mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 01:54:09 +08:00
6a5bcd84e8
Up to now several high speed NICs have custom mechanisms of recycling the allocated memory they use for their payloads. Our page_pool API already has recycling capabilities that are always used when we are running in 'XDP mode'. So let's tweak the API and the kernel network stack slightly and allow the recycling to happen even during the standard operation. The API doesn't take into account 'split page' policies used by those drivers currently, but can be extended once we have users for that. The idea is to be able to intercept the packet on skb_release_data(). If it's a buffer coming from our page_pool API recycle it back to the pool for further usage or just release the packet entirely. To achieve that we introduce a bit in struct sk_buff (pp_recycle:1) and a field in struct page (page->pp) to store the page_pool pointer. Storing the information in page->pp allows us to recycle both SKBs and their fragments. We could have skipped the skb bit entirely, since identical information can bederived from struct page. However, in an effort to affect the free path as less as possible, reading a single bit in the skb which is already in cache, is better that trying to derive identical information for the page stored data. The driver or page_pool has to take care of the sync operations on it's own during the buffer recycling since the buffer is, after opting-in to the recycling, never unmapped. Since the gain on the drivers depends on the architecture, we are not enabling recycling by default if the page_pool API is used on a driver. In order to enable recycling the driver must call skb_mark_for_recycle() to store the information we need for recycling in page->pp and enabling the recycling bit, or page_pool_store_mem_info() for a fragment. Co-developed-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Co-developed-by: Matteo Croce <mcroce@microsoft.com> Signed-off-by: Matteo Croce <mcroce@microsoft.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
653 lines
17 KiB
C
653 lines
17 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* page_pool.c
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
|
|
#include <net/page_pool.h>
|
|
#include <net/xdp.h>
|
|
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/mm.h> /* for __put_page() */
|
|
#include <linux/poison.h>
|
|
|
|
#include <trace/events/page_pool.h>
|
|
|
|
#define DEFER_TIME (msecs_to_jiffies(1000))
|
|
#define DEFER_WARN_INTERVAL (60 * HZ)
|
|
|
|
static int page_pool_init(struct page_pool *pool,
|
|
const struct page_pool_params *params)
|
|
{
|
|
unsigned int ring_qsize = 1024; /* Default */
|
|
|
|
memcpy(&pool->p, params, sizeof(pool->p));
|
|
|
|
/* Validate only known flags were used */
|
|
if (pool->p.flags & ~(PP_FLAG_ALL))
|
|
return -EINVAL;
|
|
|
|
if (pool->p.pool_size)
|
|
ring_qsize = pool->p.pool_size;
|
|
|
|
/* Sanity limit mem that can be pinned down */
|
|
if (ring_qsize > 32768)
|
|
return -E2BIG;
|
|
|
|
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
|
|
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
|
|
* which is the XDP_TX use-case.
|
|
*/
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP) {
|
|
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
|
|
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
|
|
/* In order to request DMA-sync-for-device the page
|
|
* needs to be mapped
|
|
*/
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
return -EINVAL;
|
|
|
|
if (!pool->p.max_len)
|
|
return -EINVAL;
|
|
|
|
/* pool->p.offset has to be set according to the address
|
|
* offset used by the DMA engine to start copying rx data
|
|
*/
|
|
}
|
|
|
|
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
|
|
return -ENOMEM;
|
|
|
|
atomic_set(&pool->pages_state_release_cnt, 0);
|
|
|
|
/* Driver calling page_pool_create() also call page_pool_destroy() */
|
|
refcount_set(&pool->user_cnt, 1);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
get_device(pool->p.dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params)
|
|
{
|
|
struct page_pool *pool;
|
|
int err;
|
|
|
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
|
|
if (!pool)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = page_pool_init(pool, params);
|
|
if (err < 0) {
|
|
pr_warn("%s() gave up with errno %d\n", __func__, err);
|
|
kfree(pool);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_create);
|
|
|
|
static void page_pool_return_page(struct page_pool *pool, struct page *page);
|
|
|
|
noinline
|
|
static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
|
|
{
|
|
struct ptr_ring *r = &pool->ring;
|
|
struct page *page;
|
|
int pref_nid; /* preferred NUMA node */
|
|
|
|
/* Quicker fallback, avoid locks when ring is empty */
|
|
if (__ptr_ring_empty(r))
|
|
return NULL;
|
|
|
|
/* Softirq guarantee CPU and thus NUMA node is stable. This,
|
|
* assumes CPU refilling driver RX-ring will also run RX-NAPI.
|
|
*/
|
|
#ifdef CONFIG_NUMA
|
|
pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
|
|
#else
|
|
/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
|
|
pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
|
|
#endif
|
|
|
|
/* Slower-path: Get pages from locked ring queue */
|
|
spin_lock(&r->consumer_lock);
|
|
|
|
/* Refill alloc array, but only if NUMA match */
|
|
do {
|
|
page = __ptr_ring_consume(r);
|
|
if (unlikely(!page))
|
|
break;
|
|
|
|
if (likely(page_to_nid(page) == pref_nid)) {
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
} else {
|
|
/* NUMA mismatch;
|
|
* (1) release 1 page to page-allocator and
|
|
* (2) break out to fallthrough to alloc_pages_node.
|
|
* This limit stress on page buddy alloactor.
|
|
*/
|
|
page_pool_return_page(pool, page);
|
|
page = NULL;
|
|
break;
|
|
}
|
|
} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
|
|
|
|
/* Return last page */
|
|
if (likely(pool->alloc.count > 0))
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
|
|
spin_unlock(&r->consumer_lock);
|
|
return page;
|
|
}
|
|
|
|
/* fast path */
|
|
static struct page *__page_pool_get_cached(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
|
|
if (likely(pool->alloc.count)) {
|
|
/* Fast-path */
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
} else {
|
|
page = page_pool_refill_alloc_cache(pool);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static void page_pool_dma_sync_for_device(struct page_pool *pool,
|
|
struct page *page,
|
|
unsigned int dma_sync_size)
|
|
{
|
|
dma_addr_t dma_addr = page_pool_get_dma_addr(page);
|
|
|
|
dma_sync_size = min(dma_sync_size, pool->p.max_len);
|
|
dma_sync_single_range_for_device(pool->p.dev, dma_addr,
|
|
pool->p.offset, dma_sync_size,
|
|
pool->p.dma_dir);
|
|
}
|
|
|
|
static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
|
|
{
|
|
dma_addr_t dma;
|
|
|
|
/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
|
|
* since dma_addr_t can be either 32 or 64 bits and does not always fit
|
|
* into page private data (i.e 32bit cpu with 64bit DMA caps)
|
|
* This mapping is kept for lifetime of page, until leaving pool.
|
|
*/
|
|
dma = dma_map_page_attrs(pool->p.dev, page, 0,
|
|
(PAGE_SIZE << pool->p.order),
|
|
pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (dma_mapping_error(pool->p.dev, dma))
|
|
return false;
|
|
|
|
page_pool_set_dma_addr(page, dma);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
|
|
gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
gfp |= __GFP_COMP;
|
|
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
|
|
if (unlikely(!page))
|
|
return NULL;
|
|
|
|
if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
|
|
unlikely(!page_pool_dma_map(pool, page))) {
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
page->pp_magic |= PP_SIGNATURE;
|
|
|
|
/* Track how many pages are held 'in-flight' */
|
|
pool->pages_state_hold_cnt++;
|
|
trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
|
|
return page;
|
|
}
|
|
|
|
/* slow path */
|
|
noinline
|
|
static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
|
|
gfp_t gfp)
|
|
{
|
|
const int bulk = PP_ALLOC_CACHE_REFILL;
|
|
unsigned int pp_flags = pool->p.flags;
|
|
unsigned int pp_order = pool->p.order;
|
|
struct page *page;
|
|
int i, nr_pages;
|
|
|
|
/* Don't support bulk alloc for high-order pages */
|
|
if (unlikely(pp_order))
|
|
return __page_pool_alloc_page_order(pool, gfp);
|
|
|
|
/* Unnecessary as alloc cache is empty, but guarantees zero count */
|
|
if (unlikely(pool->alloc.count > 0))
|
|
return pool->alloc.cache[--pool->alloc.count];
|
|
|
|
/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
|
|
memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
|
|
|
|
nr_pages = alloc_pages_bulk_array(gfp, bulk, pool->alloc.cache);
|
|
if (unlikely(!nr_pages))
|
|
return NULL;
|
|
|
|
/* Pages have been filled into alloc.cache array, but count is zero and
|
|
* page element have not been (possibly) DMA mapped.
|
|
*/
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = pool->alloc.cache[i];
|
|
if ((pp_flags & PP_FLAG_DMA_MAP) &&
|
|
unlikely(!page_pool_dma_map(pool, page))) {
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
page->pp_magic |= PP_SIGNATURE;
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
/* Track how many pages are held 'in-flight' */
|
|
pool->pages_state_hold_cnt++;
|
|
trace_page_pool_state_hold(pool, page,
|
|
pool->pages_state_hold_cnt);
|
|
}
|
|
|
|
/* Return last page */
|
|
if (likely(pool->alloc.count > 0))
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
else
|
|
page = NULL;
|
|
|
|
/* When page just alloc'ed is should/must have refcnt 1. */
|
|
return page;
|
|
}
|
|
|
|
/* For using page_pool replace: alloc_pages() API calls, but provide
|
|
* synchronization guarantee for allocation side.
|
|
*/
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Fast-path: Get a page from cache */
|
|
page = __page_pool_get_cached(pool);
|
|
if (page)
|
|
return page;
|
|
|
|
/* Slow-path: cache empty, do real allocation */
|
|
page = __page_pool_alloc_pages_slow(pool, gfp);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_alloc_pages);
|
|
|
|
/* Calculate distance between two u32 values, valid if distance is below 2^(31)
|
|
* https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
|
|
*/
|
|
#define _distance(a, b) (s32)((a) - (b))
|
|
|
|
static s32 page_pool_inflight(struct page_pool *pool)
|
|
{
|
|
u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
|
|
u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
|
|
s32 inflight;
|
|
|
|
inflight = _distance(hold_cnt, release_cnt);
|
|
|
|
trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
|
|
WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
/* Disconnects a page (from a page_pool). API users can have a need
|
|
* to disconnect a page (from a page_pool), to allow it to be used as
|
|
* a regular page (that will eventually be returned to the normal
|
|
* page-allocator via put_page).
|
|
*/
|
|
void page_pool_release_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
dma_addr_t dma;
|
|
int count;
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
/* Always account for inflight pages, even if we didn't
|
|
* map them
|
|
*/
|
|
goto skip_dma_unmap;
|
|
|
|
dma = page_pool_get_dma_addr(page);
|
|
|
|
/* When page is unmapped, it cannot be returned to our pool */
|
|
dma_unmap_page_attrs(pool->p.dev, dma,
|
|
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
page_pool_set_dma_addr(page, 0);
|
|
skip_dma_unmap:
|
|
page->pp_magic = 0;
|
|
|
|
/* This may be the last page returned, releasing the pool, so
|
|
* it is not safe to reference pool afterwards.
|
|
*/
|
|
count = atomic_inc_return(&pool->pages_state_release_cnt);
|
|
trace_page_pool_state_release(pool, page, count);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_release_page);
|
|
|
|
/* Return a page to the page allocator, cleaning up our state */
|
|
static void page_pool_return_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
page_pool_release_page(pool, page);
|
|
|
|
put_page(page);
|
|
/* An optimization would be to call __free_pages(page, pool->p.order)
|
|
* knowing page is not part of page-cache (thus avoiding a
|
|
* __page_cache_release() call).
|
|
*/
|
|
}
|
|
|
|
static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
|
|
{
|
|
int ret;
|
|
/* BH protection not needed if current is serving softirq */
|
|
if (in_serving_softirq())
|
|
ret = ptr_ring_produce(&pool->ring, page);
|
|
else
|
|
ret = ptr_ring_produce_bh(&pool->ring, page);
|
|
|
|
return (ret == 0) ? true : false;
|
|
}
|
|
|
|
/* Only allow direct recycling in special circumstances, into the
|
|
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
|
|
*
|
|
* Caller must provide appropriate safe context.
|
|
*/
|
|
static bool page_pool_recycle_in_cache(struct page *page,
|
|
struct page_pool *pool)
|
|
{
|
|
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
|
|
return false;
|
|
|
|
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
return true;
|
|
}
|
|
|
|
/* If the page refcnt == 1, this will try to recycle the page.
|
|
* if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
|
|
* the configured size min(dma_sync_size, pool->max_len).
|
|
* If the page refcnt != 1, then the page will be returned to memory
|
|
* subsystem.
|
|
*/
|
|
static __always_inline struct page *
|
|
__page_pool_put_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct)
|
|
{
|
|
/* This allocator is optimized for the XDP mode that uses
|
|
* one-frame-per-page, but have fallbacks that act like the
|
|
* regular page allocator APIs.
|
|
*
|
|
* refcnt == 1 means page_pool owns page, and can recycle it.
|
|
*
|
|
* page is NOT reusable when allocated when system is under
|
|
* some pressure. (page_is_pfmemalloc)
|
|
*/
|
|
if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
|
|
/* Read barrier done in page_ref_count / READ_ONCE */
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page,
|
|
dma_sync_size);
|
|
|
|
if (allow_direct && in_serving_softirq() &&
|
|
page_pool_recycle_in_cache(page, pool))
|
|
return NULL;
|
|
|
|
/* Page found as candidate for recycling */
|
|
return page;
|
|
}
|
|
/* Fallback/non-XDP mode: API user have elevated refcnt.
|
|
*
|
|
* Many drivers split up the page into fragments, and some
|
|
* want to keep doing this to save memory and do refcnt based
|
|
* recycling. Support this use case too, to ease drivers
|
|
* switching between XDP/non-XDP.
|
|
*
|
|
* In-case page_pool maintains the DMA mapping, API user must
|
|
* call page_pool_put_page once. In this elevated refcnt
|
|
* case, the DMA is unmapped/released, as driver is likely
|
|
* doing refcnt based recycle tricks, meaning another process
|
|
* will be invoking put_page.
|
|
*/
|
|
/* Do not replace this with page_pool_return_page() */
|
|
page_pool_release_page(pool, page);
|
|
put_page(page);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void page_pool_put_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct)
|
|
{
|
|
page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
|
|
if (page && !page_pool_recycle_in_ring(pool, page)) {
|
|
/* Cache full, fallback to free pages */
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(page_pool_put_page);
|
|
|
|
/* Caller must not use data area after call, as this function overwrites it */
|
|
void page_pool_put_page_bulk(struct page_pool *pool, void **data,
|
|
int count)
|
|
{
|
|
int i, bulk_len = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct page *page = virt_to_head_page(data[i]);
|
|
|
|
page = __page_pool_put_page(pool, page, -1, false);
|
|
/* Approved for bulk recycling in ptr_ring cache */
|
|
if (page)
|
|
data[bulk_len++] = page;
|
|
}
|
|
|
|
if (unlikely(!bulk_len))
|
|
return;
|
|
|
|
/* Bulk producer into ptr_ring page_pool cache */
|
|
page_pool_ring_lock(pool);
|
|
for (i = 0; i < bulk_len; i++) {
|
|
if (__ptr_ring_produce(&pool->ring, data[i]))
|
|
break; /* ring full */
|
|
}
|
|
page_pool_ring_unlock(pool);
|
|
|
|
/* Hopefully all pages was return into ptr_ring */
|
|
if (likely(i == bulk_len))
|
|
return;
|
|
|
|
/* ptr_ring cache full, free remaining pages outside producer lock
|
|
* since put_page() with refcnt == 1 can be an expensive operation
|
|
*/
|
|
for (; i < bulk_len; i++)
|
|
page_pool_return_page(pool, data[i]);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_put_page_bulk);
|
|
|
|
static void page_pool_empty_ring(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Empty recycle ring */
|
|
while ((page = ptr_ring_consume_bh(&pool->ring))) {
|
|
/* Verify the refcnt invariant of cached pages */
|
|
if (!(page_ref_count(page) == 1))
|
|
pr_crit("%s() page_pool refcnt %d violation\n",
|
|
__func__, page_ref_count(page));
|
|
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_free(struct page_pool *pool)
|
|
{
|
|
if (pool->disconnect)
|
|
pool->disconnect(pool);
|
|
|
|
ptr_ring_cleanup(&pool->ring, NULL);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
put_device(pool->p.dev);
|
|
|
|
kfree(pool);
|
|
}
|
|
|
|
static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (pool->destroy_cnt)
|
|
return;
|
|
|
|
/* Empty alloc cache, assume caller made sure this is
|
|
* no-longer in use, and page_pool_alloc_pages() cannot be
|
|
* call concurrently.
|
|
*/
|
|
while (pool->alloc.count) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_scrub(struct page_pool *pool)
|
|
{
|
|
page_pool_empty_alloc_cache_once(pool);
|
|
pool->destroy_cnt++;
|
|
|
|
/* No more consumers should exist, but producers could still
|
|
* be in-flight.
|
|
*/
|
|
page_pool_empty_ring(pool);
|
|
}
|
|
|
|
static int page_pool_release(struct page_pool *pool)
|
|
{
|
|
int inflight;
|
|
|
|
page_pool_scrub(pool);
|
|
inflight = page_pool_inflight(pool);
|
|
if (!inflight)
|
|
page_pool_free(pool);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
static void page_pool_release_retry(struct work_struct *wq)
|
|
{
|
|
struct delayed_work *dwq = to_delayed_work(wq);
|
|
struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
|
|
int inflight;
|
|
|
|
inflight = page_pool_release(pool);
|
|
if (!inflight)
|
|
return;
|
|
|
|
/* Periodic warning */
|
|
if (time_after_eq(jiffies, pool->defer_warn)) {
|
|
int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
|
|
|
|
pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
|
|
__func__, inflight, sec);
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
}
|
|
|
|
/* Still not ready to be disconnected, retry later */
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
|
|
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *))
|
|
{
|
|
refcount_inc(&pool->user_cnt);
|
|
pool->disconnect = disconnect;
|
|
}
|
|
|
|
void page_pool_destroy(struct page_pool *pool)
|
|
{
|
|
if (!pool)
|
|
return;
|
|
|
|
if (!page_pool_put(pool))
|
|
return;
|
|
|
|
if (!page_pool_release(pool))
|
|
return;
|
|
|
|
pool->defer_start = jiffies;
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
|
|
INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_destroy);
|
|
|
|
/* Caller must provide appropriate safe context, e.g. NAPI. */
|
|
void page_pool_update_nid(struct page_pool *pool, int new_nid)
|
|
{
|
|
struct page *page;
|
|
|
|
trace_page_pool_update_nid(pool, new_nid);
|
|
pool->p.nid = new_nid;
|
|
|
|
/* Flush pool alloc cache, as refill will check NUMA node */
|
|
while (pool->alloc.count) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(page_pool_update_nid);
|
|
|
|
bool page_pool_return_skb_page(struct page *page)
|
|
{
|
|
struct page_pool *pp;
|
|
|
|
page = compound_head(page);
|
|
if (unlikely(page->pp_magic != PP_SIGNATURE))
|
|
return false;
|
|
|
|
pp = page->pp;
|
|
|
|
/* Driver set this to memory recycling info. Reset it on recycle.
|
|
* This will *not* work for NIC using a split-page memory model.
|
|
* The page will be returned to the pool here regardless of the
|
|
* 'flipped' fragment being in use or not.
|
|
*/
|
|
page->pp = NULL;
|
|
page_pool_put_full_page(pp, page, false);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_return_skb_page);
|