mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-14 17:55:42 +08:00
e6401c1309
Currently, the IRQ stack is hardcoded as the first page of the percpu area, and the stack canary lives on the IRQ stack. The former gets in the way of adding an IRQ stack guard page, and the latter is a potential weakness in the stack canary mechanism. Split the IRQ stack into its own private percpu pages. [ tglx: Make 64 and 32 bit share struct irq_stack ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Feng Tang <feng.tang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jordan Borgner <mail@jordan-borgner.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Maran Wilson <maran.wilson@oracle.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
299 lines
8.4 KiB
C
299 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/pfn.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apicdef.h>
|
|
#include <asm/highmem.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/cpumask.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/stackprotector.h>
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_number);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
|
|
#else
|
|
#define BOOT_PERCPU_OFFSET 0
|
|
#endif
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
|
|
EXPORT_PER_CPU_SYMBOL(this_cpu_off);
|
|
|
|
unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init = {
|
|
[0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
|
|
};
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
/*
|
|
* On x86_64 symbols referenced from code should be reachable using
|
|
* 32bit relocations. Reserve space for static percpu variables in
|
|
* modules so that they are always served from the first chunk which
|
|
* is located at the percpu segment base. On x86_32, anything can
|
|
* address anywhere. No need to reserve space in the first chunk.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
|
|
#else
|
|
#define PERCPU_FIRST_CHUNK_RESERVE 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/**
|
|
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
|
|
*
|
|
* If NUMA is not configured or there is only one NUMA node available,
|
|
* there is no reason to consider NUMA. This function determines
|
|
* whether percpu allocation should consider NUMA or not.
|
|
*
|
|
* RETURNS:
|
|
* true if NUMA should be considered; otherwise, false.
|
|
*/
|
|
static bool __init pcpu_need_numa(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
pg_data_t *last = NULL;
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int node = early_cpu_to_node(cpu);
|
|
|
|
if (node_online(node) && NODE_DATA(node) &&
|
|
last && last != NODE_DATA(node))
|
|
return true;
|
|
|
|
last = NODE_DATA(node);
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
|
|
* @cpu: cpu to allocate for
|
|
* @size: size allocation in bytes
|
|
* @align: alignment
|
|
*
|
|
* Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
|
|
* does the right thing for NUMA regardless of the current
|
|
* configuration.
|
|
*
|
|
* RETURNS:
|
|
* Pointer to the allocated area on success, NULL on failure.
|
|
*/
|
|
static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
const unsigned long goal = __pa(MAX_DMA_ADDRESS);
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int node = early_cpu_to_node(cpu);
|
|
void *ptr;
|
|
|
|
if (!node_online(node) || !NODE_DATA(node)) {
|
|
ptr = memblock_alloc_from(size, align, goal);
|
|
pr_info("cpu %d has no node %d or node-local memory\n",
|
|
cpu, node);
|
|
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
|
|
cpu, size, __pa(ptr));
|
|
} else {
|
|
ptr = memblock_alloc_try_nid(size, align, goal,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
node);
|
|
|
|
pr_debug("per cpu data for cpu%d %lu bytes on node%d at %016lx\n",
|
|
cpu, size, node, __pa(ptr));
|
|
}
|
|
return ptr;
|
|
#else
|
|
return memblock_alloc_from(size, align, goal);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Helpers for first chunk memory allocation
|
|
*/
|
|
static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
|
|
{
|
|
return pcpu_alloc_bootmem(cpu, size, align);
|
|
}
|
|
|
|
static void __init pcpu_fc_free(void *ptr, size_t size)
|
|
{
|
|
memblock_free(__pa(ptr), size);
|
|
}
|
|
|
|
static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
if (early_cpu_to_node(from) == early_cpu_to_node(to))
|
|
return LOCAL_DISTANCE;
|
|
else
|
|
return REMOTE_DISTANCE;
|
|
#else
|
|
return LOCAL_DISTANCE;
|
|
#endif
|
|
}
|
|
|
|
static void __init pcpup_populate_pte(unsigned long addr)
|
|
{
|
|
populate_extra_pte(addr);
|
|
}
|
|
|
|
static inline void setup_percpu_segment(int cpu)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
struct desc_struct d = GDT_ENTRY_INIT(0x8092, per_cpu_offset(cpu),
|
|
0xFFFFF);
|
|
|
|
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_PERCPU, &d, DESCTYPE_S);
|
|
#endif
|
|
}
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long delta;
|
|
int rc;
|
|
|
|
pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%u nr_node_ids:%u\n",
|
|
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
|
|
|
|
/*
|
|
* Allocate percpu area. Embedding allocator is our favorite;
|
|
* however, on NUMA configurations, it can result in very
|
|
* sparse unit mapping and vmalloc area isn't spacious enough
|
|
* on 32bit. Use page in that case.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
if (pcpu_chosen_fc == PCPU_FC_AUTO && pcpu_need_numa())
|
|
pcpu_chosen_fc = PCPU_FC_PAGE;
|
|
#endif
|
|
rc = -EINVAL;
|
|
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
|
|
const size_t dyn_size = PERCPU_MODULE_RESERVE +
|
|
PERCPU_DYNAMIC_RESERVE - PERCPU_FIRST_CHUNK_RESERVE;
|
|
size_t atom_size;
|
|
|
|
/*
|
|
* On 64bit, use PMD_SIZE for atom_size so that embedded
|
|
* percpu areas are aligned to PMD. This, in the future,
|
|
* can also allow using PMD mappings in vmalloc area. Use
|
|
* PAGE_SIZE on 32bit as vmalloc space is highly contended
|
|
* and large vmalloc area allocs can easily fail.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
atom_size = PMD_SIZE;
|
|
#else
|
|
atom_size = PAGE_SIZE;
|
|
#endif
|
|
rc = pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
|
|
dyn_size, atom_size,
|
|
pcpu_cpu_distance,
|
|
pcpu_fc_alloc, pcpu_fc_free);
|
|
if (rc < 0)
|
|
pr_warning("%s allocator failed (%d), falling back to page size\n",
|
|
pcpu_fc_names[pcpu_chosen_fc], rc);
|
|
}
|
|
if (rc < 0)
|
|
rc = pcpu_page_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
|
|
pcpu_fc_alloc, pcpu_fc_free,
|
|
pcpup_populate_pte);
|
|
if (rc < 0)
|
|
panic("cannot initialize percpu area (err=%d)", rc);
|
|
|
|
/* alrighty, percpu areas up and running */
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu) {
|
|
per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
|
|
per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
|
|
per_cpu(cpu_number, cpu) = cpu;
|
|
setup_percpu_segment(cpu);
|
|
setup_stack_canary_segment(cpu);
|
|
/*
|
|
* Copy data used in early init routines from the
|
|
* initial arrays to the per cpu data areas. These
|
|
* arrays then become expendable and the *_early_ptr's
|
|
* are zeroed indicating that the static arrays are
|
|
* gone.
|
|
*/
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
per_cpu(x86_cpu_to_apicid, cpu) =
|
|
early_per_cpu_map(x86_cpu_to_apicid, cpu);
|
|
per_cpu(x86_bios_cpu_apicid, cpu) =
|
|
early_per_cpu_map(x86_bios_cpu_apicid, cpu);
|
|
per_cpu(x86_cpu_to_acpiid, cpu) =
|
|
early_per_cpu_map(x86_cpu_to_acpiid, cpu);
|
|
#endif
|
|
#ifdef CONFIG_X86_32
|
|
per_cpu(x86_cpu_to_logical_apicid, cpu) =
|
|
early_per_cpu_map(x86_cpu_to_logical_apicid, cpu);
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
per_cpu(x86_cpu_to_node_map, cpu) =
|
|
early_per_cpu_map(x86_cpu_to_node_map, cpu);
|
|
/*
|
|
* Ensure that the boot cpu numa_node is correct when the boot
|
|
* cpu is on a node that doesn't have memory installed.
|
|
* Also cpu_up() will call cpu_to_node() for APs when
|
|
* MEMORY_HOTPLUG is defined, before per_cpu(numa_node) is set
|
|
* up later with c_init aka intel_init/amd_init.
|
|
* So set them all (boot cpu and all APs).
|
|
*/
|
|
set_cpu_numa_node(cpu, early_cpu_to_node(cpu));
|
|
#endif
|
|
/*
|
|
* Up to this point, the boot CPU has been using .init.data
|
|
* area. Reload any changed state for the boot CPU.
|
|
*/
|
|
if (!cpu)
|
|
switch_to_new_gdt(cpu);
|
|
}
|
|
|
|
/* indicate the early static arrays will soon be gone */
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
|
|
early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
|
|
early_per_cpu_ptr(x86_cpu_to_acpiid) = NULL;
|
|
#endif
|
|
#ifdef CONFIG_X86_32
|
|
early_per_cpu_ptr(x86_cpu_to_logical_apicid) = NULL;
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
|
|
#endif
|
|
|
|
/* Setup node to cpumask map */
|
|
setup_node_to_cpumask_map();
|
|
|
|
/* Setup cpu initialized, callin, callout masks */
|
|
setup_cpu_local_masks();
|
|
|
|
/*
|
|
* Sync back kernel address range again. We already did this in
|
|
* setup_arch(), but percpu data also needs to be available in
|
|
* the smpboot asm. We can't reliably pick up percpu mappings
|
|
* using vmalloc_fault(), because exception dispatch needs
|
|
* percpu data.
|
|
*
|
|
* FIXME: Can the later sync in setup_cpu_entry_areas() replace
|
|
* this call?
|
|
*/
|
|
sync_initial_page_table();
|
|
}
|