linux/drivers/mmc/host/mmci.c
Ulf Hansson a9cbd79c7e mmc: mmci: Clarify comments and some code for busy detection
The code dealing with busy detection is somewhat complicated. In a way to
make it a bit clearer, let's try to clarify the comments in the code about
it.

Additionally, move the part for clearing the so called busy start IRQ, to
the place where the IRQ is actually delivered. Ideally, this should make
the code a bit more robust.

Finally, to improve understanding of the code and the sequence of the busy
detection, move the corresponding code around a bit in mmci_cmd_irq().

Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Tested-by: Jean Nicolas GRAUX <jean-nicolas.graux@st.com>
Reviewed-by: Jean Nicolas GRAUX <jean-nicolas.graux@st.com>
2019-09-11 15:58:39 +02:00

2257 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (C) 2010 ST-Ericsson SA
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/pm.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/amba/bus.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/of.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/amba/mmci.h>
#include <linux/pm_runtime.h>
#include <linux/types.h>
#include <linux/pinctrl/consumer.h>
#include <linux/reset.h>
#include <asm/div64.h>
#include <asm/io.h>
#include "mmci.h"
#define DRIVER_NAME "mmci-pl18x"
static void mmci_variant_init(struct mmci_host *host);
static void ux500v2_variant_init(struct mmci_host *host);
static unsigned int fmax = 515633;
static struct variant_data variant_arm = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.reversed_irq_handling = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_arm_extended_fifo = {
.fifosize = 128 * 4,
.fifohalfsize = 64 * 4,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_arm_extended_fifo_hwfc = {
.fifosize = 128 * 4,
.fifohalfsize = 64 * 4,
.clkreg_enable = MCI_ARM_HWFCEN,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 100000000,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = mmci_variant_init,
};
static struct variant_data variant_u300 = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg_enable = MCI_ST_U300_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 16,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = mmci_variant_init,
};
static struct variant_data variant_nomadik = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = mmci_variant_init,
};
static struct variant_data variant_ux500 = {
.fifosize = 30 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.busy_detect = true,
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
.busy_detect_flag = MCI_ST_CARDBUSY,
.busy_detect_mask = MCI_ST_BUSYENDMASK,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = mmci_variant_init,
};
static struct variant_data variant_ux500v2 = {
.fifosize = 30 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 100000000,
.signal_direction = true,
.pwrreg_clkgate = true,
.busy_detect = true,
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
.busy_detect_flag = MCI_ST_CARDBUSY,
.busy_detect_mask = MCI_ST_BUSYENDMASK,
.pwrreg_nopower = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_OD,
.init = ux500v2_variant_init,
};
static struct variant_data variant_stm32 = {
.fifosize = 32 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_ST_UX500_HWFCEN,
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
.st_sdio = true,
.st_clkdiv = true,
.pwrreg_powerup = MCI_PWR_ON,
.f_max = 48000000,
.pwrreg_clkgate = true,
.pwrreg_nopower = true,
.init = mmci_variant_init,
};
static struct variant_data variant_stm32_sdmmc = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.f_max = 208000000,
.stm32_clkdiv = true,
.cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
.cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
.cmdreg_srsp = MCI_CPSM_STM32_SRSP,
.cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
.data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
.irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
.datactrl_first = true,
.datacnt_useless = true,
.datalength_bits = 25,
.datactrl_blocksz = 14,
.stm32_idmabsize_mask = GENMASK(12, 5),
.init = sdmmc_variant_init,
};
static struct variant_data variant_qcom = {
.fifosize = 16 * 4,
.fifohalfsize = 8 * 4,
.clkreg = MCI_CLK_ENABLE,
.clkreg_enable = MCI_QCOM_CLK_FLOWENA |
MCI_QCOM_CLK_SELECT_IN_FBCLK,
.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
.datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
.cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
.cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
.cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
.cmdreg_srsp = MCI_CPSM_RESPONSE,
.data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
.datalength_bits = 24,
.datactrl_blocksz = 11,
.pwrreg_powerup = MCI_PWR_UP,
.f_max = 208000000,
.explicit_mclk_control = true,
.qcom_fifo = true,
.qcom_dml = true,
.mmcimask1 = true,
.irq_pio_mask = MCI_IRQ_PIO_MASK,
.start_err = MCI_STARTBITERR,
.opendrain = MCI_ROD,
.init = qcom_variant_init,
};
/* Busy detection for the ST Micro variant */
static int mmci_card_busy(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned long flags;
int busy = 0;
spin_lock_irqsave(&host->lock, flags);
if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
busy = 1;
spin_unlock_irqrestore(&host->lock, flags);
return busy;
}
static void mmci_reg_delay(struct mmci_host *host)
{
/*
* According to the spec, at least three feedback clock cycles
* of max 52 MHz must pass between two writes to the MMCICLOCK reg.
* Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
* Worst delay time during card init is at 100 kHz => 30 us.
* Worst delay time when up and running is at 25 MHz => 120 ns.
*/
if (host->cclk < 25000000)
udelay(30);
else
ndelay(120);
}
/*
* This must be called with host->lock held
*/
void mmci_write_clkreg(struct mmci_host *host, u32 clk)
{
if (host->clk_reg != clk) {
host->clk_reg = clk;
writel(clk, host->base + MMCICLOCK);
}
}
/*
* This must be called with host->lock held
*/
void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
{
if (host->pwr_reg != pwr) {
host->pwr_reg = pwr;
writel(pwr, host->base + MMCIPOWER);
}
}
/*
* This must be called with host->lock held
*/
static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
{
/* Keep busy mode in DPSM if enabled */
datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
if (host->datactrl_reg != datactrl) {
host->datactrl_reg = datactrl;
writel(datactrl, host->base + MMCIDATACTRL);
}
}
/*
* This must be called with host->lock held
*/
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
{
struct variant_data *variant = host->variant;
u32 clk = variant->clkreg;
/* Make sure cclk reflects the current calculated clock */
host->cclk = 0;
if (desired) {
if (variant->explicit_mclk_control) {
host->cclk = host->mclk;
} else if (desired >= host->mclk) {
clk = MCI_CLK_BYPASS;
if (variant->st_clkdiv)
clk |= MCI_ST_UX500_NEG_EDGE;
host->cclk = host->mclk;
} else if (variant->st_clkdiv) {
/*
* DB8500 TRM says f = mclk / (clkdiv + 2)
* => clkdiv = (mclk / f) - 2
* Round the divider up so we don't exceed the max
* frequency
*/
clk = DIV_ROUND_UP(host->mclk, desired) - 2;
if (clk >= 256)
clk = 255;
host->cclk = host->mclk / (clk + 2);
} else {
/*
* PL180 TRM says f = mclk / (2 * (clkdiv + 1))
* => clkdiv = mclk / (2 * f) - 1
*/
clk = host->mclk / (2 * desired) - 1;
if (clk >= 256)
clk = 255;
host->cclk = host->mclk / (2 * (clk + 1));
}
clk |= variant->clkreg_enable;
clk |= MCI_CLK_ENABLE;
/* This hasn't proven to be worthwhile */
/* clk |= MCI_CLK_PWRSAVE; */
}
/* Set actual clock for debug */
host->mmc->actual_clock = host->cclk;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_4BIT_BUS;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= variant->clkreg_8bit_bus_enable;
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
clk |= variant->clkreg_neg_edge_enable;
mmci_write_clkreg(host, clk);
}
void mmci_dma_release(struct mmci_host *host)
{
if (host->ops && host->ops->dma_release)
host->ops->dma_release(host);
host->use_dma = false;
}
void mmci_dma_setup(struct mmci_host *host)
{
if (!host->ops || !host->ops->dma_setup)
return;
if (host->ops->dma_setup(host))
return;
/* initialize pre request cookie */
host->next_cookie = 1;
host->use_dma = true;
}
/*
* Validate mmc prerequisites
*/
static int mmci_validate_data(struct mmci_host *host,
struct mmc_data *data)
{
if (!data)
return 0;
if (!is_power_of_2(data->blksz)) {
dev_err(mmc_dev(host->mmc),
"unsupported block size (%d bytes)\n", data->blksz);
return -EINVAL;
}
if (host->ops && host->ops->validate_data)
return host->ops->validate_data(host, data);
return 0;
}
int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
{
int err;
if (!host->ops || !host->ops->prep_data)
return 0;
err = host->ops->prep_data(host, data, next);
if (next && !err)
data->host_cookie = ++host->next_cookie < 0 ?
1 : host->next_cookie;
return err;
}
void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
int err)
{
if (host->ops && host->ops->unprep_data)
host->ops->unprep_data(host, data, err);
data->host_cookie = 0;
}
void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
{
WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
if (host->ops && host->ops->get_next_data)
host->ops->get_next_data(host, data);
}
int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
{
struct mmc_data *data = host->data;
int ret;
if (!host->use_dma)
return -EINVAL;
ret = mmci_prep_data(host, data, false);
if (ret)
return ret;
if (!host->ops || !host->ops->dma_start)
return -EINVAL;
/* Okay, go for it. */
dev_vdbg(mmc_dev(host->mmc),
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
data->sg_len, data->blksz, data->blocks, data->flags);
host->ops->dma_start(host, &datactrl);
/* Trigger the DMA transfer */
mmci_write_datactrlreg(host, datactrl);
/*
* Let the MMCI say when the data is ended and it's time
* to fire next DMA request. When that happens, MMCI will
* call mmci_data_end()
*/
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
host->base + MMCIMASK0);
return 0;
}
void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
{
if (!host->use_dma)
return;
if (host->ops && host->ops->dma_finalize)
host->ops->dma_finalize(host, data);
}
void mmci_dma_error(struct mmci_host *host)
{
if (!host->use_dma)
return;
if (host->ops && host->ops->dma_error)
host->ops->dma_error(host);
}
static void
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
{
writel(0, host->base + MMCICOMMAND);
BUG_ON(host->data);
host->mrq = NULL;
host->cmd = NULL;
mmc_request_done(host->mmc, mrq);
}
static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
{
void __iomem *base = host->base;
struct variant_data *variant = host->variant;
if (host->singleirq) {
unsigned int mask0 = readl(base + MMCIMASK0);
mask0 &= ~variant->irq_pio_mask;
mask0 |= mask;
writel(mask0, base + MMCIMASK0);
}
if (variant->mmcimask1)
writel(mask, base + MMCIMASK1);
host->mask1_reg = mask;
}
static void mmci_stop_data(struct mmci_host *host)
{
mmci_write_datactrlreg(host, 0);
mmci_set_mask1(host, 0);
host->data = NULL;
}
static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
{
unsigned int flags = SG_MITER_ATOMIC;
if (data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
}
static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
{
return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
}
static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
{
return MCI_DPSM_ENABLE | (host->data->blksz << 16);
}
/*
* All the DMA operation mode stuff goes inside this ifdef.
* This assumes that you have a generic DMA device interface,
* no custom DMA interfaces are supported.
*/
#ifdef CONFIG_DMA_ENGINE
struct mmci_dmae_next {
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan;
};
struct mmci_dmae_priv {
struct dma_chan *cur;
struct dma_chan *rx_channel;
struct dma_chan *tx_channel;
struct dma_async_tx_descriptor *desc_current;
struct mmci_dmae_next next_data;
};
int mmci_dmae_setup(struct mmci_host *host)
{
const char *rxname, *txname;
struct mmci_dmae_priv *dmae;
dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
if (!dmae)
return -ENOMEM;
host->dma_priv = dmae;
dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
"rx");
dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
"tx");
/*
* If only an RX channel is specified, the driver will
* attempt to use it bidirectionally, however if it is
* is specified but cannot be located, DMA will be disabled.
*/
if (dmae->rx_channel && !dmae->tx_channel)
dmae->tx_channel = dmae->rx_channel;
if (dmae->rx_channel)
rxname = dma_chan_name(dmae->rx_channel);
else
rxname = "none";
if (dmae->tx_channel)
txname = dma_chan_name(dmae->tx_channel);
else
txname = "none";
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
rxname, txname);
/*
* Limit the maximum segment size in any SG entry according to
* the parameters of the DMA engine device.
*/
if (dmae->tx_channel) {
struct device *dev = dmae->tx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (dmae->rx_channel) {
struct device *dev = dmae->rx_channel->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (!dmae->tx_channel || !dmae->rx_channel) {
mmci_dmae_release(host);
return -EINVAL;
}
return 0;
}
/*
* This is used in or so inline it
* so it can be discarded.
*/
void mmci_dmae_release(struct mmci_host *host)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (dmae->rx_channel)
dma_release_channel(dmae->rx_channel);
if (dmae->tx_channel)
dma_release_channel(dmae->tx_channel);
dmae->rx_channel = dmae->tx_channel = NULL;
}
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct dma_chan *chan;
if (data->flags & MMC_DATA_READ)
chan = dmae->rx_channel;
else
chan = dmae->tx_channel;
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
void mmci_dmae_error(struct mmci_host *host)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (!dma_inprogress(host))
return;
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
dmaengine_terminate_all(dmae->cur);
host->dma_in_progress = false;
dmae->cur = NULL;
dmae->desc_current = NULL;
host->data->host_cookie = 0;
mmci_dma_unmap(host, host->data);
}
void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
u32 status;
int i;
if (!dma_inprogress(host))
return;
/* Wait up to 1ms for the DMA to complete */
for (i = 0; ; i++) {
status = readl(host->base + MMCISTATUS);
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
break;
udelay(10);
}
/*
* Check to see whether we still have some data left in the FIFO -
* this catches DMA controllers which are unable to monitor the
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
* contiguous buffers. On TX, we'll get a FIFO underrun error.
*/
if (status & MCI_RXDATAAVLBLMASK) {
mmci_dma_error(host);
if (!data->error)
data->error = -EIO;
} else if (!data->host_cookie) {
mmci_dma_unmap(host, data);
}
/*
* Use of DMA with scatter-gather is impossible.
* Give up with DMA and switch back to PIO mode.
*/
if (status & MCI_RXDATAAVLBLMASK) {
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
mmci_dma_release(host);
}
host->dma_in_progress = false;
dmae->cur = NULL;
dmae->desc_current = NULL;
}
/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
struct dma_chan **dma_chan,
struct dma_async_tx_descriptor **dma_desc)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct variant_data *variant = host->variant;
struct dma_slave_config conf = {
.src_addr = host->phybase + MMCIFIFO,
.dst_addr = host->phybase + MMCIFIFO,
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
.device_fc = false,
};
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *desc;
int nr_sg;
unsigned long flags = DMA_CTRL_ACK;
if (data->flags & MMC_DATA_READ) {
conf.direction = DMA_DEV_TO_MEM;
chan = dmae->rx_channel;
} else {
conf.direction = DMA_MEM_TO_DEV;
chan = dmae->tx_channel;
}
/* If there's no DMA channel, fall back to PIO */
if (!chan)
return -EINVAL;
/* If less than or equal to the fifo size, don't bother with DMA */
if (data->blksz * data->blocks <= variant->fifosize)
return -EINVAL;
device = chan->device;
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (nr_sg == 0)
return -EINVAL;
if (host->variant->qcom_dml)
flags |= DMA_PREP_INTERRUPT;
dmaengine_slave_config(chan, &conf);
desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
conf.direction, flags);
if (!desc)
goto unmap_exit;
*dma_chan = chan;
*dma_desc = desc;
return 0;
unmap_exit:
dma_unmap_sg(device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
return -ENOMEM;
}
int mmci_dmae_prep_data(struct mmci_host *host,
struct mmc_data *data,
bool next)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct mmci_dmae_next *nd = &dmae->next_data;
if (!host->use_dma)
return -EINVAL;
if (next)
return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
/* Check if next job is already prepared. */
if (dmae->cur && dmae->desc_current)
return 0;
/* No job were prepared thus do it now. */
return _mmci_dmae_prep_data(host, data, &dmae->cur,
&dmae->desc_current);
}
int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
host->dma_in_progress = true;
dmaengine_submit(dmae->desc_current);
dma_async_issue_pending(dmae->cur);
*datactrl |= MCI_DPSM_DMAENABLE;
return 0;
}
void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
struct mmci_dmae_next *next = &dmae->next_data;
if (!host->use_dma)
return;
WARN_ON(!data->host_cookie && (next->desc || next->chan));
dmae->desc_current = next->desc;
dmae->cur = next->chan;
next->desc = NULL;
next->chan = NULL;
}
void mmci_dmae_unprep_data(struct mmci_host *host,
struct mmc_data *data, int err)
{
struct mmci_dmae_priv *dmae = host->dma_priv;
if (!host->use_dma)
return;
mmci_dma_unmap(host, data);
if (err) {
struct mmci_dmae_next *next = &dmae->next_data;
struct dma_chan *chan;
if (data->flags & MMC_DATA_READ)
chan = dmae->rx_channel;
else
chan = dmae->tx_channel;
dmaengine_terminate_all(chan);
if (dmae->desc_current == next->desc)
dmae->desc_current = NULL;
if (dmae->cur == next->chan) {
host->dma_in_progress = false;
dmae->cur = NULL;
}
next->desc = NULL;
next->chan = NULL;
}
}
static struct mmci_host_ops mmci_variant_ops = {
.prep_data = mmci_dmae_prep_data,
.unprep_data = mmci_dmae_unprep_data,
.get_datactrl_cfg = mmci_get_dctrl_cfg,
.get_next_data = mmci_dmae_get_next_data,
.dma_setup = mmci_dmae_setup,
.dma_release = mmci_dmae_release,
.dma_start = mmci_dmae_start,
.dma_finalize = mmci_dmae_finalize,
.dma_error = mmci_dmae_error,
};
#else
static struct mmci_host_ops mmci_variant_ops = {
.get_datactrl_cfg = mmci_get_dctrl_cfg,
};
#endif
void mmci_variant_init(struct mmci_host *host)
{
host->ops = &mmci_variant_ops;
}
void ux500v2_variant_init(struct mmci_host *host)
{
host->ops = &mmci_variant_ops;
host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
}
static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data)
return;
WARN_ON(data->host_cookie);
if (mmci_validate_data(host, data))
return;
mmci_prep_data(host, data, true);
}
static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data || !data->host_cookie)
return;
mmci_unprep_data(host, data, err);
}
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
struct variant_data *variant = host->variant;
unsigned int datactrl, timeout, irqmask;
unsigned long long clks;
void __iomem *base;
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
data->blksz, data->blocks, data->flags);
host->data = data;
host->size = data->blksz * data->blocks;
data->bytes_xfered = 0;
clks = (unsigned long long)data->timeout_ns * host->cclk;
do_div(clks, NSEC_PER_SEC);
timeout = data->timeout_clks + (unsigned int)clks;
base = host->base;
writel(timeout, base + MMCIDATATIMER);
writel(host->size, base + MMCIDATALENGTH);
datactrl = host->ops->get_datactrl_cfg(host);
datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
u32 clk;
datactrl |= variant->datactrl_mask_sdio;
/*
* The ST Micro variant for SDIO small write transfers
* needs to have clock H/W flow control disabled,
* otherwise the transfer will not start. The threshold
* depends on the rate of MCLK.
*/
if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
(host->size < 8 ||
(host->size <= 8 && host->mclk > 50000000)))
clk = host->clk_reg & ~variant->clkreg_enable;
else
clk = host->clk_reg | variant->clkreg_enable;
mmci_write_clkreg(host, clk);
}
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
datactrl |= variant->datactrl_mask_ddrmode;
/*
* Attempt to use DMA operation mode, if this
* should fail, fall back to PIO mode
*/
if (!mmci_dma_start(host, datactrl))
return;
/* IRQ mode, map the SG list for CPU reading/writing */
mmci_init_sg(host, data);
if (data->flags & MMC_DATA_READ) {
irqmask = MCI_RXFIFOHALFFULLMASK;
/*
* If we have less than the fifo 'half-full' threshold to
* transfer, trigger a PIO interrupt as soon as any data
* is available.
*/
if (host->size < variant->fifohalfsize)
irqmask |= MCI_RXDATAAVLBLMASK;
} else {
/*
* We don't actually need to include "FIFO empty" here
* since its implicit in "FIFO half empty".
*/
irqmask = MCI_TXFIFOHALFEMPTYMASK;
}
mmci_write_datactrlreg(host, datactrl);
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
mmci_set_mask1(host, irqmask);
}
static void
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
{
void __iomem *base = host->base;
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
writel(0, base + MMCICOMMAND);
mmci_reg_delay(host);
}
if (host->variant->cmdreg_stop &&
cmd->opcode == MMC_STOP_TRANSMISSION)
c |= host->variant->cmdreg_stop;
c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
c |= host->variant->cmdreg_lrsp_crc;
else if (cmd->flags & MMC_RSP_CRC)
c |= host->variant->cmdreg_srsp_crc;
else
c |= host->variant->cmdreg_srsp;
}
if (/*interrupt*/0)
c |= MCI_CPSM_INTERRUPT;
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
c |= host->variant->data_cmd_enable;
host->cmd = cmd;
writel(cmd->arg, base + MMCIARGUMENT);
writel(c, base + MMCICOMMAND);
}
static void mmci_stop_command(struct mmci_host *host)
{
host->stop_abort.error = 0;
mmci_start_command(host, &host->stop_abort, 0);
}
static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
unsigned int status_err;
/* Make sure we have data to handle */
if (!data)
return;
/* First check for errors */
status_err = status & (host->variant->start_err |
MCI_DATACRCFAIL | MCI_DATATIMEOUT |
MCI_TXUNDERRUN | MCI_RXOVERRUN);
if (status_err) {
u32 remain, success;
/* Terminate the DMA transfer */
mmci_dma_error(host);
/*
* Calculate how far we are into the transfer. Note that
* the data counter gives the number of bytes transferred
* on the MMC bus, not on the host side. On reads, this
* can be as much as a FIFO-worth of data ahead. This
* matters for FIFO overruns only.
*/
if (!host->variant->datacnt_useless) {
remain = readl(host->base + MMCIDATACNT);
success = data->blksz * data->blocks - remain;
} else {
success = 0;
}
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
status_err, success);
if (status_err & MCI_DATACRCFAIL) {
/* Last block was not successful */
success -= 1;
data->error = -EILSEQ;
} else if (status_err & MCI_DATATIMEOUT) {
data->error = -ETIMEDOUT;
} else if (status_err & MCI_STARTBITERR) {
data->error = -ECOMM;
} else if (status_err & MCI_TXUNDERRUN) {
data->error = -EIO;
} else if (status_err & MCI_RXOVERRUN) {
if (success > host->variant->fifosize)
success -= host->variant->fifosize;
else
success = 0;
data->error = -EIO;
}
data->bytes_xfered = round_down(success, data->blksz);
}
if (status & MCI_DATABLOCKEND)
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
if (status & MCI_DATAEND || data->error) {
mmci_dma_finalize(host, data);
mmci_stop_data(host);
if (!data->error)
/* The error clause is handled above, success! */
data->bytes_xfered = data->blksz * data->blocks;
if (!data->stop) {
if (host->variant->cmdreg_stop && data->error)
mmci_stop_command(host);
else
mmci_request_end(host, data->mrq);
} else if (host->mrq->sbc && !data->error) {
mmci_request_end(host, data->mrq);
} else {
mmci_start_command(host, data->stop, 0);
}
}
}
static void
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
unsigned int status)
{
void __iomem *base = host->base;
bool sbc, busy_resp;
if (!cmd)
return;
sbc = (cmd == host->mrq->sbc);
busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
/*
* We need to be one of these interrupts to be considered worth
* handling. Note that we tag on any latent IRQs postponed
* due to waiting for busy status.
*/
if (!((status|host->busy_status) &
(MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
return;
/* Handle busy detection on DAT0 if the variant supports it. */
if (busy_resp && host->variant->busy_detect) {
/*
* Before unmasking for the busy end IRQ, confirm that the
* command was sent successfully. To keep track of having a
* command in-progress, waiting for busy signaling to end,
* store the status in host->busy_status.
*
* Note that, the card may need a couple of clock cycles before
* it starts signaling busy on DAT0, hence re-read the
* MMCISTATUS register here, to allow the busy bit to be set.
* Potentially we may even need to poll the register for a
* while, to allow it to be set, but tests indicates that it
* isn't needed.
*/
if (!host->busy_status &&
!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
(readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
writel(readl(base + MMCIMASK0) |
host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status =
status & (MCI_CMDSENT|MCI_CMDRESPEND);
return;
}
/*
* If there is a command in-progress that has been successfully
* sent, then bail out if busy status is set and wait for the
* busy end IRQ.
*
* Note that, the HW triggers an IRQ on both edges while
* monitoring DAT0 for busy completion, but there is only one
* status bit in MMCISTATUS for the busy state. Therefore
* both the start and the end interrupts needs to be cleared,
* one after the other. So, clear the busy start IRQ here.
*/
if (host->busy_status &&
(status & host->variant->busy_detect_flag)) {
writel(host->variant->busy_detect_mask,
host->base + MMCICLEAR);
return;
}
/*
* If there is a command in-progress that has been successfully
* sent and the busy bit isn't set, it means we have received
* the busy end IRQ. Clear and mask the IRQ, then continue to
* process the command.
*/
if (host->busy_status) {
writel(host->variant->busy_detect_mask,
host->base + MMCICLEAR);
writel(readl(base + MMCIMASK0) &
~host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status = 0;
}
}
host->cmd = NULL;
if (status & MCI_CMDTIMEOUT) {
cmd->error = -ETIMEDOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = -EILSEQ;
} else {
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
}
if ((!sbc && !cmd->data) || cmd->error) {
if (host->data) {
/* Terminate the DMA transfer */
mmci_dma_error(host);
mmci_stop_data(host);
if (host->variant->cmdreg_stop && cmd->error) {
mmci_stop_command(host);
return;
}
}
mmci_request_end(host, host->mrq);
} else if (sbc) {
mmci_start_command(host, host->mrq->cmd, 0);
} else if (!host->variant->datactrl_first &&
!(cmd->data->flags & MMC_DATA_READ)) {
mmci_start_data(host, cmd->data);
}
}
static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
{
return remain - (readl(host->base + MMCIFIFOCNT) << 2);
}
static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
{
/*
* on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
* from the fifo range should be used
*/
if (status & MCI_RXFIFOHALFFULL)
return host->variant->fifohalfsize;
else if (status & MCI_RXDATAAVLBL)
return 4;
return 0;
}
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
u32 status = readl(host->base + MMCISTATUS);
int host_remain = host->size;
do {
int count = host->get_rx_fifocnt(host, status, host_remain);
if (count > remain)
count = remain;
if (count <= 0)
break;
/*
* SDIO especially may want to send something that is
* not divisible by 4 (as opposed to card sectors
* etc). Therefore make sure to always read the last bytes
* while only doing full 32-bit reads towards the FIFO.
*/
if (unlikely(count & 0x3)) {
if (count < 4) {
unsigned char buf[4];
ioread32_rep(base + MMCIFIFO, buf, 1);
memcpy(ptr, buf, count);
} else {
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
count &= ~0x3;
}
} else {
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
}
ptr += count;
remain -= count;
host_remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_RXDATAAVLBL);
return ptr - buffer;
}
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
{
struct variant_data *variant = host->variant;
void __iomem *base = host->base;
char *ptr = buffer;
do {
unsigned int count, maxcnt;
maxcnt = status & MCI_TXFIFOEMPTY ?
variant->fifosize : variant->fifohalfsize;
count = min(remain, maxcnt);
/*
* SDIO especially may want to send something that is
* not divisible by 4 (as opposed to card sectors
* etc), and the FIFO only accept full 32-bit writes.
* So compensate by adding +3 on the count, a single
* byte become a 32bit write, 7 bytes will be two
* 32bit writes etc.
*/
iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_TXFIFOHALFEMPTY);
return ptr - buffer;
}
/*
* PIO data transfer IRQ handler.
*/
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
struct sg_mapping_iter *sg_miter = &host->sg_miter;
struct variant_data *variant = host->variant;
void __iomem *base = host->base;
u32 status;
status = readl(base + MMCISTATUS);
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
do {
unsigned int remain, len;
char *buffer;
/*
* For write, we only need to test the half-empty flag
* here - if the FIFO is completely empty, then by
* definition it is more than half empty.
*
* For read, check for data available.
*/
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
break;
if (!sg_miter_next(sg_miter))
break;
buffer = sg_miter->addr;
remain = sg_miter->length;
len = 0;
if (status & MCI_RXACTIVE)
len = mmci_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = mmci_pio_write(host, buffer, remain, status);
sg_miter->consumed = len;
host->size -= len;
remain -= len;
if (remain)
break;
status = readl(base + MMCISTATUS);
} while (1);
sg_miter_stop(sg_miter);
/*
* If we have less than the fifo 'half-full' threshold to transfer,
* trigger a PIO interrupt as soon as any data is available.
*/
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
/*
* If we run out of data, disable the data IRQs; this
* prevents a race where the FIFO becomes empty before
* the chip itself has disabled the data path, and
* stops us racing with our data end IRQ.
*/
if (host->size == 0) {
mmci_set_mask1(host, 0);
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
}
return IRQ_HANDLED;
}
/*
* Handle completion of command and data transfers.
*/
static irqreturn_t mmci_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
u32 status;
int ret = 0;
spin_lock(&host->lock);
do {
status = readl(host->base + MMCISTATUS);
if (host->singleirq) {
if (status & host->mask1_reg)
mmci_pio_irq(irq, dev_id);
status &= ~host->variant->irq_pio_mask;
}
/*
* Busy detection is managed by mmci_cmd_irq(), including to
* clear the corresponding IRQ.
*/
status &= readl(host->base + MMCIMASK0);
if (host->variant->busy_detect)
writel(status & ~host->variant->busy_detect_mask,
host->base + MMCICLEAR);
else
writel(status, host->base + MMCICLEAR);
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
if (host->variant->reversed_irq_handling) {
mmci_data_irq(host, host->data, status);
mmci_cmd_irq(host, host->cmd, status);
} else {
mmci_cmd_irq(host, host->cmd, status);
mmci_data_irq(host, host->data, status);
}
/*
* Busy detection has been handled by mmci_cmd_irq() above.
* Clear the status bit to prevent polling in IRQ context.
*/
if (host->variant->busy_detect_flag)
status &= ~host->variant->busy_detect_flag;
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned long flags;
WARN_ON(host->mrq != NULL);
mrq->cmd->error = mmci_validate_data(host, mrq->data);
if (mrq->cmd->error) {
mmc_request_done(mmc, mrq);
return;
}
spin_lock_irqsave(&host->lock, flags);
host->mrq = mrq;
if (mrq->data)
mmci_get_next_data(host, mrq->data);
if (mrq->data &&
(host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
mmci_start_data(host, mrq->data);
if (mrq->sbc)
mmci_start_command(host, mrq->sbc, 0);
else
mmci_start_command(host, mrq->cmd, 0);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
struct variant_data *variant = host->variant;
u32 pwr = 0;
unsigned long flags;
int ret;
if (host->plat->ios_handler &&
host->plat->ios_handler(mmc_dev(mmc), ios))
dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
switch (ios->power_mode) {
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
break;
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
/*
* The ST Micro variant doesn't have the PL180s MCI_PWR_UP
* and instead uses MCI_PWR_ON so apply whatever value is
* configured in the variant data.
*/
pwr |= variant->pwrreg_powerup;
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(mmc_dev(mmc),
"failed to enable vqmmc regulator\n");
else
host->vqmmc_enabled = true;
}
pwr |= MCI_PWR_ON;
break;
}
if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
/*
* The ST Micro variant has some additional bits
* indicating signal direction for the signals in
* the SD/MMC bus and feedback-clock usage.
*/
pwr |= host->pwr_reg_add;
if (ios->bus_width == MMC_BUS_WIDTH_4)
pwr &= ~MCI_ST_DATA74DIREN;
else if (ios->bus_width == MMC_BUS_WIDTH_1)
pwr &= (~MCI_ST_DATA74DIREN &
~MCI_ST_DATA31DIREN &
~MCI_ST_DATA2DIREN);
}
if (variant->opendrain) {
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pwr |= variant->opendrain;
} else {
/*
* If the variant cannot configure the pads by its own, then we
* expect the pinctrl to be able to do that for us
*/
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pinctrl_select_state(host->pinctrl, host->pins_opendrain);
else
pinctrl_select_state(host->pinctrl, host->pins_default);
}
/*
* If clock = 0 and the variant requires the MMCIPOWER to be used for
* gating the clock, the MCI_PWR_ON bit is cleared.
*/
if (!ios->clock && variant->pwrreg_clkgate)
pwr &= ~MCI_PWR_ON;
if (host->variant->explicit_mclk_control &&
ios->clock != host->clock_cache) {
ret = clk_set_rate(host->clk, ios->clock);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"Error setting clock rate (%d)\n", ret);
else
host->mclk = clk_get_rate(host->clk);
}
host->clock_cache = ios->clock;
spin_lock_irqsave(&host->lock, flags);
if (host->ops && host->ops->set_clkreg)
host->ops->set_clkreg(host, ios->clock);
else
mmci_set_clkreg(host, ios->clock);
if (host->ops && host->ops->set_pwrreg)
host->ops->set_pwrreg(host, pwr);
else
mmci_write_pwrreg(host, pwr);
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static int mmci_get_cd(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
struct mmci_platform_data *plat = host->plat;
unsigned int status = mmc_gpio_get_cd(mmc);
if (status == -ENOSYS) {
if (!plat->status)
return 1; /* Assume always present */
status = plat->status(mmc_dev(host->mmc));
}
return status;
}
static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret = 0;
if (!IS_ERR(mmc->supply.vqmmc)) {
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
ret = regulator_set_voltage(mmc->supply.vqmmc,
2700000, 3600000);
break;
case MMC_SIGNAL_VOLTAGE_180:
ret = regulator_set_voltage(mmc->supply.vqmmc,
1700000, 1950000);
break;
case MMC_SIGNAL_VOLTAGE_120:
ret = regulator_set_voltage(mmc->supply.vqmmc,
1100000, 1300000);
break;
}
if (ret)
dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
}
return ret;
}
static struct mmc_host_ops mmci_ops = {
.request = mmci_request,
.pre_req = mmci_pre_request,
.post_req = mmci_post_request,
.set_ios = mmci_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmci_get_cd,
.start_signal_voltage_switch = mmci_sig_volt_switch,
};
static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
int ret = mmc_of_parse(mmc);
if (ret)
return ret;
if (of_get_property(np, "st,sig-dir-dat0", NULL))
host->pwr_reg_add |= MCI_ST_DATA0DIREN;
if (of_get_property(np, "st,sig-dir-dat2", NULL))
host->pwr_reg_add |= MCI_ST_DATA2DIREN;
if (of_get_property(np, "st,sig-dir-dat31", NULL))
host->pwr_reg_add |= MCI_ST_DATA31DIREN;
if (of_get_property(np, "st,sig-dir-dat74", NULL))
host->pwr_reg_add |= MCI_ST_DATA74DIREN;
if (of_get_property(np, "st,sig-dir-cmd", NULL))
host->pwr_reg_add |= MCI_ST_CMDDIREN;
if (of_get_property(np, "st,sig-pin-fbclk", NULL))
host->pwr_reg_add |= MCI_ST_FBCLKEN;
if (of_get_property(np, "st,sig-dir", NULL))
host->pwr_reg_add |= MCI_STM32_DIRPOL;
if (of_get_property(np, "st,neg-edge", NULL))
host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
if (of_get_property(np, "st,use-ckin", NULL))
host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
mmc->caps |= MMC_CAP_SD_HIGHSPEED;
return 0;
}
static int mmci_probe(struct amba_device *dev,
const struct amba_id *id)
{
struct mmci_platform_data *plat = dev->dev.platform_data;
struct device_node *np = dev->dev.of_node;
struct variant_data *variant = id->data;
struct mmci_host *host;
struct mmc_host *mmc;
int ret;
/* Must have platform data or Device Tree. */
if (!plat && !np) {
dev_err(&dev->dev, "No plat data or DT found\n");
return -EINVAL;
}
if (!plat) {
plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
if (!plat)
return -ENOMEM;
}
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
if (!mmc)
return -ENOMEM;
ret = mmci_of_parse(np, mmc);
if (ret)
goto host_free;
host = mmc_priv(mmc);
host->mmc = mmc;
/*
* Some variant (STM32) doesn't have opendrain bit, nevertheless
* pins can be set accordingly using pinctrl
*/
if (!variant->opendrain) {
host->pinctrl = devm_pinctrl_get(&dev->dev);
if (IS_ERR(host->pinctrl)) {
dev_err(&dev->dev, "failed to get pinctrl");
ret = PTR_ERR(host->pinctrl);
goto host_free;
}
host->pins_default = pinctrl_lookup_state(host->pinctrl,
PINCTRL_STATE_DEFAULT);
if (IS_ERR(host->pins_default)) {
dev_err(mmc_dev(mmc), "Can't select default pins\n");
ret = PTR_ERR(host->pins_default);
goto host_free;
}
host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
MMCI_PINCTRL_STATE_OPENDRAIN);
if (IS_ERR(host->pins_opendrain)) {
dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
ret = PTR_ERR(host->pins_opendrain);
goto host_free;
}
}
host->hw_designer = amba_manf(dev);
host->hw_revision = amba_rev(dev);
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
host->clk = devm_clk_get(&dev->dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto host_free;
}
ret = clk_prepare_enable(host->clk);
if (ret)
goto host_free;
if (variant->qcom_fifo)
host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
else
host->get_rx_fifocnt = mmci_get_rx_fifocnt;
host->plat = plat;
host->variant = variant;
host->mclk = clk_get_rate(host->clk);
/*
* According to the spec, mclk is max 100 MHz,
* so we try to adjust the clock down to this,
* (if possible).
*/
if (host->mclk > variant->f_max) {
ret = clk_set_rate(host->clk, variant->f_max);
if (ret < 0)
goto clk_disable;
host->mclk = clk_get_rate(host->clk);
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
host->mclk);
}
host->phybase = dev->res.start;
host->base = devm_ioremap_resource(&dev->dev, &dev->res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto clk_disable;
}
if (variant->init)
variant->init(host);
/*
* The ARM and ST versions of the block have slightly different
* clock divider equations which means that the minimum divider
* differs too.
* on Qualcomm like controllers get the nearest minimum clock to 100Khz
*/
if (variant->st_clkdiv)
mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
else if (variant->stm32_clkdiv)
mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
else if (variant->explicit_mclk_control)
mmc->f_min = clk_round_rate(host->clk, 100000);
else
mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
/*
* If no maximum operating frequency is supplied, fall back to use
* the module parameter, which has a (low) default value in case it
* is not specified. Either value must not exceed the clock rate into
* the block, of course.
*/
if (mmc->f_max)
mmc->f_max = variant->explicit_mclk_control ?
min(variant->f_max, mmc->f_max) :
min(host->mclk, mmc->f_max);
else
mmc->f_max = variant->explicit_mclk_control ?
fmax : min(host->mclk, fmax);
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
if (IS_ERR(host->rst)) {
ret = PTR_ERR(host->rst);
goto clk_disable;
}
/* Get regulators and the supported OCR mask */
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto clk_disable;
if (!mmc->ocr_avail)
mmc->ocr_avail = plat->ocr_mask;
else if (plat->ocr_mask)
dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
/* We support these capabilities. */
mmc->caps |= MMC_CAP_CMD23;
/*
* Enable busy detection.
*/
if (variant->busy_detect) {
mmci_ops.card_busy = mmci_card_busy;
/*
* Not all variants have a flag to enable busy detection
* in the DPSM, but if they do, set it here.
*/
if (variant->busy_dpsm_flag)
mmci_write_datactrlreg(host,
host->variant->busy_dpsm_flag);
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
mmc->max_busy_timeout = 0;
}
/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
host->stop_abort.arg = 0;
host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
mmc->ops = &mmci_ops;
/* We support these PM capabilities. */
mmc->pm_caps |= MMC_PM_KEEP_POWER;
/*
* We can do SGIO
*/
mmc->max_segs = NR_SG;
/*
* Since only a certain number of bits are valid in the data length
* register, we must ensure that we don't exceed 2^num-1 bytes in a
* single request.
*/
mmc->max_req_size = (1 << variant->datalength_bits) - 1;
/*
* Set the maximum segment size. Since we aren't doing DMA
* (yet) we are only limited by the data length register.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Block size can be up to 2048 bytes, but must be a power of two.
*/
mmc->max_blk_size = 1 << variant->datactrl_blocksz;
/*
* Limit the number of blocks transferred so that we don't overflow
* the maximum request size.
*/
mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
spin_lock_init(&host->lock);
writel(0, host->base + MMCIMASK0);
if (variant->mmcimask1)
writel(0, host->base + MMCIMASK1);
writel(0xfff, host->base + MMCICLEAR);
/*
* If:
* - not using DT but using a descriptor table, or
* - using a table of descriptors ALONGSIDE DT, or
* look up these descriptors named "cd" and "wp" right here, fail
* silently of these do not exist
*/
if (!np) {
ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
if (ret == -EPROBE_DEFER)
goto clk_disable;
ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
if (ret == -EPROBE_DEFER)
goto clk_disable;
}
ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
DRIVER_NAME " (cmd)", host);
if (ret)
goto clk_disable;
if (!dev->irq[1])
host->singleirq = true;
else {
ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
IRQF_SHARED, DRIVER_NAME " (pio)", host);
if (ret)
goto clk_disable;
}
writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
amba_rev(dev), (unsigned long long)dev->res.start,
dev->irq[0], dev->irq[1]);
mmci_dma_setup(host);
pm_runtime_set_autosuspend_delay(&dev->dev, 50);
pm_runtime_use_autosuspend(&dev->dev);
mmc_add_host(mmc);
pm_runtime_put(&dev->dev);
return 0;
clk_disable:
clk_disable_unprepare(host->clk);
host_free:
mmc_free_host(mmc);
return ret;
}
static int mmci_remove(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
struct variant_data *variant = host->variant;
/*
* Undo pm_runtime_put() in probe. We use the _sync
* version here so that we can access the primecell.
*/
pm_runtime_get_sync(&dev->dev);
mmc_remove_host(mmc);
writel(0, host->base + MMCIMASK0);
if (variant->mmcimask1)
writel(0, host->base + MMCIMASK1);
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
mmci_dma_release(host);
clk_disable_unprepare(host->clk);
mmc_free_host(mmc);
}
return 0;
}
#ifdef CONFIG_PM
static void mmci_save(struct mmci_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
writel(0, host->base + MMCIMASK0);
if (host->variant->pwrreg_nopower) {
writel(0, host->base + MMCIDATACTRL);
writel(0, host->base + MMCIPOWER);
writel(0, host->base + MMCICLOCK);
}
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mmci_restore(struct mmci_host *host)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->variant->pwrreg_nopower) {
writel(host->clk_reg, host->base + MMCICLOCK);
writel(host->datactrl_reg, host->base + MMCIDATACTRL);
writel(host->pwr_reg, host->base + MMCIPOWER);
}
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
mmci_reg_delay(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static int mmci_runtime_suspend(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct mmc_host *mmc = amba_get_drvdata(adev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
pinctrl_pm_select_sleep_state(dev);
mmci_save(host);
clk_disable_unprepare(host->clk);
}
return 0;
}
static int mmci_runtime_resume(struct device *dev)
{
struct amba_device *adev = to_amba_device(dev);
struct mmc_host *mmc = amba_get_drvdata(adev);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
clk_prepare_enable(host->clk);
mmci_restore(host);
pinctrl_pm_select_default_state(dev);
}
return 0;
}
#endif
static const struct dev_pm_ops mmci_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
};
static const struct amba_id mmci_ids[] = {
{
.id = 0x00041180,
.mask = 0xff0fffff,
.data = &variant_arm,
},
{
.id = 0x01041180,
.mask = 0xff0fffff,
.data = &variant_arm_extended_fifo,
},
{
.id = 0x02041180,
.mask = 0xff0fffff,
.data = &variant_arm_extended_fifo_hwfc,
},
{
.id = 0x00041181,
.mask = 0x000fffff,
.data = &variant_arm,
},
/* ST Micro variants */
{
.id = 0x00180180,
.mask = 0x00ffffff,
.data = &variant_u300,
},
{
.id = 0x10180180,
.mask = 0xf0ffffff,
.data = &variant_nomadik,
},
{
.id = 0x00280180,
.mask = 0x00ffffff,
.data = &variant_nomadik,
},
{
.id = 0x00480180,
.mask = 0xf0ffffff,
.data = &variant_ux500,
},
{
.id = 0x10480180,
.mask = 0xf0ffffff,
.data = &variant_ux500v2,
},
{
.id = 0x00880180,
.mask = 0x00ffffff,
.data = &variant_stm32,
},
{
.id = 0x10153180,
.mask = 0xf0ffffff,
.data = &variant_stm32_sdmmc,
},
/* Qualcomm variants */
{
.id = 0x00051180,
.mask = 0x000fffff,
.data = &variant_qcom,
},
{ 0, 0 },
};
MODULE_DEVICE_TABLE(amba, mmci_ids);
static struct amba_driver mmci_driver = {
.drv = {
.name = DRIVER_NAME,
.pm = &mmci_dev_pm_ops,
},
.probe = mmci_probe,
.remove = mmci_remove,
.id_table = mmci_ids,
};
module_amba_driver(mmci_driver);
module_param(fmax, uint, 0444);
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
MODULE_LICENSE("GPL");