 0),
&unlocked);
if (unlocked)
return -EAGAIN;
if (r)
return r;
r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
if (r)
return r;
}
if (write_fault && !pte_write(*ptep)) {
pfn = KVM_PFN_ERR_RO_FAULT;
goto out;
}
if (writable)
*writable = pte_write(*ptep);
pfn = pte_pfn(*ptep);
/*
* Get a reference here because callers of *hva_to_pfn* and
* *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
* returned pfn. This is only needed if the VMA has VM_MIXEDMAP
* set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
* simply do nothing for reserved pfns.
*
* Whoever called remap_pfn_range is also going to call e.g.
* unmap_mapping_range before the underlying pages are freed,
* causing a call to our MMU notifier.
*
* Certain IO or PFNMAP mappings can be backed with valid
* struct pages, but be allocated without refcounting e.g.,
* tail pages of non-compound higher order allocations, which
* would then underflow the refcount when the caller does the
* required put_page. Don't allow those pages here.
*/
if (!kvm_try_get_pfn(pfn))
r = -EFAULT;
out:
pte_unmap_unlock(ptep, ptl);
*p_pfn = pfn;
return r;
}
/*
* Pin guest page in memory and return its pfn.
* @addr: host virtual address which maps memory to the guest
* @atomic: whether this function can sleep
* @async: whether this function need to wait IO complete if the
* host page is not in the memory
* @write_fault: whether we should get a writable host page
* @writable: whether it allows to map a writable host page for !@write_fault
*
* The function will map a writable host page for these two cases:
* 1): @write_fault = true
* 2): @write_fault = false && @writable, @writable will tell the caller
* whether the mapping is writable.
*/
kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
bool write_fault, bool *writable)
{
struct vm_area_struct *vma;
kvm_pfn_t pfn = 0;
int npages, r;
/* we can do it either atomically or asynchronously, not both */
BUG_ON(atomic && async);
if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
return pfn;
if (atomic)
return KVM_PFN_ERR_FAULT;
npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
if (npages == 1)
return pfn;
mmap_read_lock(current->mm);
if (npages == -EHWPOISON ||
(!async && check_user_page_hwpoison(addr))) {
pfn = KVM_PFN_ERR_HWPOISON;
goto exit;
}
retry:
vma = vma_lookup(current->mm, addr);
if (vma == NULL)
pfn = KVM_PFN_ERR_FAULT;
else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
if (r == -EAGAIN)
goto retry;
if (r < 0)
pfn = KVM_PFN_ERR_FAULT;
} else {
if (async && vma_is_valid(vma, write_fault))
*async = true;
pfn = KVM_PFN_ERR_FAULT;
}
exit:
mmap_read_unlock(current->mm);
return pfn;
}
kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
bool atomic, bool *async, bool write_fault,
bool *writable, hva_t *hva)
{
unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
if (hva)
*hva = addr;
if (addr == KVM_HVA_ERR_RO_BAD) {
if (writable)
*writable = false;
return KVM_PFN_ERR_RO_FAULT;
}
if (kvm_is_error_hva(addr)) {
if (writable)
*writable = false;
return KVM_PFN_NOSLOT;
}
/* Do not map writable pfn in the readonly memslot. */
if (writable && memslot_is_readonly(slot)) {
*writable = false;
writable = NULL;
}
return hva_to_pfn(addr, atomic, async, write_fault,
writable);
}
EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
bool *writable)
{
return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
write_fault, writable, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
{
return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
{
return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
}
EXPORT_SYMBOL_GPL(gfn_to_pfn);
kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
struct page **pages, int nr_pages)
{
unsigned long addr;
gfn_t entry = 0;
addr = gfn_to_hva_many(slot, gfn, &entry);
if (kvm_is_error_hva(addr))
return -1;
if (entry < nr_pages)
return 0;
return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
}
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
{
if (is_error_noslot_pfn(pfn))
return KVM_ERR_PTR_BAD_PAGE;
if (kvm_is_reserved_pfn(pfn)) {
WARN_ON(1);
return KVM_ERR_PTR_BAD_PAGE;
}
return pfn_to_page(pfn);
}
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
kvm_pfn_t pfn;
pfn = gfn_to_pfn(kvm, gfn);
return kvm_pfn_to_page(pfn);
}
EXPORT_SYMBOL_GPL(gfn_to_page);
void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
{
if (pfn == 0)
return;
if (dirty)
kvm_release_pfn_dirty(pfn);
else
kvm_release_pfn_clean(pfn);
}
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
{
kvm_pfn_t pfn;
void *hva = NULL;
struct page *page = KVM_UNMAPPED_PAGE;
if (!map)
return -EINVAL;
pfn = gfn_to_pfn(vcpu->kvm, gfn);
if (is_error_noslot_pfn(pfn))
return -EINVAL;
if (pfn_valid(pfn)) {
page = pfn_to_page(pfn);
hva = kmap(page);
#ifdef CONFIG_HAS_IOMEM
} else {
hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
#endif
}
if (!hva)
return -EFAULT;
map->page = page;
map->hva = hva;
map->pfn = pfn;
map->gfn = gfn;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_map);
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
{
if (!map)
return;
if (!map->hva)
return;
if (map->page != KVM_UNMAPPED_PAGE)
kunmap(map->page);
#ifdef CONFIG_HAS_IOMEM
else
memunmap(map->hva);
#endif
if (dirty)
kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
kvm_release_pfn(map->pfn, dirty);
map->hva = NULL;
map->page = NULL;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
{
kvm_pfn_t pfn;
pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
return kvm_pfn_to_page(pfn);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
void kvm_release_page_clean(struct page *page)
{
WARN_ON(is_error_page(page));
kvm_release_pfn_clean(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
void kvm_release_pfn_clean(kvm_pfn_t pfn)
{
if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
put_page(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
void kvm_release_page_dirty(struct page *page)
{
WARN_ON(is_error_page(page));
kvm_release_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
void kvm_release_pfn_dirty(kvm_pfn_t pfn)
{
kvm_set_pfn_dirty(pfn);
kvm_release_pfn_clean(pfn);
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
void kvm_set_pfn_dirty(kvm_pfn_t pfn)
{
if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
SetPageDirty(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
void kvm_set_pfn_accessed(kvm_pfn_t pfn)
{
if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
mark_page_accessed(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
static int next_segment(unsigned long len, int offset)
{
if (len > PAGE_SIZE - offset)
return PAGE_SIZE - offset;
else
return len;
}
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
void *data, int offset, int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_from_user(data, (void __user *)addr + offset, len);
if (r)
return -EFAULT;
return 0;
}
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len)
{
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
return __kvm_read_guest_page(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
int offset, int len)
{
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
return __kvm_read_guest_page(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest);
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
void *data, int offset, unsigned long len)
{
int r;
unsigned long addr;
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
pagefault_disable();
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
pagefault_enable();
if (r)
return -EFAULT;
return 0;
}
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
void *data, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
int offset = offset_in_page(gpa);
return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
static int __kvm_write_guest_page(struct kvm *kvm,
struct kvm_memory_slot *memslot, gfn_t gfn,
const void *data, int offset, int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva_memslot(memslot, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_to_user((void __user *)addr + offset, data, len);
if (r)
return -EFAULT;
mark_page_dirty_in_slot(kvm, memslot, gfn);
return 0;
}
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
const void *data, int offset, int len)
{
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
const void *data, int offset, int len)
{
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest);
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
struct gfn_to_hva_cache *ghc,
gpa_t gpa, unsigned long len)
{
int offset = offset_in_page(gpa);
gfn_t start_gfn = gpa >> PAGE_SHIFT;
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
gfn_t nr_pages_avail;
/* Update ghc->generation before performing any error checks. */
ghc->generation = slots->generation;
if (start_gfn > end_gfn) {
ghc->hva = KVM_HVA_ERR_BAD;
return -EINVAL;
}
/*
* If the requested region crosses two memslots, we still
* verify that the entire region is valid here.
*/
for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
ghc->memslot = __gfn_to_memslot(slots, start_gfn);
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
&nr_pages_avail);
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
}
/* Use the slow path for cross page reads and writes. */
if (nr_pages_needed == 1)
ghc->hva += offset;
else
ghc->memslot = NULL;
ghc->gpa = gpa;
ghc->len = len;
return 0;
}
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
gpa_t gpa, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
}
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
int r;
gpa_t gpa = ghc->gpa + offset;
if (WARN_ON_ONCE(len + offset > ghc->len))
return -EINVAL;
if (slots->generation != ghc->generation) {
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
return -EFAULT;
}
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
if (unlikely(!ghc->memslot))
return kvm_write_guest(kvm, gpa, data, len);
r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
if (r)
return -EFAULT;
mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len)
{
return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
}
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
int r;
gpa_t gpa = ghc->gpa + offset;
if (WARN_ON_ONCE(len + offset > ghc->len))
return -EINVAL;
if (slots->generation != ghc->generation) {
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
return -EFAULT;
}
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
if (unlikely(!ghc->memslot))
return kvm_read_guest(kvm, gpa, data, len);
r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len)
{
return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
{
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_clear_guest);
void mark_page_dirty_in_slot(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
gfn_t gfn)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
return;
#endif
if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
unsigned long rel_gfn = gfn - memslot->base_gfn;
u32 slot = (memslot->as_id << 16) | memslot->id;
if (kvm->dirty_ring_size)
kvm_dirty_ring_push(&vcpu->dirty_ring,
slot, rel_gfn);
else
set_bit_le(rel_gfn, memslot->dirty_bitmap);
}
}
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot;
memslot = gfn_to_memslot(kvm, gfn);
mark_page_dirty_in_slot(kvm, memslot, gfn);
}
EXPORT_SYMBOL_GPL(mark_page_dirty);
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct kvm_memory_slot *memslot;
memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
{
if (!vcpu->sigset_active)
return;
/*
* This does a lockless modification of ->real_blocked, which is fine
* because, only current can change ->real_blocked and all readers of
* ->real_blocked don't care as long ->real_blocked is always a subset
* of ->blocked.
*/
sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
}
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
{
if (!vcpu->sigset_active)
return;
sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
sigemptyset(&current->real_blocked);
}
static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
{
unsigned int old, val, grow, grow_start;
old = val = vcpu->halt_poll_ns;
grow_start = READ_ONCE(halt_poll_ns_grow_start);
grow = READ_ONCE(halt_poll_ns_grow);
if (!grow)
goto out;
val *= grow;
if (val < grow_start)
val = grow_start;
if (val > vcpu->kvm->max_halt_poll_ns)
val = vcpu->kvm->max_halt_poll_ns;
vcpu->halt_poll_ns = val;
out:
trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
}
static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
{
unsigned int old, val, shrink, grow_start;
old = val = vcpu->halt_poll_ns;
shrink = READ_ONCE(halt_poll_ns_shrink);
grow_start = READ_ONCE(halt_poll_ns_grow_start);
if (shrink == 0)
val = 0;
else
val /= shrink;
if (val < grow_start)
val = 0;
vcpu->halt_poll_ns = val;
trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
}
static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
{
int ret = -EINTR;
int idx = srcu_read_lock(&vcpu->kvm->srcu);
if (kvm_arch_vcpu_runnable(vcpu)) {
kvm_make_request(KVM_REQ_UNHALT, vcpu);
goto out;
}
if (kvm_cpu_has_pending_timer(vcpu))
goto out;
if (signal_pending(current))
goto out;
if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
goto out;
ret = 0;
out:
srcu_read_unlock(&vcpu->kvm->srcu, idx);
return ret;
}
/*
* Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
* pending. This is mostly used when halting a vCPU, but may also be used
* directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
*/
bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
{
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
bool waited = false;
vcpu->stat.generic.blocking = 1;
kvm_arch_vcpu_blocking(vcpu);
prepare_to_rcuwait(wait);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (kvm_vcpu_check_block(vcpu) < 0)
break;
waited = true;
schedule();
}
finish_rcuwait(wait);
kvm_arch_vcpu_unblocking(vcpu);
vcpu->stat.generic.blocking = 0;
return waited;
}
static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
ktime_t end, bool success)
{
struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
++vcpu->stat.generic.halt_attempted_poll;
if (success) {
++vcpu->stat.generic.halt_successful_poll;
if (!vcpu_valid_wakeup(vcpu))
++vcpu->stat.generic.halt_poll_invalid;
stats->halt_poll_success_ns += poll_ns;
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
} else {
stats->halt_poll_fail_ns += poll_ns;
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
}
}
/*
* Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
* polling is enabled, busy wait for a short time before blocking to avoid the
* expensive block+unblock sequence if a wake event arrives soon after the vCPU
* is halted.
*/
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
{
bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
ktime_t start, cur, poll_end;
bool waited = false;
u64 halt_ns;
start = cur = poll_end = ktime_get();
if (do_halt_poll) {
ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
do {
/*
* This sets KVM_REQ_UNHALT if an interrupt
* arrives.
*/
if (kvm_vcpu_check_block(vcpu) < 0)
goto out;
cpu_relax();
poll_end = cur = ktime_get();
} while (kvm_vcpu_can_poll(cur, stop));
}
waited = kvm_vcpu_block(vcpu);
cur = ktime_get();
if (waited) {
vcpu->stat.generic.halt_wait_ns +=
ktime_to_ns(cur) - ktime_to_ns(poll_end);
KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
ktime_to_ns(cur) - ktime_to_ns(poll_end));
}
out:
/* The total time the vCPU was "halted", including polling time. */
halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
/*
* Note, halt-polling is considered successful so long as the vCPU was
* never actually scheduled out, i.e. even if the wake event arrived
* after of the halt-polling loop itself, but before the full wait.
*/
if (do_halt_poll)
update_halt_poll_stats(vcpu, start, poll_end, !waited);
if (halt_poll_allowed) {
if (!vcpu_valid_wakeup(vcpu)) {
shrink_halt_poll_ns(vcpu);
} else if (vcpu->kvm->max_halt_poll_ns) {
if (halt_ns <= vcpu->halt_poll_ns)
;
/* we had a long block, shrink polling */
else if (vcpu->halt_poll_ns &&
halt_ns > vcpu->kvm->max_halt_poll_ns)
shrink_halt_poll_ns(vcpu);
/* we had a short halt and our poll time is too small */
else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
halt_ns < vcpu->kvm->max_halt_poll_ns)
grow_halt_poll_ns(vcpu);
} else {
vcpu->halt_poll_ns = 0;
}
}
trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
{
if (__kvm_vcpu_wake_up(vcpu)) {
WRITE_ONCE(vcpu->ready, true);
++vcpu->stat.generic.halt_wakeup;
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
#ifndef CONFIG_S390
/*
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
*/
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int me, cpu;
if (kvm_vcpu_wake_up(vcpu))
return;
me = get_cpu();
/*
* The only state change done outside the vcpu mutex is IN_GUEST_MODE
* to EXITING_GUEST_MODE. Therefore the moderately expensive "should
* kick" check does not need atomic operations if kvm_vcpu_kick is used
* within the vCPU thread itself.
*/
if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
if (vcpu->mode == IN_GUEST_MODE)
WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
goto out;
}
/*
* Note, the vCPU could get migrated to a different pCPU at any point
* after kvm_arch_vcpu_should_kick(), which could result in sending an
* IPI to the previous pCPU. But, that's ok because the purpose of the
* IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
* vCPU also requires it to leave IN_GUEST_MODE.
*/
if (kvm_arch_vcpu_should_kick(vcpu)) {
cpu = READ_ONCE(vcpu->cpu);
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
smp_send_reschedule(cpu);
}
out:
put_cpu();
}
EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
#endif /* !CONFIG_S390 */
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
{
struct pid *pid;
struct task_struct *task = NULL;
int ret = 0;
rcu_read_lock();
pid = rcu_dereference(target->pid);
if (pid)
task = get_pid_task(pid, PIDTYPE_PID);
rcu_read_unlock();
if (!task)
return ret;
ret = yield_to(task, 1);
put_task_struct(task);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
/*
* Helper that checks whether a VCPU is eligible for directed yield.
* Most eligible candidate to yield is decided by following heuristics:
*
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
* (preempted lock holder), indicated by @in_spin_loop.
* Set at the beginning and cleared at the end of interception/PLE handler.
*
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
* chance last time (mostly it has become eligible now since we have probably
* yielded to lockholder in last iteration. This is done by toggling
* @dy_eligible each time a VCPU checked for eligibility.)
*
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
* to preempted lock-holder could result in wrong VCPU selection and CPU
* burning. Giving priority for a potential lock-holder increases lock
* progress.
*
* Since algorithm is based on heuristics, accessing another VCPU data without
* locking does not harm. It may result in trying to yield to same VCPU, fail
* and continue with next VCPU and so on.
*/
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
bool eligible;
eligible = !vcpu->spin_loop.in_spin_loop ||
vcpu->spin_loop.dy_eligible;
if (vcpu->spin_loop.in_spin_loop)
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
return eligible;
#else
return true;
#endif
}
/*
* Unlike kvm_arch_vcpu_runnable, this function is called outside
* a vcpu_load/vcpu_put pair. However, for most architectures
* kvm_arch_vcpu_runnable does not require vcpu_load.
*/
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
return kvm_arch_vcpu_runnable(vcpu);
}
static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
{
if (kvm_arch_dy_runnable(vcpu))
return true;
#ifdef CONFIG_KVM_ASYNC_PF
if (!list_empty_careful(&vcpu->async_pf.done))
return true;
#endif
return false;
}
bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
{
return false;
}
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
{
struct kvm *kvm = me->kvm;
struct kvm_vcpu *vcpu;
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
unsigned long i;
int yielded = 0;
int try = 3;
int pass;
kvm_vcpu_set_in_spin_loop(me, true);
/*
* We boost the priority of a VCPU that is runnable but not
* currently running, because it got preempted by something
* else and called schedule in __vcpu_run. Hopefully that
* VCPU is holding the lock that we need and will release it.
* We approximate round-robin by starting at the last boosted VCPU.
*/
for (pass = 0; pass < 2 && !yielded && try; pass++) {
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!pass && i <= last_boosted_vcpu) {
i = last_boosted_vcpu;
continue;
} else if (pass && i > last_boosted_vcpu)
break;
if (!READ_ONCE(vcpu->ready))
continue;
if (vcpu == me)
continue;
if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
continue;
if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
!kvm_arch_dy_has_pending_interrupt(vcpu) &&
!kvm_arch_vcpu_in_kernel(vcpu))
continue;
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
continue;
yielded = kvm_vcpu_yield_to(vcpu);
if (yielded > 0) {
kvm->last_boosted_vcpu = i;
break;
} else if (yielded < 0) {
try--;
if (!try)
break;
}
}
}
kvm_vcpu_set_in_spin_loop(me, false);
/* Ensure vcpu is not eligible during next spinloop */
kvm_vcpu_set_dy_eligible(me, false);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
{
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
(pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
kvm->dirty_ring_size / PAGE_SIZE);
#else
return false;
#endif
}
static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
{
struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff == 0)
page = virt_to_page(vcpu->run);
#ifdef CONFIG_X86
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
page = virt_to_page(vcpu->arch.pio_data);
#endif
#ifdef CONFIG_KVM_MMIO
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
#endif
else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
page = kvm_dirty_ring_get_page(
&vcpu->dirty_ring,
vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
else
return kvm_arch_vcpu_fault(vcpu, vmf);
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
.fault = kvm_vcpu_fault,
};
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
struct kvm_vcpu *vcpu = file->private_data;
unsigned long pages = vma_pages(vma);
if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
return -EINVAL;
vma->vm_ops = &kvm_vcpu_vm_ops;
return 0;
}
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
{
struct kvm_vcpu *vcpu = filp->private_data;
kvm_put_kvm(vcpu->kvm);
return 0;
}
static const struct file_operations kvm_vcpu_fops = {
.release = kvm_vcpu_release,
.unlocked_ioctl = kvm_vcpu_ioctl,
.mmap = kvm_vcpu_mmap,
.llseek = noop_llseek,
KVM_COMPAT(kvm_vcpu_compat_ioctl),
};
/*
* Allocates an inode for the vcpu.
*/
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
char name[8 + 1 + ITOA_MAX_LEN + 1];
snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
}
static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
struct dentry *debugfs_dentry;
char dir_name[ITOA_MAX_LEN * 2];
if (!debugfs_initialized())
return;
snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
debugfs_dentry = debugfs_create_dir(dir_name,
vcpu->kvm->debugfs_dentry);
kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
#endif
}
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
{
int r;
struct kvm_vcpu *vcpu;
struct page *page;
if (id >= KVM_MAX_VCPU_IDS)
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus == KVM_MAX_VCPUS) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->created_vcpus++;
mutex_unlock(&kvm->lock);
r = kvm_arch_vcpu_precreate(kvm, id);
if (r)
goto vcpu_decrement;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
if (!vcpu) {
r = -ENOMEM;
goto vcpu_decrement;
}
BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto vcpu_free;
}
vcpu->run = page_address(page);
kvm_vcpu_init(vcpu, kvm, id);
r = kvm_arch_vcpu_create(vcpu);
if (r)
goto vcpu_free_run_page;
if (kvm->dirty_ring_size) {
r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
id, kvm->dirty_ring_size);
if (r)
goto arch_vcpu_destroy;
}
mutex_lock(&kvm->lock);
if (kvm_get_vcpu_by_id(kvm, id)) {
r = -EEXIST;
goto unlock_vcpu_destroy;
}
vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
BUG_ON(r == -EBUSY);
if (r)
goto unlock_vcpu_destroy;
/* Fill the stats id string for the vcpu */
snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
task_pid_nr(current), id);
/* Now it's all set up, let userspace reach it */
kvm_get_kvm(kvm);
r = create_vcpu_fd(vcpu);
if (r < 0) {
xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
kvm_put_kvm_no_destroy(kvm);
goto unlock_vcpu_destroy;
}
/*
* Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
* pointer before kvm->online_vcpu's incremented value.
*/
smp_wmb();
atomic_inc(&kvm->online_vcpus);
mutex_unlock(&kvm->lock);
kvm_arch_vcpu_postcreate(vcpu);
kvm_create_vcpu_debugfs(vcpu);
return r;
unlock_vcpu_destroy:
mutex_unlock(&kvm->lock);
kvm_dirty_ring_free(&vcpu->dirty_ring);
arch_vcpu_destroy:
kvm_arch_vcpu_destroy(vcpu);
vcpu_free_run_page:
free_page((unsigned long)vcpu->run);
vcpu_free:
kmem_cache_free(kvm_vcpu_cache, vcpu);
vcpu_decrement:
mutex_lock(&kvm->lock);
kvm->created_vcpus--;
mutex_unlock(&kvm->lock);
return r;
}
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
{
if (sigset) {
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
vcpu->sigset_active = 1;
vcpu->sigset = *sigset;
} else
vcpu->sigset_active = 0;
return 0;
}
static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
size_t size, loff_t *offset)
{
struct kvm_vcpu *vcpu = file->private_data;
return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
&kvm_vcpu_stats_desc[0], &vcpu->stat,
sizeof(vcpu->stat), user_buffer, size, offset);
}
static const struct file_operations kvm_vcpu_stats_fops = {
.read = kvm_vcpu_stats_read,
.llseek = noop_llseek,
};
static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
{
int fd;
struct file *file;
char name[15 + ITOA_MAX_LEN + 1];
snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0)
return fd;
file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
if (IS_ERR(file)) {
put_unused_fd(fd);
return PTR_ERR(file);
}
file->f_mode |= FMODE_PREAD;
fd_install(fd, file);
return fd;
}
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
struct kvm_fpu *fpu = NULL;
struct kvm_sregs *kvm_sregs = NULL;
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
return -EIO;
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
return -EINVAL;
/*
* Some architectures have vcpu ioctls that are asynchronous to vcpu
* execution; mutex_lock() would break them.
*/
r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
if (r != -ENOIOCTLCMD)
return r;
if (mutex_lock_killable(&vcpu->mutex))
return -EINTR;
switch (ioctl) {
case KVM_RUN: {
struct pid *oldpid;
r = -EINVAL;
if (arg)
goto out;
oldpid = rcu_access_pointer(vcpu->pid);
if (unlikely(oldpid != task_pid(current))) {
/* The thread running this VCPU changed. */
struct pid *newpid;
r = kvm_arch_vcpu_run_pid_change(vcpu);
if (r)
break;
newpid = get_task_pid(current, PIDTYPE_PID);
rcu_assign_pointer(vcpu->pid, newpid);
if (oldpid)
synchronize_rcu();
put_pid(oldpid);
}
r = kvm_arch_vcpu_ioctl_run(vcpu);
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
break;
}
case KVM_GET_REGS: {
struct kvm_regs *kvm_regs;
r = -ENOMEM;
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
if (!kvm_regs)
goto out;
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
if (r)
goto out_free1;
r = -EFAULT;
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
goto out_free1;
r = 0;
out_free1:
kfree(kvm_regs);
break;
}
case KVM_SET_REGS: {
struct kvm_regs *kvm_regs;
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
if (IS_ERR(kvm_regs)) {
r = PTR_ERR(kvm_regs);
goto out;
}
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
kfree(kvm_regs);
break;
}
case KVM_GET_SREGS: {
kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
GFP_KERNEL_ACCOUNT);
r = -ENOMEM;
if (!kvm_sregs)
goto out;
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS: {
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
if (IS_ERR(kvm_sregs)) {
r = PTR_ERR(kvm_sregs);
kvm_sregs = NULL;
goto out;
}
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
break;
}
case KVM_GET_MP_STATE: {
struct kvm_mp_state mp_state;
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
goto out;
r = 0;
break;
}
case KVM_SET_MP_STATE: {
struct kvm_mp_state mp_state;
r = -EFAULT;
if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
goto out;
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
break;
}
case KVM_TRANSLATE: {
struct kvm_translation tr;
r = -EFAULT;
if (copy_from_user(&tr, argp, sizeof(tr)))
goto out;
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tr, sizeof(tr)))
goto out;
r = 0;
break;
}
case KVM_SET_GUEST_DEBUG: {
struct kvm_guest_debug dbg;
r = -EFAULT;
if (copy_from_user(&dbg, argp, sizeof(dbg)))
goto out;
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
break;
}
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
sigset_t sigset, *p;
p = NULL;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof(kvm_sigmask)))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof(sigset))
goto out;
r = -EFAULT;
if (copy_from_user(&sigset, sigmask_arg->sigset,
sizeof(sigset)))
goto out;
p = &sigset;
}
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
break;
}
case KVM_GET_FPU: {
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
r = -ENOMEM;
if (!fpu)
goto out;
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
goto out;
r = 0;
break;
}
case KVM_SET_FPU: {
fpu = memdup_user(argp, sizeof(*fpu));
if (IS_ERR(fpu)) {
r = PTR_ERR(fpu);
fpu = NULL;
goto out;
}
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
break;
}
case KVM_GET_STATS_FD: {
r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
break;
}
default:
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
}
out:
mutex_unlock(&vcpu->mutex);
kfree(fpu);
kfree(kvm_sregs);
return r;
}
#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = compat_ptr(arg);
int r;
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
return -EIO;
switch (ioctl) {
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
sigset_t sigset;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof(kvm_sigmask)))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof(compat_sigset_t))
goto out;
r = -EFAULT;
if (get_compat_sigset(&sigset,
(compat_sigset_t __user *)sigmask_arg->sigset))
goto out;
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
} else
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
break;
}
default:
r = kvm_vcpu_ioctl(filp, ioctl, arg);
}
out:
return r;
}
#endif
static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct kvm_device *dev = filp->private_data;
if (dev->ops->mmap)
return dev->ops->mmap(dev, vma);
return -ENODEV;
}
static int kvm_device_ioctl_attr(struct kvm_device *dev,
int (*accessor)(struct kvm_device *dev,
struct kvm_device_attr *attr),
unsigned long arg)
{
struct kvm_device_attr attr;
if (!accessor)
return -EPERM;
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
return -EFAULT;
return accessor(dev, &attr);
}
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg)
{
struct kvm_device *dev = filp->private_data;
if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
return -EIO;
switch (ioctl) {
case KVM_SET_DEVICE_ATTR:
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
case KVM_GET_DEVICE_ATTR:
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
case KVM_HAS_DEVICE_ATTR:
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
default:
if (dev->ops->ioctl)
return dev->ops->ioctl(dev, ioctl, arg);
return -ENOTTY;
}
}
static int kvm_device_release(struct inode *inode, struct file *filp)
{
struct kvm_device *dev = filp->private_data;
struct kvm *kvm = dev->kvm;
if (dev->ops->release) {
mutex_lock(&kvm->lock);
list_del(&dev->vm_node);
dev->ops->release(dev);
mutex_unlock(&kvm->lock);
}
kvm_put_kvm(kvm);
return 0;
}
static const struct file_operations kvm_device_fops = {
.unlocked_ioctl = kvm_device_ioctl,
.release = kvm_device_release,
KVM_COMPAT(kvm_device_ioctl),
.mmap = kvm_device_mmap,
};
struct kvm_device *kvm_device_from_filp(struct file *filp)
{
if (filp->f_op != &kvm_device_fops)
return NULL;
return filp->private_data;
}
static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
#ifdef CONFIG_KVM_MPIC
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
#endif
};
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
{
if (type >= ARRAY_SIZE(kvm_device_ops_table))
return -ENOSPC;
if (kvm_device_ops_table[type] != NULL)
return -EEXIST;
kvm_device_ops_table[type] = ops;
return 0;
}
void kvm_unregister_device_ops(u32 type)
{
if (kvm_device_ops_table[type] != NULL)
kvm_device_ops_table[type] = NULL;
}
static int kvm_ioctl_create_device(struct kvm *kvm,
struct kvm_create_device *cd)
{
const struct kvm_device_ops *ops = NULL;
struct kvm_device *dev;
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
int type;
int ret;
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
return -ENODEV;
type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
ops = kvm_device_ops_table[type];
if (ops == NULL)
return -ENODEV;
if (test)
return 0;
dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
if (!dev)
return -ENOMEM;
dev->ops = ops;
dev->kvm = kvm;
mutex_lock(&kvm->lock);
ret = ops->create(dev, type);
if (ret < 0) {
mutex_unlock(&kvm->lock);
kfree(dev);
return ret;
}
list_add(&dev->vm_node, &kvm->devices);
mutex_unlock(&kvm->lock);
if (ops->init)
ops->init(dev);
kvm_get_kvm(kvm);
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
if (ret < 0) {
kvm_put_kvm_no_destroy(kvm);
mutex_lock(&kvm->lock);
list_del(&dev->vm_node);
mutex_unlock(&kvm->lock);
ops->destroy(dev);
return ret;
}
cd->fd = ret;
return 0;
}
static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
{
switch (arg) {
case KVM_CAP_USER_MEMORY:
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
case KVM_CAP_INTERNAL_ERROR_DATA:
#ifdef CONFIG_HAVE_KVM_MSI
case KVM_CAP_SIGNAL_MSI:
#endif
#ifdef CONFIG_HAVE_KVM_IRQFD
case KVM_CAP_IRQFD:
case KVM_CAP_IRQFD_RESAMPLE:
#endif
case KVM_CAP_IOEVENTFD_ANY_LENGTH:
case KVM_CAP_CHECK_EXTENSION_VM:
case KVM_CAP_ENABLE_CAP_VM:
case KVM_CAP_HALT_POLL:
return 1;
#ifdef CONFIG_KVM_MMIO
case KVM_CAP_COALESCED_MMIO:
return KVM_COALESCED_MMIO_PAGE_OFFSET;
case KVM_CAP_COALESCED_PIO:
return 1;
#endif
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
return KVM_DIRTY_LOG_MANUAL_CAPS;
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
case KVM_CAP_IRQ_ROUTING:
return KVM_MAX_IRQ_ROUTES;
#endif
#if KVM_ADDRESS_SPACE_NUM > 1
case KVM_CAP_MULTI_ADDRESS_SPACE:
return KVM_ADDRESS_SPACE_NUM;
#endif
case KVM_CAP_NR_MEMSLOTS:
return KVM_USER_MEM_SLOTS;
case KVM_CAP_DIRTY_LOG_RING:
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
#else
return 0;
#endif
case KVM_CAP_BINARY_STATS_FD:
return 1;
default:
break;
}
return kvm_vm_ioctl_check_extension(kvm, arg);
}
static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
{
int r;
if (!KVM_DIRTY_LOG_PAGE_OFFSET)
return -EINVAL;
/* the size should be power of 2 */
if (!size || (size & (size - 1)))
return -EINVAL;
/* Should be bigger to keep the reserved entries, or a page */
if (size < kvm_dirty_ring_get_rsvd_entries() *
sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
return -EINVAL;
if (size > KVM_DIRTY_RING_MAX_ENTRIES *
sizeof(struct kvm_dirty_gfn))
return -E2BIG;
/* We only allow it to set once */
if (kvm->dirty_ring_size)
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
/* We don't allow to change this value after vcpu created */
r = -EINVAL;
} else {
kvm->dirty_ring_size = size;
r = 0;
}
mutex_unlock(&kvm->lock);
return r;
}
static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
int cleared = 0;
if (!kvm->dirty_ring_size)
return -EINVAL;
mutex_lock(&kvm->slots_lock);
kvm_for_each_vcpu(i, vcpu, kvm)
cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
mutex_unlock(&kvm->slots_lock);
if (cleared)
kvm_flush_remote_tlbs(kvm);
return cleared;
}
int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
return -EINVAL;
}
static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
struct kvm_enable_cap *cap)
{
switch (cap->cap) {
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
if (cap->flags || (cap->args[0] & ~allowed_options))
return -EINVAL;
kvm->manual_dirty_log_protect = cap->args[0];
return 0;
}
#endif
case KVM_CAP_HALT_POLL: {
if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
return -EINVAL;
kvm->max_halt_poll_ns = cap->args[0];
return 0;
}
case KVM_CAP_DIRTY_LOG_RING:
return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
default:
return kvm_vm_ioctl_enable_cap(kvm, cap);
}
}
static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
size_t size, loff_t *offset)
{
struct kvm *kvm = file->private_data;
return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
&kvm_vm_stats_desc[0], &kvm->stat,
sizeof(kvm->stat), user_buffer, size, offset);
}
static const struct file_operations kvm_vm_stats_fops = {
.read = kvm_vm_stats_read,
.llseek = noop_llseek,
};
static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
{
int fd;
struct file *file;
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0)
return fd;
file = anon_inode_getfile("kvm-vm-stats",
&kvm_vm_stats_fops, kvm, O_RDONLY);
if (IS_ERR(file)) {
put_unused_fd(fd);
return PTR_ERR(file);
}
file->f_mode |= FMODE_PREAD;
fd_install(fd, file);
return fd;
}
static long kvm_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
if (kvm->mm != current->mm || kvm->vm_dead)
return -EIO;
switch (ioctl) {
case KVM_CREATE_VCPU:
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
break;
case KVM_ENABLE_CAP: {
struct kvm_enable_cap cap;
r = -EFAULT;
if (copy_from_user(&cap, argp, sizeof(cap)))
goto out;
r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
break;
}
case KVM_SET_USER_MEMORY_REGION: {
struct kvm_userspace_memory_region kvm_userspace_mem;
r = -EFAULT;
if (copy_from_user(&kvm_userspace_mem, argp,
sizeof(kvm_userspace_mem)))
goto out;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, argp, sizeof(log)))
goto out;
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
break;
}
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
case KVM_CLEAR_DIRTY_LOG: {
struct kvm_clear_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, argp, sizeof(log)))
goto out;
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
break;
}
#endif
#ifdef CONFIG_KVM_MMIO
case KVM_REGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof(zone)))
goto out;
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
break;
}
case KVM_UNREGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof(zone)))
goto out;
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
break;
}
#endif
case KVM_IRQFD: {
struct kvm_irqfd data;
r = -EFAULT;
if (copy_from_user(&data, argp, sizeof(data)))
goto out;
r = kvm_irqfd(kvm, &data);
break;
}
case KVM_IOEVENTFD: {
struct kvm_ioeventfd data;
r = -EFAULT;
if (copy_from_user(&data, argp, sizeof(data)))
goto out;
r = kvm_ioeventfd(kvm, &data);
break;
}
#ifdef CONFIG_HAVE_KVM_MSI
case KVM_SIGNAL_MSI: {
struct kvm_msi msi;
r = -EFAULT;
if (copy_from_user(&msi, argp, sizeof(msi)))
goto out;
r = kvm_send_userspace_msi(kvm, &msi);
break;
}
#endif
#ifdef __KVM_HAVE_IRQ_LINE
case KVM_IRQ_LINE_STATUS:
case KVM_IRQ_LINE: {
struct kvm_irq_level irq_event;
r = -EFAULT;
if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
goto out;
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
ioctl == KVM_IRQ_LINE_STATUS);
if (r)
goto out;
r = -EFAULT;
if (ioctl == KVM_IRQ_LINE_STATUS) {
if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
goto out;
}
r = 0;
break;
}
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
case KVM_SET_GSI_ROUTING: {
struct kvm_irq_routing routing;
struct kvm_irq_routing __user *urouting;
struct kvm_irq_routing_entry *entries = NULL;
r = -EFAULT;
if (copy_from_user(&routing, argp, sizeof(routing)))
goto out;
r = -EINVAL;
if (!kvm_arch_can_set_irq_routing(kvm))
goto out;
if (routing.nr > KVM_MAX_IRQ_ROUTES)
goto out;
if (routing.flags)
goto out;
if (routing.nr) {
urouting = argp;
entries = vmemdup_user(urouting->entries,
array_size(sizeof(*entries),
routing.nr));
if (IS_ERR(entries)) {
r = PTR_ERR(entries);
goto out;
}
}
r = kvm_set_irq_routing(kvm, entries, routing.nr,
routing.flags);
kvfree(entries);
break;
}
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
case KVM_CREATE_DEVICE: {
struct kvm_create_device cd;
r = -EFAULT;
if (copy_from_user(&cd, argp, sizeof(cd)))
goto out;
r = kvm_ioctl_create_device(kvm, &cd);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &cd, sizeof(cd)))
goto out;
r = 0;
break;
}
case KVM_CHECK_EXTENSION:
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
break;
case KVM_RESET_DIRTY_RINGS:
r = kvm_vm_ioctl_reset_dirty_pages(kvm);
break;
case KVM_GET_STATS_FD:
r = kvm_vm_ioctl_get_stats_fd(kvm);
break;
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
}
out:
return r;
}
#ifdef CONFIG_KVM_COMPAT
struct compat_kvm_dirty_log {
__u32 slot;
__u32 padding1;
union {
compat_uptr_t dirty_bitmap; /* one bit per page */
__u64 padding2;
};
};
struct compat_kvm_clear_dirty_log {
__u32 slot;
__u32 num_pages;
__u64 first_page;
union {
compat_uptr_t dirty_bitmap; /* one bit per page */
__u64 padding2;
};
};
static long kvm_vm_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
int r;
if (kvm->mm != current->mm || kvm->vm_dead)
return -EIO;
switch (ioctl) {
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
case KVM_CLEAR_DIRTY_LOG: {
struct compat_kvm_clear_dirty_log compat_log;
struct kvm_clear_dirty_log log;
if (copy_from_user(&compat_log, (void __user *)arg,
sizeof(compat_log)))
return -EFAULT;
log.slot = compat_log.slot;
log.num_pages = compat_log.num_pages;
log.first_page = compat_log.first_page;
log.padding2 = compat_log.padding2;
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
break;
}
#endif
case KVM_GET_DIRTY_LOG: {
struct compat_kvm_dirty_log compat_log;
struct kvm_dirty_log log;
if (copy_from_user(&compat_log, (void __user *)arg,
sizeof(compat_log)))
return -EFAULT;
log.slot = compat_log.slot;
log.padding1 = compat_log.padding1;
log.padding2 = compat_log.padding2;
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
break;
}
default:
r = kvm_vm_ioctl(filp, ioctl, arg);
}
return r;
}
#endif
static const struct file_operations kvm_vm_fops = {
.release = kvm_vm_release,
.unlocked_ioctl = kvm_vm_ioctl,
.llseek = noop_llseek,
KVM_COMPAT(kvm_vm_compat_ioctl),
};
bool file_is_kvm(struct file *file)
{
return file && file->f_op == &kvm_vm_fops;
}
EXPORT_SYMBOL_GPL(file_is_kvm);
static int kvm_dev_ioctl_create_vm(unsigned long type)
{
int r;
struct kvm *kvm;
struct file *file;
kvm = kvm_create_vm(type);
if (IS_ERR(kvm))
return PTR_ERR(kvm);
#ifdef CONFIG_KVM_MMIO
r = kvm_coalesced_mmio_init(kvm);
if (r < 0)
goto put_kvm;
#endif
r = get_unused_fd_flags(O_CLOEXEC);
if (r < 0)
goto put_kvm;
snprintf(kvm->stats_id, sizeof(kvm->stats_id),
"kvm-%d", task_pid_nr(current));
file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
if (IS_ERR(file)) {
put_unused_fd(r);
r = PTR_ERR(file);
goto put_kvm;
}
/*
* Don't call kvm_put_kvm anymore at this point; file->f_op is
* already set, with ->release() being kvm_vm_release(). In error
* cases it will be called by the final fput(file) and will take
* care of doing kvm_put_kvm(kvm).
*/
if (kvm_create_vm_debugfs(kvm, r) < 0) {
put_unused_fd(r);
fput(file);
return -ENOMEM;
}
kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
fd_install(r, file);
return r;
put_kvm:
kvm_put_kvm(kvm);
return r;
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
long r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
if (arg)
goto out;
r = KVM_API_VERSION;
break;
case KVM_CREATE_VM:
r = kvm_dev_ioctl_create_vm(arg);
break;
case KVM_CHECK_EXTENSION:
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
break;
case KVM_GET_VCPU_MMAP_SIZE:
if (arg)
goto out;
r = PAGE_SIZE; /* struct kvm_run */
#ifdef CONFIG_X86
r += PAGE_SIZE; /* pio data page */
#endif
#ifdef CONFIG_KVM_MMIO
r += PAGE_SIZE; /* coalesced mmio ring page */
#endif
break;
case KVM_TRACE_ENABLE:
case KVM_TRACE_PAUSE:
case KVM_TRACE_DISABLE:
r = -EOPNOTSUPP;
break;
default:
return kvm_arch_dev_ioctl(filp, ioctl, arg);
}
out:
return r;
}
static struct file_operations kvm_chardev_ops = {
.unlocked_ioctl = kvm_dev_ioctl,
.llseek = noop_llseek,
KVM_COMPAT(kvm_dev_ioctl),
};
static struct miscdevice kvm_dev = {
KVM_MINOR,
"kvm",
&kvm_chardev_ops,
};
static void hardware_enable_nolock(void *junk)
{
int cpu = raw_smp_processor_id();
int r;
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_set_cpu(cpu, cpus_hardware_enabled);
r = kvm_arch_hardware_enable();
if (r) {
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
atomic_inc(&hardware_enable_failed);
pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
}
}
static int kvm_starting_cpu(unsigned int cpu)
{
raw_spin_lock(&kvm_count_lock);
if (kvm_usage_count)
hardware_enable_nolock(NULL);
raw_spin_unlock(&kvm_count_lock);
return 0;
}
static void hardware_disable_nolock(void *junk)
{
int cpu = raw_smp_processor_id();
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
kvm_arch_hardware_disable();
}
static int kvm_dying_cpu(unsigned int cpu)
{
raw_spin_lock(&kvm_count_lock);
if (kvm_usage_count)
hardware_disable_nolock(NULL);
raw_spin_unlock(&kvm_count_lock);
return 0;
}
static void hardware_disable_all_nolock(void)
{
BUG_ON(!kvm_usage_count);
kvm_usage_count--;
if (!kvm_usage_count)
on_each_cpu(hardware_disable_nolock, NULL, 1);
}
static void hardware_disable_all(void)
{
raw_spin_lock(&kvm_count_lock);
hardware_disable_all_nolock();
raw_spin_unlock(&kvm_count_lock);
}
static int hardware_enable_all(void)
{
int r = 0;
raw_spin_lock(&kvm_count_lock);
kvm_usage_count++;
if (kvm_usage_count == 1) {
atomic_set(&hardware_enable_failed, 0);
on_each_cpu(hardware_enable_nolock, NULL, 1);
if (atomic_read(&hardware_enable_failed)) {
hardware_disable_all_nolock();
r = -EBUSY;
}
}
raw_spin_unlock(&kvm_count_lock);
return r;
}
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*
* And Intel TXT required VMX off for all cpu when system shutdown.
*/
pr_info("kvm: exiting hardware virtualization\n");
kvm_rebooting = true;
on_each_cpu(hardware_disable_nolock, NULL, 1);
return NOTIFY_OK;
}
static struct notifier_block kvm_reboot_notifier = {
.notifier_call = kvm_reboot,
.priority = 0,
};
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->range[i].dev;
kvm_iodevice_destructor(pos);
}
kfree(bus);
}
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
const struct kvm_io_range *r2)
{
gpa_t addr1 = r1->addr;
gpa_t addr2 = r2->addr;
if (addr1 < addr2)
return -1;
/* If r2->len == 0, match the exact address. If r2->len != 0,
* accept any overlapping write. Any order is acceptable for
* overlapping ranges, because kvm_io_bus_get_first_dev ensures
* we process all of them.
*/
if (r2->len) {
addr1 += r1->len;
addr2 += r2->len;
}
if (addr1 > addr2)
return 1;
return 0;
}
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
{
return kvm_io_bus_cmp(p1, p2);
}
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
gpa_t addr, int len)
{
struct kvm_io_range *range, key;
int off;
key = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
range = bsearch(&key, bus->range, bus->dev_count,
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
if (range == NULL)
return -ENOENT;
off = range - bus->range;
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
off--;
return off;
}
static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
struct kvm_io_range *range, const void *val)
{
int idx;
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
if (idx < 0)
return -EOPNOTSUPP;
while (idx < bus->dev_count &&
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
range->len, val))
return idx;
idx++;
}
return -EOPNOTSUPP;
}
/* kvm_io_bus_write - called under kvm->slots_lock */
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, const void *val)
{
struct kvm_io_bus *bus;
struct kvm_io_range range;
int r;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
if (!bus)
return -ENOMEM;
r = __kvm_io_bus_write(vcpu, bus, &range, val);
return r < 0 ? r : 0;
}
EXPORT_SYMBOL_GPL(kvm_io_bus_write);
/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
gpa_t addr, int len, const void *val, long cookie)
{
struct kvm_io_bus *bus;
struct kvm_io_range range;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
if (!bus)
return -ENOMEM;
/* First try the device referenced by cookie. */
if ((cookie >= 0) && (cookie < bus->dev_count) &&
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
val))
return cookie;
/*
* cookie contained garbage; fall back to search and return the
* correct cookie value.
*/
return __kvm_io_bus_write(vcpu, bus, &range, val);
}
static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
struct kvm_io_range *range, void *val)
{
int idx;
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
if (idx < 0)
return -EOPNOTSUPP;
while (idx < bus->dev_count &&
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
range->len, val))
return idx;
idx++;
}
return -EOPNOTSUPP;
}
/* kvm_io_bus_read - called under kvm->slots_lock */
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, void *val)
{
struct kvm_io_bus *bus;
struct kvm_io_range range;
int r;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
if (!bus)
return -ENOMEM;
r = __kvm_io_bus_read(vcpu, bus, &range, val);
return r < 0 ? r : 0;
}
/* Caller must hold slots_lock. */
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev)
{
int i;
struct kvm_io_bus *new_bus, *bus;
struct kvm_io_range range;
bus = kvm_get_bus(kvm, bus_idx);
if (!bus)
return -ENOMEM;
/* exclude ioeventfd which is limited by maximum fd */
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
return -ENOSPC;
new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
GFP_KERNEL_ACCOUNT);
if (!new_bus)
return -ENOMEM;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
.dev = dev,
};
for (i = 0; i < bus->dev_count; i++)
if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
break;
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
new_bus->dev_count++;
new_bus->range[i] = range;
memcpy(new_bus->range + i + 1, bus->range + i,
(bus->dev_count - i) * sizeof(struct kvm_io_range));
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
synchronize_srcu_expedited(&kvm->srcu);
kfree(bus);
return 0;
}
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev)
{
int i, j;
struct kvm_io_bus *new_bus, *bus;
lockdep_assert_held(&kvm->slots_lock);
bus = kvm_get_bus(kvm, bus_idx);
if (!bus)
return 0;
for (i = 0; i < bus->dev_count; i++) {
if (bus->range[i].dev == dev) {
break;
}
}
if (i == bus->dev_count)
return 0;
new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
GFP_KERNEL_ACCOUNT);
if (new_bus) {
memcpy(new_bus, bus, struct_size(bus, range, i));
new_bus->dev_count--;
memcpy(new_bus->range + i, bus->range + i + 1,
flex_array_size(new_bus, range, new_bus->dev_count - i));
}
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
synchronize_srcu_expedited(&kvm->srcu);
/* Destroy the old bus _after_ installing the (null) bus. */
if (!new_bus) {
pr_err("kvm: failed to shrink bus, removing it completely\n");
for (j = 0; j < bus->dev_count; j++) {
if (j == i)
continue;
kvm_iodevice_destructor(bus->range[j].dev);
}
}
kfree(bus);
return new_bus ? 0 : -ENOMEM;
}
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
gpa_t addr)
{
struct kvm_io_bus *bus;
int dev_idx, srcu_idx;
struct kvm_io_device *iodev = NULL;
srcu_idx = srcu_read_lock(&kvm->srcu);
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
if (!bus)
goto out_unlock;
dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
if (dev_idx < 0)
goto out_unlock;
iodev = bus->range[dev_idx].dev;
out_unlock:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return iodev;
}
EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
static int kvm_debugfs_open(struct inode *inode, struct file *file,
int (*get)(void *, u64 *), int (*set)(void *, u64),
const char *fmt)
{
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
inode->i_private;
/*
* The debugfs files are a reference to the kvm struct which
* is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
* avoids the race between open and the removal of the debugfs directory.
*/
if (!kvm_get_kvm_safe(stat_data->kvm))
return -ENOENT;
if (simple_attr_open(inode, file, get,
kvm_stats_debugfs_mode(stat_data->desc) & 0222
? set : NULL,
fmt)) {
kvm_put_kvm(stat_data->kvm);
return -ENOMEM;
}
return 0;
}
static int kvm_debugfs_release(struct inode *inode, struct file *file)
{
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
inode->i_private;
simple_attr_release(inode, file);
kvm_put_kvm(stat_data->kvm);
return 0;
}
static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
{
*val = *(u64 *)((void *)(&kvm->stat) + offset);
return 0;
}
static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
{
*(u64 *)((void *)(&kvm->stat) + offset) = 0;
return 0;
}
static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
{
unsigned long i;
struct kvm_vcpu *vcpu;
*val = 0;
kvm_for_each_vcpu(i, vcpu, kvm)
*val += *(u64 *)((void *)(&vcpu->stat) + offset);
return 0;
}
static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
return 0;
}
static int kvm_stat_data_get(void *data, u64 *val)
{
int r = -EFAULT;
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
switch (stat_data->kind) {
case KVM_STAT_VM:
r = kvm_get_stat_per_vm(stat_data->kvm,
stat_data->desc->desc.offset, val);
break;
case KVM_STAT_VCPU:
r = kvm_get_stat_per_vcpu(stat_data->kvm,
stat_data->desc->desc.offset, val);
break;
}
return r;
}
static int kvm_stat_data_clear(void *data, u64 val)
{
int r = -EFAULT;
struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
if (val)
return -EINVAL;
switch (stat_data->kind) {
case KVM_STAT_VM:
r = kvm_clear_stat_per_vm(stat_data->kvm,
stat_data->desc->desc.offset);
break;
case KVM_STAT_VCPU:
r = kvm_clear_stat_per_vcpu(stat_data->kvm,
stat_data->desc->desc.offset);
break;
}
return r;
}
static int kvm_stat_data_open(struct inode *inode, struct file *file)
{
__simple_attr_check_format("%llu\n", 0ull);
return kvm_debugfs_open(inode, file, kvm_stat_data_get,
kvm_stat_data_clear, "%llu\n");
}
static const struct file_operations stat_fops_per_vm = {
.owner = THIS_MODULE,
.open = kvm_stat_data_open,
.release = kvm_debugfs_release,
.read = simple_attr_read,
.write = simple_attr_write,
.llseek = no_llseek,
};
static int vm_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
u64 tmp_val;
*val = 0;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_get_stat_per_vm(kvm, offset, &tmp_val);
*val += tmp_val;
}
mutex_unlock(&kvm_lock);
return 0;
}
static int vm_stat_clear(void *_offset, u64 val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
if (val)
return -EINVAL;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_clear_stat_per_vm(kvm, offset);
}
mutex_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
static int vcpu_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
u64 tmp_val;
*val = 0;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
*val += tmp_val;
}
mutex_unlock(&kvm_lock);
return 0;
}
static int vcpu_stat_clear(void *_offset, u64 val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
if (val)
return -EINVAL;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_clear_stat_per_vcpu(kvm, offset);
}
mutex_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
"%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
{
struct kobj_uevent_env *env;
unsigned long long created, active;
if (!kvm_dev.this_device || !kvm)
return;
mutex_lock(&kvm_lock);
if (type == KVM_EVENT_CREATE_VM) {
kvm_createvm_count++;
kvm_active_vms++;
} else if (type == KVM_EVENT_DESTROY_VM) {
kvm_active_vms--;
}
created = kvm_createvm_count;
active = kvm_active_vms;
mutex_unlock(&kvm_lock);
env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
if (!env)
return;
add_uevent_var(env, "CREATED=%llu", created);
add_uevent_var(env, "COUNT=%llu", active);
if (type == KVM_EVENT_CREATE_VM) {
add_uevent_var(env, "EVENT=create");
kvm->userspace_pid = task_pid_nr(current);
} else if (type == KVM_EVENT_DESTROY_VM) {
add_uevent_var(env, "EVENT=destroy");
}
add_uevent_var(env, "PID=%d", kvm->userspace_pid);
if (kvm->debugfs_dentry) {
char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
if (p) {
tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
if (!IS_ERR(tmp))
add_uevent_var(env, "STATS_PATH=%s", tmp);
kfree(p);
}
}
/* no need for checks, since we are adding at most only 5 keys */
env->envp[env->envp_idx++] = NULL;
kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
kfree(env);
}
static void kvm_init_debug(void)
{
const struct file_operations *fops;
const struct _kvm_stats_desc *pdesc;
int i;
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
pdesc = &kvm_vm_stats_desc[i];
if (kvm_stats_debugfs_mode(pdesc) & 0222)
fops = &vm_stat_fops;
else
fops = &vm_stat_readonly_fops;
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
kvm_debugfs_dir,
(void *)(long)pdesc->desc.offset, fops);
}
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
pdesc = &kvm_vcpu_stats_desc[i];
if (kvm_stats_debugfs_mode(pdesc) & 0222)
fops = &vcpu_stat_fops;
else
fops = &vcpu_stat_readonly_fops;
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
kvm_debugfs_dir,
(void *)(long)pdesc->desc.offset, fops);
}
}
static int kvm_suspend(void)
{
if (kvm_usage_count)
hardware_disable_nolock(NULL);
return 0;
}
static void kvm_resume(void)
{
if (kvm_usage_count) {
lockdep_assert_not_held(&kvm_count_lock);
hardware_enable_nolock(NULL);
}
}
static struct syscore_ops kvm_syscore_ops = {
.suspend = kvm_suspend,
.resume = kvm_resume,
};
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
return container_of(pn, struct kvm_vcpu, preempt_notifier);
}
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
WRITE_ONCE(vcpu->preempted, false);
WRITE_ONCE(vcpu->ready, false);
__this_cpu_write(kvm_running_vcpu, vcpu);
kvm_arch_sched_in(vcpu, cpu);
kvm_arch_vcpu_load(vcpu, cpu);
}
static void kvm_sched_out(struct preempt_notifier *pn,
struct task_struct *next)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
if (current->on_rq) {
WRITE_ONCE(vcpu->preempted, true);
WRITE_ONCE(vcpu->ready, true);
}
kvm_arch_vcpu_put(vcpu);
__this_cpu_write(kvm_running_vcpu, NULL);
}
/**
* kvm_get_running_vcpu - get the vcpu running on the current CPU.
*
* We can disable preemption locally around accessing the per-CPU variable,
* and use the resolved vcpu pointer after enabling preemption again,
* because even if the current thread is migrated to another CPU, reading
* the per-CPU value later will give us the same value as we update the
* per-CPU variable in the preempt notifier handlers.
*/
struct kvm_vcpu *kvm_get_running_vcpu(void)
{
struct kvm_vcpu *vcpu;
preempt_disable();
vcpu = __this_cpu_read(kvm_running_vcpu);
preempt_enable();
return vcpu;
}
EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
/**
* kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
*/
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
{
return &kvm_running_vcpu;
}
#ifdef CONFIG_GUEST_PERF_EVENTS
static unsigned int kvm_guest_state(void)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
unsigned int state;
if (!kvm_arch_pmi_in_guest(vcpu))
return 0;
state = PERF_GUEST_ACTIVE;
if (!kvm_arch_vcpu_in_kernel(vcpu))
state |= PERF_GUEST_USER;
return state;
}
static unsigned long kvm_guest_get_ip(void)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
return 0;
return kvm_arch_vcpu_get_ip(vcpu);
}
static struct perf_guest_info_callbacks kvm_guest_cbs = {
.state = kvm_guest_state,
.get_ip = kvm_guest_get_ip,
.handle_intel_pt_intr = NULL,
};
void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
{
kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
perf_register_guest_info_callbacks(&kvm_guest_cbs);
}
void kvm_unregister_perf_callbacks(void)
{
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
}
#endif
struct kvm_cpu_compat_check {
void *opaque;
int *ret;
};
static void check_processor_compat(void *data)
{
struct kvm_cpu_compat_check *c = data;
*c->ret = kvm_arch_check_processor_compat(c->opaque);
}
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
struct module *module)
{
struct kvm_cpu_compat_check c;
int r;
int cpu;
r = kvm_arch_init(opaque);
if (r)
goto out_fail;
/*
* kvm_arch_init makes sure there's at most one caller
* for architectures that support multiple implementations,
* like intel and amd on x86.
* kvm_arch_init must be called before kvm_irqfd_init to avoid creating
* conflicts in case kvm is already setup for another implementation.
*/
r = kvm_irqfd_init();
if (r)
goto out_irqfd;
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
r = -ENOMEM;
goto out_free_0;
}
r = kvm_arch_hardware_setup(opaque);
if (r < 0)
goto out_free_1;
c.ret = &r;
c.opaque = opaque;
for_each_online_cpu(cpu) {
smp_call_function_single(cpu, check_processor_compat, &c, 1);
if (r < 0)
goto out_free_2;
}
r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
kvm_starting_cpu, kvm_dying_cpu);
if (r)
goto out_free_2;
register_reboot_notifier(&kvm_reboot_notifier);
/* A kmem cache lets us meet the alignment requirements of fx_save. */
if (!vcpu_align)
vcpu_align = __alignof__(struct kvm_vcpu);
kvm_vcpu_cache =
kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
SLAB_ACCOUNT,
offsetof(struct kvm_vcpu, arch),
offsetofend(struct kvm_vcpu, stats_id)
- offsetof(struct kvm_vcpu, arch),
NULL);
if (!kvm_vcpu_cache) {
r = -ENOMEM;
goto out_free_3;
}
for_each_possible_cpu(cpu) {
if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
GFP_KERNEL, cpu_to_node(cpu))) {
r = -ENOMEM;
goto out_free_4;
}
}
r = kvm_async_pf_init();
if (r)
goto out_free_5;
kvm_chardev_ops.owner = module;
r = misc_register(&kvm_dev);
if (r) {
pr_err("kvm: misc device register failed\n");
goto out_unreg;
}
register_syscore_ops(&kvm_syscore_ops);
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
kvm_init_debug();
r = kvm_vfio_ops_init();
WARN_ON(r);
return 0;
out_unreg:
kvm_async_pf_deinit();
out_free_5:
for_each_possible_cpu(cpu)
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
out_free_4:
kmem_cache_destroy(kvm_vcpu_cache);
out_free_3:
unregister_reboot_notifier(&kvm_reboot_notifier);
cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
out_free_2:
kvm_arch_hardware_unsetup();
out_free_1:
free_cpumask_var(cpus_hardware_enabled);
out_free_0:
kvm_irqfd_exit();
out_irqfd:
kvm_arch_exit();
out_fail:
return r;
}
EXPORT_SYMBOL_GPL(kvm_init);
void kvm_exit(void)
{
int cpu;
debugfs_remove_recursive(kvm_debugfs_dir);
misc_deregister(&kvm_dev);
for_each_possible_cpu(cpu)
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
kmem_cache_destroy(kvm_vcpu_cache);
kvm_async_pf_deinit();
unregister_syscore_ops(&kvm_syscore_ops);
unregister_reboot_notifier(&kvm_reboot_notifier);
cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
on_each_cpu(hardware_disable_nolock, NULL, 1);
kvm_arch_hardware_unsetup();
kvm_arch_exit();
kvm_irqfd_exit();
free_cpumask_var(cpus_hardware_enabled);
kvm_vfio_ops_exit();
}
EXPORT_SYMBOL_GPL(kvm_exit);
struct kvm_vm_worker_thread_context {
struct kvm *kvm;
struct task_struct *parent;
struct completion init_done;
kvm_vm_thread_fn_t thread_fn;
uintptr_t data;
int err;
};
static int kvm_vm_worker_thread(void *context)
{
/*
* The init_context is allocated on the stack of the parent thread, so
* we have to locally copy anything that is needed beyond initialization
*/
struct kvm_vm_worker_thread_context *init_context = context;
struct task_struct *parent;
struct kvm *kvm = init_context->kvm;
kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
uintptr_t data = init_context->data;
int err;
err = kthread_park(current);
/* kthread_park(current) is never supposed to return an error */
WARN_ON(err != 0);
if (err)
goto init_complete;
err = cgroup_attach_task_all(init_context->parent, current);
if (err) {
kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
__func__, err);
goto init_complete;
}
set_user_nice(current, task_nice(init_context->parent));
init_complete:
init_context->err = err;
complete(&init_context->init_done);
init_context = NULL;
if (err)
goto out;
/* Wait to be woken up by the spawner before proceeding. */
kthread_parkme();
if (!kthread_should_stop())
err = thread_fn(kvm, data);
out:
/*
* Move kthread back to its original cgroup to prevent it lingering in
* the cgroup of the VM process, after the latter finishes its
* execution.
*
* kthread_stop() waits on the 'exited' completion condition which is
* set in exit_mm(), via mm_release(), in do_exit(). However, the
* kthread is removed from the cgroup in the cgroup_exit() which is
* called after the exit_mm(). This causes the kthread_stop() to return
* before the kthread actually quits the cgroup.
*/
rcu_read_lock();
parent = rcu_dereference(current->real_parent);
get_task_struct(parent);
rcu_read_unlock();
cgroup_attach_task_all(parent, current);
put_task_struct(parent);
return err;
}
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
uintptr_t data, const char *name,
struct task_struct **thread_ptr)
{
struct kvm_vm_worker_thread_context init_context = {};
struct task_struct *thread;
*thread_ptr = NULL;
init_context.kvm = kvm;
init_context.parent = current;
init_context.thread_fn = thread_fn;
init_context.data = data;
init_completion(&init_context.init_done);
thread = kthread_run(kvm_vm_worker_thread, &init_context,
"%s-%d", name, task_pid_nr(current));
if (IS_ERR(thread))
return PTR_ERR(thread);
/* kthread_run is never supposed to return NULL */
WARN_ON(thread == NULL);
wait_for_completion(&init_context.init_done);
if (!init_context.err)
*thread_ptr = thread;
return init_context.err;
}