linux/drivers/media/i2c/ccs/ccs-reg-access.c
Sakari Ailus dffbdf3775 media: ccs: Switch from standard integer types to kernel ones
The preferred integer types in the kernel are the Linux specific ones,
switch from standard C types to u32 and alike.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2021-01-12 17:56:00 +01:00

417 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs/ccs-reg-access.c
*
* Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2011--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
*/
#include <asm/unaligned.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include "ccs.h"
#include "ccs-limits.h"
static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
{
s32 exp;
u64 man;
if (phloat >= 0x80000000) {
dev_err(&client->dev, "this is a negative number\n");
return 0;
}
if (phloat == 0x7f800000)
return ~0; /* Inf. */
if ((phloat & 0x7f800000) == 0x7f800000) {
dev_err(&client->dev, "NaN or other special number\n");
return 0;
}
/* Valid cases begin here */
if (phloat == 0)
return 0; /* Valid zero */
if (phloat > 0x4f800000)
return ~0; /* larger than 4294967295 */
/*
* Unbias exponent (note how phloat is now guaranteed to
* have 0 in the high bit)
*/
exp = ((int32_t)phloat >> 23) - 127;
/* Extract mantissa, add missing '1' bit and it's in MHz */
man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
if (exp < 0)
man >>= -exp;
else
man <<= exp;
man >>= 23; /* Remove mantissa bias */
return man & 0xffffffff;
}
/*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len,
u32 *val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct i2c_msg msg;
unsigned char data_buf[sizeof(u32)] = { 0 };
unsigned char offset_buf[sizeof(u16)];
int r;
if (len > sizeof(data_buf))
return -EINVAL;
msg.addr = client->addr;
msg.flags = 0;
msg.len = sizeof(offset_buf);
msg.buf = offset_buf;
put_unaligned_be16(reg, offset_buf);
r = i2c_transfer(client->adapter, &msg, 1);
if (r != 1) {
if (r >= 0)
r = -EBUSY;
goto err;
}
msg.len = len;
msg.flags = I2C_M_RD;
msg.buf = &data_buf[sizeof(data_buf) - len];
r = i2c_transfer(client->adapter, &msg, 1);
if (r != 1) {
if (r >= 0)
r = -EBUSY;
goto err;
}
*val = get_unaligned_be32(data_buf);
return 0;
err:
dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r);
return r;
}
/* Read a register using 8-bit access only. */
static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg,
u16 len, u32 *val)
{
unsigned int i;
int rval;
*val = 0;
for (i = 0; i < len; i++) {
u32 val8;
rval = ____ccs_read_addr(sensor, reg + i, 1, &val8);
if (rval < 0)
return rval;
*val |= val8 << ((len - i - 1) << 3);
}
return 0;
}
unsigned int ccs_reg_width(u32 reg)
{
if (reg & CCS_FL_16BIT)
return sizeof(u16);
if (reg & CCS_FL_32BIT)
return sizeof(u32);
return sizeof(u8);
}
static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
{
if (val >> 10 > U32_MAX / 15625) {
dev_warn(&client->dev, "value %u overflows!\n", val);
return U32_MAX;
}
return ((val >> 10) * 15625) +
(val & GENMASK(9, 0)) * 15625 / 1024;
}
u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
if (reg & CCS_FL_FLOAT_IREAL) {
if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
val = ireal32_to_u32_mul_1000000(client, val);
else
val = float_to_u32_mul_1000000(client, val);
} else if (reg & CCS_FL_IREAL) {
val = ireal32_to_u32_mul_1000000(client, val);
}
return val;
}
/*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool only8, bool conv)
{
unsigned int len = ccs_reg_width(reg);
int rval;
if (!only8)
rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val);
else
rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len,
val);
if (rval < 0)
return rval;
if (!conv)
return 0;
*val = ccs_reg_conv(sensor, reg, *val);
return 0;
}
static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs,
u32 reg, u32 *val)
{
unsigned int width = ccs_reg_width(reg);
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
u8 *data;
if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
continue;
if (regs->addr > CCS_REG_ADDR(reg))
break;
data = &regs->value[CCS_REG_ADDR(reg) - regs->addr];
switch (width) {
case sizeof(u8):
*val = *data;
break;
case sizeof(u16):
*val = get_unaligned_be16(data);
break;
case sizeof(u32):
*val = get_unaligned_be32(data);
break;
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
return -ENOENT;
}
static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs,
sensor->sdata.num_sensor_read_only_regs,
reg, val))
return 0;
return __ccs_read_data(sensor->mdata.module_read_only_regs,
sensor->mdata.num_module_read_only_regs,
reg, val);
}
static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool force8, bool quirk, bool conv, bool data)
{
int rval;
if (data) {
rval = ccs_read_data(sensor, reg, val);
if (!rval)
return 0;
}
if (quirk) {
*val = 0;
rval = ccs_call_quirk(sensor, reg_access, false, &reg, val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
if (force8)
return __ccs_read_addr(sensor, reg, val, true, conv);
}
return __ccs_read_addr(sensor, reg, val,
ccs_needs_quirk(sensor,
CCS_QUIRK_FLAG_8BIT_READ_ONLY),
conv);
}
int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
}
int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
}
int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
}
static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg)
{
unsigned int retries;
int r;
for (retries = 0; retries < 10; retries++) {
/*
* Due to unknown reason sensor stops responding. This
* loop is a temporaty solution until the root cause
* is found.
*/
r = i2c_transfer(client->adapter, msg, 1);
if (r != 1) {
usleep_range(1000, 2000);
continue;
}
if (retries)
dev_err(&client->dev,
"sensor i2c stall encountered. retries: %d\n",
retries);
return 0;
}
return r;
}
int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct i2c_msg msg;
unsigned char data[6];
unsigned int len = ccs_reg_width(reg);
int r;
if (len > sizeof(data) - 2)
return -EINVAL;
msg.addr = client->addr;
msg.flags = 0; /* Write */
msg.len = 2 + len;
msg.buf = data;
put_unaligned_be16(CCS_REG_ADDR(reg), data);
put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2);
dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n",
CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1,
ccs_reg_width(reg) << 1, val, val);
r = ccs_write_retry(client, &msg);
if (r)
dev_err(&client->dev,
"wrote 0x%x to offset 0x%x error %d\n", val,
CCS_REG_ADDR(reg), r);
return r;
}
/*
* Write to a 8/16-bit register.
* Returns zero if successful, or non-zero otherwise.
*/
int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
{
int rval;
rval = ccs_call_quirk(sensor, reg_access, true, &reg, &val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
return ccs_write_addr_no_quirk(sensor, reg, val);
}
#define MAX_WRITE_LEN 32U
int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
size_t num_regs)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned char buf[2 + MAX_WRITE_LEN];
struct i2c_msg msg = {
.addr = client->addr,
.buf = buf,
};
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
unsigned char *regdata = regs->value;
unsigned int j;
for (j = 0; j < regs->len;
j += msg.len - 2, regdata += msg.len - 2) {
char printbuf[(MAX_WRITE_LEN << 1) +
1 /* \0 */] = { 0 };
int rval;
msg.len = min(regs->len - j, MAX_WRITE_LEN);
bin2hex(printbuf, regdata, msg.len);
dev_dbg(&client->dev,
"writing msr reg 0x%4.4x value 0x%s\n",
regs->addr + j, printbuf);
put_unaligned_be16(regs->addr + j, buf);
memcpy(buf + 2, regdata, msg.len);
msg.len += 2;
rval = ccs_write_retry(client, &msg);
if (rval) {
dev_err(&client->dev,
"error writing %u octets to address 0x%4.4x\n",
msg.len, regs->addr + j);
return rval;
}
}
}
return 0;
}