linux/arch/mips/alchemy/common/dbdma.c
Kees Cook 6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

1090 lines
32 KiB
C

/*
*
* BRIEF MODULE DESCRIPTION
* The Descriptor Based DMA channel manager that first appeared
* on the Au1550. I started with dma.c, but I think all that is
* left is this initial comment :-)
*
* Copyright 2004 Embedded Edge, LLC
* dan@embeddededge.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/syscore_ops.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
/*
* The Descriptor Based DMA supports up to 16 channels.
*
* There are 32 devices defined. We keep an internal structure
* of devices using these channels, along with additional
* information.
*
* We allocate the descriptors and allow access to them through various
* functions. The drivers allocate the data buffers and assign them
* to the descriptors.
*/
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
/* I couldn't find a macro that did this... */
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
static dbdma_global_t *dbdma_gptr =
(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
static int dbdma_initialized;
static dbdev_tab_t *dbdev_tab;
static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
/* UARTS */
{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
/* EXT DMA */
{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
/* USB DEV */
{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
/* PSCs */
{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
{ AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
/* MAC 0 */
{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
/* MAC 1 */
{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
{ AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
{ AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
{ AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
{ AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
{ AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 },
{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 },
{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 },
{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 },
{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 },
{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 },
{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 },
{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 },
{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 },
{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 },
{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 },
{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 },
{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 },
{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
};
/* 32 predefined plus 32 custom */
#define DBDEV_TAB_SIZE 64
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
static dbdev_tab_t *find_dbdev_id(u32 id)
{
int i;
dbdev_tab_t *p;
for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
p = &dbdev_tab[i];
if (p->dev_id == id)
return p;
}
return NULL;
}
void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
{
return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
}
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
{
u32 ret = 0;
dbdev_tab_t *p;
static u16 new_id = 0x1000;
p = find_dbdev_id(~0);
if (NULL != p) {
memcpy(p, dev, sizeof(dbdev_tab_t));
p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
ret = p->dev_id;
new_id++;
#if 0
printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
p->dev_id, p->dev_flags, p->dev_physaddr);
#endif
}
return ret;
}
EXPORT_SYMBOL(au1xxx_ddma_add_device);
void au1xxx_ddma_del_device(u32 devid)
{
dbdev_tab_t *p = find_dbdev_id(devid);
if (p != NULL) {
memset(p, 0, sizeof(dbdev_tab_t));
p->dev_id = ~0;
}
}
EXPORT_SYMBOL(au1xxx_ddma_del_device);
/* Allocate a channel and return a non-zero descriptor if successful. */
u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
void (*callback)(int, void *), void *callparam)
{
unsigned long flags;
u32 used, chan;
u32 dcp;
int i;
dbdev_tab_t *stp, *dtp;
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
/*
* We do the initialization on the first channel allocation.
* We have to wait because of the interrupt handler initialization
* which can't be done successfully during board set up.
*/
if (!dbdma_initialized)
return 0;
stp = find_dbdev_id(srcid);
if (stp == NULL)
return 0;
dtp = find_dbdev_id(destid);
if (dtp == NULL)
return 0;
used = 0;
/* Check to see if we can get both channels. */
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
(stp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got source */
stp->dev_flags |= DEV_FLAGS_INUSE;
if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
(dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got destination */
dtp->dev_flags |= DEV_FLAGS_INUSE;
} else {
/* Can't get dest. Release src. */
stp->dev_flags &= ~DEV_FLAGS_INUSE;
used++;
}
} else
used++;
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (used)
return 0;
/* Let's see if we can allocate a channel for it. */
ctp = NULL;
chan = 0;
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
for (i = 0; i < NUM_DBDMA_CHANS; i++)
if (chan_tab_ptr[i] == NULL) {
/*
* If kmalloc fails, it is caught below same
* as a channel not available.
*/
ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
chan_tab_ptr[i] = ctp;
break;
}
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (ctp != NULL) {
memset(ctp, 0, sizeof(chan_tab_t));
ctp->chan_index = chan = i;
dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
dcp += (0x0100 * chan);
ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
cp = (au1x_dma_chan_t *)dcp;
ctp->chan_src = stp;
ctp->chan_dest = dtp;
ctp->chan_callback = callback;
ctp->chan_callparam = callparam;
/* Initialize channel configuration. */
i = 0;
if (stp->dev_intlevel)
i |= DDMA_CFG_SED;
if (stp->dev_intpolarity)
i |= DDMA_CFG_SP;
if (dtp->dev_intlevel)
i |= DDMA_CFG_DED;
if (dtp->dev_intpolarity)
i |= DDMA_CFG_DP;
if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
(dtp->dev_flags & DEV_FLAGS_SYNC))
i |= DDMA_CFG_SYNC;
cp->ddma_cfg = i;
wmb(); /* drain writebuffer */
/*
* Return a non-zero value that can be used to find the channel
* information in subsequent operations.
*/
return (u32)(&chan_tab_ptr[chan]);
}
/* Release devices */
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
return 0;
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
/*
* Set the device width if source or destination is a FIFO.
* Should be 8, 16, or 32 bits.
*/
u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
{
u32 rv;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
rv = 0;
if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
rv = stp->dev_devwidth;
stp->dev_devwidth = bits;
}
if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
rv = dtp->dev_devwidth;
dtp->dev_devwidth = bits;
}
return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
/* Allocate a descriptor ring, initializing as much as possible. */
u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
{
int i;
u32 desc_base, srcid, destid;
u32 cmd0, cmd1, src1, dest1;
u32 src0, dest0;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
au1x_ddma_desc_t *dp;
/*
* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
/*
* The descriptors must be 32-byte aligned. There is a
* possibility the allocation will give us such an address,
* and if we try that first we are likely to not waste larger
* slabs of memory.
*/
desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t),
GFP_KERNEL|GFP_DMA);
if (desc_base == 0)
return 0;
if (desc_base & 0x1f) {
/*
* Lost....do it again, allocate extra, and round
* the address base.
*/
kfree((const void *)desc_base);
i = entries * sizeof(au1x_ddma_desc_t);
i += (sizeof(au1x_ddma_desc_t) - 1);
desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
if (desc_base == 0)
return 0;
ctp->cdb_membase = desc_base;
desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
} else
ctp->cdb_membase = desc_base;
dp = (au1x_ddma_desc_t *)desc_base;
/* Keep track of the base descriptor. */
ctp->chan_desc_base = dp;
/* Initialize the rings with as much information as we know. */
srcid = stp->dev_id;
destid = dtp->dev_id;
cmd0 = cmd1 = src1 = dest1 = 0;
src0 = dest0 = 0;
cmd0 |= DSCR_CMD0_SID(srcid);
cmd0 |= DSCR_CMD0_DID(destid);
cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
/* Is it mem to mem transfer? */
if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
(DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
(DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
cmd0 |= DSCR_CMD0_MEM;
switch (stp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
break;
}
switch (dtp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
break;
}
/*
* If the device is marked as an in/out FIFO, ensure it is
* set non-coherent.
*/
if (stp->dev_flags & DEV_FLAGS_IN)
cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
if (dtp->dev_flags & DEV_FLAGS_OUT)
cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
/*
* Set up source1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (stp->dev_tsize) {
case 1:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
break;
case 2:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
break;
case 4:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
break;
case 8:
default:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
break;
}
/* If source input is FIFO, set static address. */
if (stp->dev_flags & DEV_FLAGS_IN) {
if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
else
src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
}
if (stp->dev_physaddr)
src0 = stp->dev_physaddr;
/*
* Set up dest1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (dtp->dev_tsize) {
case 1:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
break;
case 2:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
break;
case 4:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
break;
case 8:
default:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
break;
}
/* If destination output is FIFO, set static address. */
if (dtp->dev_flags & DEV_FLAGS_OUT) {
if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
else
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
}
if (dtp->dev_physaddr)
dest0 = dtp->dev_physaddr;
#if 0
printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
"source1:%x dest0:%x dest1:%x\n",
dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
src1, dest0, dest1);
#endif
for (i = 0; i < entries; i++) {
dp->dscr_cmd0 = cmd0;
dp->dscr_cmd1 = cmd1;
dp->dscr_source0 = src0;
dp->dscr_source1 = src1;
dp->dscr_dest0 = dest0;
dp->dscr_dest1 = dest1;
dp->dscr_stat = 0;
dp->sw_context = 0;
dp->sw_status = 0;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
dp++;
}
/* Make last descrptor point to the first. */
dp--;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
return (u32)ctp->chan_desc_base;
}
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
/*
* Put a source buffer into the DMA ring.
* This updates the source pointer and byte count. Normally used
* for memory to fifo transfers.
*/
u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/*
* I guess we could check this to be within the
* range of the table......
*/
ctp = *(chan_tab_t **)chanid;
/*
* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/*
* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer address and byte count. */
dp->dscr_source0 = buf & ~0UL;
dp->dscr_cmd1 = nbytes;
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
/*
* There is an errata on the Au1200/Au1550 parts that could result
* in "stale" data being DMA'ed. It has to do with the snoop logic on
* the cache eviction buffer. DMA_NONCOHERENT is on by default for
* these parts. If it is fixed in the future, these dma_cache_inv will
* just be nothing more than empty macros. See io.h.
*/
dma_cache_wback_inv((unsigned long)buf, nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
wmb(); /* drain writebuffer */
dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer. */
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* Return something non-zero. */
return nbytes;
}
EXPORT_SYMBOL(au1xxx_dbdma_put_source);
/* Put a destination buffer into the DMA ring.
* This updates the destination pointer and byte count. Normally used
* to place an empty buffer into the ring for fifo to memory transfers.
*/
u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer address and byte count */
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_dest0 = buf & ~0UL;
dp->dscr_cmd1 = nbytes;
#if 0
printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
#endif
/*
* There is an errata on the Au1200/Au1550 parts that could result in
* "stale" data being DMA'ed. It has to do with the snoop logic on the
* cache eviction buffer. DMA_NONCOHERENT is on by default for these
* parts. If it is fixed in the future, these dma_cache_inv will just
* be nothing more than empty macros. See io.h.
*/
dma_cache_inv((unsigned long)buf, nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
wmb(); /* drain writebuffer */
dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer. */
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* Return something non-zero. */
return nbytes;
}
EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
/*
* Get a destination buffer into the DMA ring.
* Normally used to get a full buffer from the ring during fifo
* to memory transfers. This does not set the valid bit, you will
* have to put another destination buffer to keep the DMA going.
*/
u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 rv;
/*
* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/*
* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->get_ptr;
/*
* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Return buffer address and byte count. */
*buf = (void *)(phys_to_virt(dp->dscr_dest0));
*nbytes = dp->dscr_cmd1;
rv = dp->dscr_stat;
/* Get next descriptor pointer. */
ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* Return something non-zero. */
return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
void au1xxx_dbdma_stop(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
int halt_timeout = 0;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
wmb(); /* drain writebuffer */
while (!(cp->ddma_stat & DDMA_STAT_H)) {
udelay(1);
halt_timeout++;
if (halt_timeout > 100) {
printk(KERN_WARNING "warning: DMA channel won't halt\n");
break;
}
}
/* clear current desc valid and doorbell */
cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
wmb(); /* drain writebuffer */
}
EXPORT_SYMBOL(au1xxx_dbdma_stop);
/*
* Start using the current descriptor pointer. If the DBDMA encounters
* a non-valid descriptor, it will stop. In this case, we can just
* continue by adding a buffer to the list and starting again.
*/
void au1xxx_dbdma_start(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
wmb(); /* drain writebuffer */
cp->ddma_dbell = 0;
wmb(); /* drain writebuffer */
}
EXPORT_SYMBOL(au1xxx_dbdma_start);
void au1xxx_dbdma_reset(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1xxx_dbdma_stop(chanid);
ctp = *((chan_tab_t **)chanid);
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
/* Run through the descriptors and reset the valid indicator. */
dp = ctp->chan_desc_base;
do {
dp->dscr_cmd0 &= ~DSCR_CMD0_V;
/*
* Reset our software status -- this is used to determine
* if a descriptor is in use by upper level software. Since
* posting can reset 'V' bit.
*/
dp->sw_status = 0;
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_reset);
u32 au1xxx_get_dma_residue(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
u32 rv;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
/* This is only valid if the channel is stopped. */
rv = cp->ddma_bytecnt;
wmb(); /* drain writebuffer */
return rv;
}
EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
void au1xxx_dbdma_chan_free(u32 chanid)
{
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
au1xxx_dbdma_stop(chanid);
kfree((void *)ctp->cdb_membase);
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
chan_tab_ptr[ctp->chan_index] = NULL;
kfree(ctp);
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
{
u32 intstat;
u32 chan_index;
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1x_dma_chan_t *cp;
intstat = dbdma_gptr->ddma_intstat;
wmb(); /* drain writebuffer */
chan_index = __ffs(intstat);
ctp = chan_tab_ptr[chan_index];
cp = ctp->chan_ptr;
dp = ctp->cur_ptr;
/* Reset interrupt. */
cp->ddma_irq = 0;
wmb(); /* drain writebuffer */
if (ctp->chan_callback)
ctp->chan_callback(irq, ctp->chan_callparam);
ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
return IRQ_RETVAL(1);
}
void au1xxx_dbdma_dump(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
dbdev_tab_t *stp, *dtp;
au1x_dma_chan_t *cp;
u32 i = 0;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
cp = ctp->chan_ptr;
printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
dtp - dbdev_tab);
printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
cp->ddma_bytecnt);
/* Run through the descriptors */
dp = ctp->chan_desc_base;
do {
printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
dp->dscr_source0, dp->dscr_source1,
dp->dscr_dest0, dp->dscr_dest1);
printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
dp->dscr_stat, dp->dscr_nxtptr);
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
/* Put a descriptor into the DMA ring.
* This updates the source/destination pointers and byte count.
*/
u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 nbytes = 0;
/*
* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/*
* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/*
* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer addresses and byte count. */
dp->dscr_dest0 = dscr->dscr_dest0;
dp->dscr_source0 = dscr->dscr_source0;
dp->dscr_dest1 = dscr->dscr_dest1;
dp->dscr_source1 = dscr->dscr_source1;
dp->dscr_cmd1 = dscr->dscr_cmd1;
nbytes = dscr->dscr_cmd1;
/* Allow the caller to specify if an interrupt is generated */
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer. */
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* Return something non-zero. */
return nbytes;
}
static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
static int alchemy_dbdma_suspend(void)
{
int i;
void __iomem *addr;
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
/* save channel configurations */
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
/* halt channel */
__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
wmb();
while (!(__raw_readl(addr + 0x14) & 1))
wmb();
addr += 0x100; /* next channel base */
}
/* disable channel interrupts */
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
__raw_writel(0, addr + 0x0c);
wmb();
return 0;
}
static void alchemy_dbdma_resume(void)
{
int i;
void __iomem *addr;
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
/* restore channel configurations */
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
wmb();
addr += 0x100; /* next channel base */
}
}
static struct syscore_ops alchemy_dbdma_syscore_ops = {
.suspend = alchemy_dbdma_suspend,
.resume = alchemy_dbdma_resume,
};
static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
{
int ret;
dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL);
if (!dbdev_tab)
return -ENOMEM;
memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
dbdev_tab[ret].dev_id = ~0;
dbdma_gptr->ddma_config = 0;
dbdma_gptr->ddma_throttle = 0;
dbdma_gptr->ddma_inten = 0xffff;
wmb(); /* drain writebuffer */
ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
if (ret)
printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
else {
dbdma_initialized = 1;
register_syscore_ops(&alchemy_dbdma_syscore_ops);
}
return ret;
}
static int __init alchemy_dbdma_init(void)
{
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1550:
return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
case ALCHEMY_CPU_AU1200:
return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
case ALCHEMY_CPU_AU1300:
return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
}
return 0;
}
subsys_initcall(alchemy_dbdma_init);