mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 05:04:09 +08:00
7cc8f9c714
This is purely a preparatory patch that makes all the data structures ready for encoding flags with the mmu_gather page pointers. The code currently always sets the flag to zero and doesn't use it yet, but now it's tracking the type state along. The next step will be to actually start using it. Link: https://lkml.kernel.org/r/20221109203051.1835763-3-torvalds@linux-foundation.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
908 lines
24 KiB
C
908 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/swap_state.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
*
|
|
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include "internal.h"
|
|
#include "swap.h"
|
|
|
|
/*
|
|
* swapper_space is a fiction, retained to simplify the path through
|
|
* vmscan's shrink_page_list.
|
|
*/
|
|
static const struct address_space_operations swap_aops = {
|
|
.writepage = swap_writepage,
|
|
.dirty_folio = noop_dirty_folio,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migrate_folio = migrate_folio,
|
|
#endif
|
|
};
|
|
|
|
struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
|
|
static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
|
|
static bool enable_vma_readahead __read_mostly = true;
|
|
|
|
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
|
|
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
|
|
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
|
|
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
|
|
|
|
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
|
|
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
|
|
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
|
|
|
|
#define SWAP_RA_VAL(addr, win, hits) \
|
|
(((addr) & PAGE_MASK) | \
|
|
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
|
|
((hits) & SWAP_RA_HITS_MASK))
|
|
|
|
/* Initial readahead hits is 4 to start up with a small window */
|
|
#define GET_SWAP_RA_VAL(vma) \
|
|
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
|
|
|
|
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
|
|
|
|
void show_swap_cache_info(void)
|
|
{
|
|
printk("%lu pages in swap cache\n", total_swapcache_pages());
|
|
printk("Free swap = %ldkB\n",
|
|
get_nr_swap_pages() << (PAGE_SHIFT - 10));
|
|
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
|
|
}
|
|
|
|
void *get_shadow_from_swap_cache(swp_entry_t entry)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
pgoff_t idx = swp_offset(entry);
|
|
struct page *page;
|
|
|
|
page = xa_load(&address_space->i_pages, idx);
|
|
if (xa_is_value(page))
|
|
return page;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* add_to_swap_cache resembles filemap_add_folio on swapper_space,
|
|
* but sets SwapCache flag and private instead of mapping and index.
|
|
*/
|
|
int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
|
|
gfp_t gfp, void **shadowp)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
pgoff_t idx = swp_offset(entry);
|
|
XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
|
|
unsigned long i, nr = folio_nr_pages(folio);
|
|
void *old;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
|
|
|
|
folio_ref_add(folio, nr);
|
|
folio_set_swapcache(folio);
|
|
|
|
do {
|
|
xas_lock_irq(&xas);
|
|
xas_create_range(&xas);
|
|
if (xas_error(&xas))
|
|
goto unlock;
|
|
for (i = 0; i < nr; i++) {
|
|
VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
|
|
old = xas_load(&xas);
|
|
if (xa_is_value(old)) {
|
|
if (shadowp)
|
|
*shadowp = old;
|
|
}
|
|
set_page_private(folio_page(folio, i), entry.val + i);
|
|
xas_store(&xas, folio);
|
|
xas_next(&xas);
|
|
}
|
|
address_space->nrpages += nr;
|
|
__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
|
|
__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
|
|
unlock:
|
|
xas_unlock_irq(&xas);
|
|
} while (xas_nomem(&xas, gfp));
|
|
|
|
if (!xas_error(&xas))
|
|
return 0;
|
|
|
|
folio_clear_swapcache(folio);
|
|
folio_ref_sub(folio, nr);
|
|
return xas_error(&xas);
|
|
}
|
|
|
|
/*
|
|
* This must be called only on folios that have
|
|
* been verified to be in the swap cache.
|
|
*/
|
|
void __delete_from_swap_cache(struct folio *folio,
|
|
swp_entry_t entry, void *shadow)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
int i;
|
|
long nr = folio_nr_pages(folio);
|
|
pgoff_t idx = swp_offset(entry);
|
|
XA_STATE(xas, &address_space->i_pages, idx);
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
void *entry = xas_store(&xas, shadow);
|
|
VM_BUG_ON_PAGE(entry != folio, entry);
|
|
set_page_private(folio_page(folio, i), 0);
|
|
xas_next(&xas);
|
|
}
|
|
folio_clear_swapcache(folio);
|
|
address_space->nrpages -= nr;
|
|
__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
|
|
__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
|
|
}
|
|
|
|
/**
|
|
* add_to_swap - allocate swap space for a folio
|
|
* @folio: folio we want to move to swap
|
|
*
|
|
* Allocate swap space for the folio and add the folio to the
|
|
* swap cache.
|
|
*
|
|
* Context: Caller needs to hold the folio lock.
|
|
* Return: Whether the folio was added to the swap cache.
|
|
*/
|
|
bool add_to_swap(struct folio *folio)
|
|
{
|
|
swp_entry_t entry;
|
|
int err;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
|
|
|
|
entry = folio_alloc_swap(folio);
|
|
if (!entry.val)
|
|
return false;
|
|
|
|
/*
|
|
* XArray node allocations from PF_MEMALLOC contexts could
|
|
* completely exhaust the page allocator. __GFP_NOMEMALLOC
|
|
* stops emergency reserves from being allocated.
|
|
*
|
|
* TODO: this could cause a theoretical memory reclaim
|
|
* deadlock in the swap out path.
|
|
*/
|
|
/*
|
|
* Add it to the swap cache.
|
|
*/
|
|
err = add_to_swap_cache(folio, entry,
|
|
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
|
|
if (err)
|
|
/*
|
|
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
|
|
* clear SWAP_HAS_CACHE flag.
|
|
*/
|
|
goto fail;
|
|
/*
|
|
* Normally the folio will be dirtied in unmap because its
|
|
* pte should be dirty. A special case is MADV_FREE page. The
|
|
* page's pte could have dirty bit cleared but the folio's
|
|
* SwapBacked flag is still set because clearing the dirty bit
|
|
* and SwapBacked flag has no lock protected. For such folio,
|
|
* unmap will not set dirty bit for it, so folio reclaim will
|
|
* not write the folio out. This can cause data corruption when
|
|
* the folio is swapped in later. Always setting the dirty flag
|
|
* for the folio solves the problem.
|
|
*/
|
|
folio_mark_dirty(folio);
|
|
|
|
return true;
|
|
|
|
fail:
|
|
put_swap_folio(folio, entry);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This must be called only on folios that have
|
|
* been verified to be in the swap cache and locked.
|
|
* It will never put the folio into the free list,
|
|
* the caller has a reference on the folio.
|
|
*/
|
|
void delete_from_swap_cache(struct folio *folio)
|
|
{
|
|
swp_entry_t entry = folio_swap_entry(folio);
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
|
|
xa_lock_irq(&address_space->i_pages);
|
|
__delete_from_swap_cache(folio, entry, NULL);
|
|
xa_unlock_irq(&address_space->i_pages);
|
|
|
|
put_swap_folio(folio, entry);
|
|
folio_ref_sub(folio, folio_nr_pages(folio));
|
|
}
|
|
|
|
void clear_shadow_from_swap_cache(int type, unsigned long begin,
|
|
unsigned long end)
|
|
{
|
|
unsigned long curr = begin;
|
|
void *old;
|
|
|
|
for (;;) {
|
|
swp_entry_t entry = swp_entry(type, curr);
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
XA_STATE(xas, &address_space->i_pages, curr);
|
|
|
|
xa_lock_irq(&address_space->i_pages);
|
|
xas_for_each(&xas, old, end) {
|
|
if (!xa_is_value(old))
|
|
continue;
|
|
xas_store(&xas, NULL);
|
|
}
|
|
xa_unlock_irq(&address_space->i_pages);
|
|
|
|
/* search the next swapcache until we meet end */
|
|
curr >>= SWAP_ADDRESS_SPACE_SHIFT;
|
|
curr++;
|
|
curr <<= SWAP_ADDRESS_SPACE_SHIFT;
|
|
if (curr > end)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are the only user, then try to free up the swap cache.
|
|
*
|
|
* Its ok to check the swapcache flag without the folio lock
|
|
* here because we are going to recheck again inside
|
|
* folio_free_swap() _with_ the lock.
|
|
* - Marcelo
|
|
*/
|
|
void free_swap_cache(struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
|
|
if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
|
|
folio_trylock(folio)) {
|
|
folio_free_swap(folio);
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform a free_page(), also freeing any swap cache associated with
|
|
* this page if it is the last user of the page.
|
|
*/
|
|
void free_page_and_swap_cache(struct page *page)
|
|
{
|
|
free_swap_cache(page);
|
|
if (!is_huge_zero_page(page))
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* Passed an array of pages, drop them all from swapcache and then release
|
|
* them. They are removed from the LRU and freed if this is their last use.
|
|
*/
|
|
void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
|
|
{
|
|
lru_add_drain();
|
|
for (int i = 0; i < nr; i++)
|
|
free_swap_cache(encoded_page_ptr(pages[i]));
|
|
release_pages(pages, nr);
|
|
}
|
|
|
|
static inline bool swap_use_vma_readahead(void)
|
|
{
|
|
return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
|
|
}
|
|
|
|
/*
|
|
* Lookup a swap entry in the swap cache. A found folio will be returned
|
|
* unlocked and with its refcount incremented - we rely on the kernel
|
|
* lock getting page table operations atomic even if we drop the folio
|
|
* lock before returning.
|
|
*/
|
|
struct folio *swap_cache_get_folio(swp_entry_t entry,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct folio *folio;
|
|
struct swap_info_struct *si;
|
|
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
return NULL;
|
|
folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
|
|
put_swap_device(si);
|
|
|
|
if (folio) {
|
|
bool vma_ra = swap_use_vma_readahead();
|
|
bool readahead;
|
|
|
|
/*
|
|
* At the moment, we don't support PG_readahead for anon THP
|
|
* so let's bail out rather than confusing the readahead stat.
|
|
*/
|
|
if (unlikely(folio_test_large(folio)))
|
|
return folio;
|
|
|
|
readahead = folio_test_clear_readahead(folio);
|
|
if (vma && vma_ra) {
|
|
unsigned long ra_val;
|
|
int win, hits;
|
|
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
if (readahead)
|
|
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(addr, win, hits));
|
|
}
|
|
|
|
if (readahead) {
|
|
count_vm_event(SWAP_RA_HIT);
|
|
if (!vma || !vma_ra)
|
|
atomic_inc(&swapin_readahead_hits);
|
|
}
|
|
}
|
|
|
|
return folio;
|
|
}
|
|
|
|
/**
|
|
* filemap_get_incore_folio - Find and get a folio from the page or swap caches.
|
|
* @mapping: The address_space to search.
|
|
* @index: The page cache index.
|
|
*
|
|
* This differs from filemap_get_folio() in that it will also look for the
|
|
* folio in the swap cache.
|
|
*
|
|
* Return: The found folio or %NULL.
|
|
*/
|
|
struct folio *filemap_get_incore_folio(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
swp_entry_t swp;
|
|
struct swap_info_struct *si;
|
|
struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
|
|
|
|
if (!xa_is_value(folio))
|
|
goto out;
|
|
if (!shmem_mapping(mapping))
|
|
return NULL;
|
|
|
|
swp = radix_to_swp_entry(folio);
|
|
/* There might be swapin error entries in shmem mapping. */
|
|
if (non_swap_entry(swp))
|
|
return NULL;
|
|
/* Prevent swapoff from happening to us */
|
|
si = get_swap_device(swp);
|
|
if (!si)
|
|
return NULL;
|
|
index = swp_offset(swp);
|
|
folio = filemap_get_folio(swap_address_space(swp), index);
|
|
put_swap_device(si);
|
|
out:
|
|
return folio;
|
|
}
|
|
|
|
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
bool *new_page_allocated)
|
|
{
|
|
struct swap_info_struct *si;
|
|
struct folio *folio;
|
|
void *shadow = NULL;
|
|
|
|
*new_page_allocated = false;
|
|
|
|
for (;;) {
|
|
int err;
|
|
/*
|
|
* First check the swap cache. Since this is normally
|
|
* called after swap_cache_get_folio() failed, re-calling
|
|
* that would confuse statistics.
|
|
*/
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
return NULL;
|
|
folio = filemap_get_folio(swap_address_space(entry),
|
|
swp_offset(entry));
|
|
put_swap_device(si);
|
|
if (folio)
|
|
return folio_file_page(folio, swp_offset(entry));
|
|
|
|
/*
|
|
* Just skip read ahead for unused swap slot.
|
|
* During swap_off when swap_slot_cache is disabled,
|
|
* we have to handle the race between putting
|
|
* swap entry in swap cache and marking swap slot
|
|
* as SWAP_HAS_CACHE. That's done in later part of code or
|
|
* else swap_off will be aborted if we return NULL.
|
|
*/
|
|
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
|
|
return NULL;
|
|
|
|
/*
|
|
* Get a new page to read into from swap. Allocate it now,
|
|
* before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
|
|
* cause any racers to loop around until we add it to cache.
|
|
*/
|
|
folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
|
|
if (!folio)
|
|
return NULL;
|
|
|
|
/*
|
|
* Swap entry may have been freed since our caller observed it.
|
|
*/
|
|
err = swapcache_prepare(entry);
|
|
if (!err)
|
|
break;
|
|
|
|
folio_put(folio);
|
|
if (err != -EEXIST)
|
|
return NULL;
|
|
|
|
/*
|
|
* We might race against __delete_from_swap_cache(), and
|
|
* stumble across a swap_map entry whose SWAP_HAS_CACHE
|
|
* has not yet been cleared. Or race against another
|
|
* __read_swap_cache_async(), which has set SWAP_HAS_CACHE
|
|
* in swap_map, but not yet added its page to swap cache.
|
|
*/
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
/*
|
|
* The swap entry is ours to swap in. Prepare the new page.
|
|
*/
|
|
|
|
__folio_set_locked(folio);
|
|
__folio_set_swapbacked(folio);
|
|
|
|
if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
|
|
goto fail_unlock;
|
|
|
|
/* May fail (-ENOMEM) if XArray node allocation failed. */
|
|
if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
|
|
goto fail_unlock;
|
|
|
|
mem_cgroup_swapin_uncharge_swap(entry);
|
|
|
|
if (shadow)
|
|
workingset_refault(folio, shadow);
|
|
|
|
/* Caller will initiate read into locked folio */
|
|
folio_add_lru(folio);
|
|
*new_page_allocated = true;
|
|
return &folio->page;
|
|
|
|
fail_unlock:
|
|
put_swap_folio(folio, entry);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Locate a page of swap in physical memory, reserving swap cache space
|
|
* and reading the disk if it is not already cached.
|
|
* A failure return means that either the page allocation failed or that
|
|
* the swap entry is no longer in use.
|
|
*/
|
|
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, bool do_poll,
|
|
struct swap_iocb **plug)
|
|
{
|
|
bool page_was_allocated;
|
|
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
|
|
vma, addr, &page_was_allocated);
|
|
|
|
if (page_was_allocated)
|
|
swap_readpage(retpage, do_poll, plug);
|
|
|
|
return retpage;
|
|
}
|
|
|
|
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
|
|
unsigned long offset,
|
|
int hits,
|
|
int max_pages,
|
|
int prev_win)
|
|
{
|
|
unsigned int pages, last_ra;
|
|
|
|
/*
|
|
* This heuristic has been found to work well on both sequential and
|
|
* random loads, swapping to hard disk or to SSD: please don't ask
|
|
* what the "+ 2" means, it just happens to work well, that's all.
|
|
*/
|
|
pages = hits + 2;
|
|
if (pages == 2) {
|
|
/*
|
|
* We can have no readahead hits to judge by: but must not get
|
|
* stuck here forever, so check for an adjacent offset instead
|
|
* (and don't even bother to check whether swap type is same).
|
|
*/
|
|
if (offset != prev_offset + 1 && offset != prev_offset - 1)
|
|
pages = 1;
|
|
} else {
|
|
unsigned int roundup = 4;
|
|
while (roundup < pages)
|
|
roundup <<= 1;
|
|
pages = roundup;
|
|
}
|
|
|
|
if (pages > max_pages)
|
|
pages = max_pages;
|
|
|
|
/* Don't shrink readahead too fast */
|
|
last_ra = prev_win / 2;
|
|
if (pages < last_ra)
|
|
pages = last_ra;
|
|
|
|
return pages;
|
|
}
|
|
|
|
static unsigned long swapin_nr_pages(unsigned long offset)
|
|
{
|
|
static unsigned long prev_offset;
|
|
unsigned int hits, pages, max_pages;
|
|
static atomic_t last_readahead_pages;
|
|
|
|
max_pages = 1 << READ_ONCE(page_cluster);
|
|
if (max_pages <= 1)
|
|
return 1;
|
|
|
|
hits = atomic_xchg(&swapin_readahead_hits, 0);
|
|
pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
|
|
max_pages,
|
|
atomic_read(&last_readahead_pages));
|
|
if (!hits)
|
|
WRITE_ONCE(prev_offset, offset);
|
|
atomic_set(&last_readahead_pages, pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* swap_cluster_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read an aligned block of
|
|
* (1 << page_cluster) entries in the swap area. This method is chosen
|
|
* because it doesn't cost us any seek time. We also make sure to queue
|
|
* the 'original' request together with the readahead ones...
|
|
*
|
|
* This has been extended to use the NUMA policies from the mm triggering
|
|
* the readahead.
|
|
*
|
|
* Caller must hold read mmap_lock if vmf->vma is not NULL.
|
|
*/
|
|
struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct page *page;
|
|
unsigned long entry_offset = swp_offset(entry);
|
|
unsigned long offset = entry_offset;
|
|
unsigned long start_offset, end_offset;
|
|
unsigned long mask;
|
|
struct swap_info_struct *si = swp_swap_info(entry);
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
bool do_poll = true, page_allocated;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long addr = vmf->address;
|
|
|
|
mask = swapin_nr_pages(offset) - 1;
|
|
if (!mask)
|
|
goto skip;
|
|
|
|
do_poll = false;
|
|
/* Read a page_cluster sized and aligned cluster around offset. */
|
|
start_offset = offset & ~mask;
|
|
end_offset = offset | mask;
|
|
if (!start_offset) /* First page is swap header. */
|
|
start_offset++;
|
|
if (end_offset >= si->max)
|
|
end_offset = si->max - 1;
|
|
|
|
blk_start_plug(&plug);
|
|
for (offset = start_offset; offset <= end_offset ; offset++) {
|
|
/* Ok, do the async read-ahead now */
|
|
page = __read_swap_cache_async(
|
|
swp_entry(swp_type(entry), offset),
|
|
gfp_mask, vma, addr, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false, &splug);
|
|
if (offset != entry_offset) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
skip:
|
|
/* The page was likely read above, so no need for plugging here */
|
|
return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
|
|
}
|
|
|
|
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
|
|
{
|
|
struct address_space *spaces, *space;
|
|
unsigned int i, nr;
|
|
|
|
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
|
|
spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
|
|
if (!spaces)
|
|
return -ENOMEM;
|
|
for (i = 0; i < nr; i++) {
|
|
space = spaces + i;
|
|
xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
|
|
atomic_set(&space->i_mmap_writable, 0);
|
|
space->a_ops = &swap_aops;
|
|
/* swap cache doesn't use writeback related tags */
|
|
mapping_set_no_writeback_tags(space);
|
|
}
|
|
nr_swapper_spaces[type] = nr;
|
|
swapper_spaces[type] = spaces;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void exit_swap_address_space(unsigned int type)
|
|
{
|
|
int i;
|
|
struct address_space *spaces = swapper_spaces[type];
|
|
|
|
for (i = 0; i < nr_swapper_spaces[type]; i++)
|
|
VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
|
|
kvfree(spaces);
|
|
nr_swapper_spaces[type] = 0;
|
|
swapper_spaces[type] = NULL;
|
|
}
|
|
|
|
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
|
|
unsigned long faddr,
|
|
unsigned long lpfn,
|
|
unsigned long rpfn,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
*start = max3(lpfn, PFN_DOWN(vma->vm_start),
|
|
PFN_DOWN(faddr & PMD_MASK));
|
|
*end = min3(rpfn, PFN_DOWN(vma->vm_end),
|
|
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
|
|
}
|
|
|
|
static void swap_ra_info(struct vm_fault *vmf,
|
|
struct vma_swap_readahead *ra_info)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long ra_val;
|
|
unsigned long faddr, pfn, fpfn;
|
|
unsigned long start, end;
|
|
pte_t *pte, *orig_pte;
|
|
unsigned int max_win, hits, prev_win, win, left;
|
|
#ifndef CONFIG_64BIT
|
|
pte_t *tpte;
|
|
#endif
|
|
|
|
max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
|
|
SWAP_RA_ORDER_CEILING);
|
|
if (max_win == 1) {
|
|
ra_info->win = 1;
|
|
return;
|
|
}
|
|
|
|
faddr = vmf->address;
|
|
orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
|
|
|
|
fpfn = PFN_DOWN(faddr);
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
|
|
prev_win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
|
|
max_win, prev_win);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(faddr, win, 0));
|
|
|
|
if (win == 1) {
|
|
pte_unmap(orig_pte);
|
|
return;
|
|
}
|
|
|
|
/* Copy the PTEs because the page table may be unmapped */
|
|
if (fpfn == pfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
|
|
else if (pfn == fpfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
|
|
&start, &end);
|
|
else {
|
|
left = (win - 1) / 2;
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
|
|
&start, &end);
|
|
}
|
|
ra_info->nr_pte = end - start;
|
|
ra_info->offset = fpfn - start;
|
|
pte -= ra_info->offset;
|
|
#ifdef CONFIG_64BIT
|
|
ra_info->ptes = pte;
|
|
#else
|
|
tpte = ra_info->ptes;
|
|
for (pfn = start; pfn != end; pfn++)
|
|
*tpte++ = *pte++;
|
|
#endif
|
|
pte_unmap(orig_pte);
|
|
}
|
|
|
|
/**
|
|
* swap_vma_readahead - swap in pages in hope we need them soon
|
|
* @fentry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read in a few pages whose
|
|
* virtual addresses are around the fault address in the same vma.
|
|
*
|
|
* Caller must hold read mmap_lock if vmf->vma is not NULL.
|
|
*
|
|
*/
|
|
static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct page *page;
|
|
pte_t *pte, pentry;
|
|
swp_entry_t entry;
|
|
unsigned int i;
|
|
bool page_allocated;
|
|
struct vma_swap_readahead ra_info = {
|
|
.win = 1,
|
|
};
|
|
|
|
swap_ra_info(vmf, &ra_info);
|
|
if (ra_info.win == 1)
|
|
goto skip;
|
|
|
|
blk_start_plug(&plug);
|
|
for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
|
|
i++, pte++) {
|
|
pentry = *pte;
|
|
if (!is_swap_pte(pentry))
|
|
continue;
|
|
entry = pte_to_swp_entry(pentry);
|
|
if (unlikely(non_swap_entry(entry)))
|
|
continue;
|
|
page = __read_swap_cache_async(entry, gfp_mask, vma,
|
|
vmf->address, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false, &splug);
|
|
if (i != ra_info.offset) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
lru_add_drain();
|
|
skip:
|
|
/* The page was likely read above, so no need for plugging here */
|
|
return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
|
|
ra_info.win == 1, NULL);
|
|
}
|
|
|
|
/**
|
|
* swapin_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* It's a main entry function for swap readahead. By the configuration,
|
|
* it will read ahead blocks by cluster-based(ie, physical disk based)
|
|
* or vma-based(ie, virtual address based on faulty address) readahead.
|
|
*/
|
|
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
return swap_use_vma_readahead() ?
|
|
swap_vma_readahead(entry, gfp_mask, vmf) :
|
|
swap_cluster_readahead(entry, gfp_mask, vmf);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n",
|
|
enable_vma_readahead ? "true" : "false");
|
|
}
|
|
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &enable_vma_readahead);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
|
|
|
|
static struct attribute *swap_attrs[] = {
|
|
&vma_ra_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group swap_attr_group = {
|
|
.attrs = swap_attrs,
|
|
};
|
|
|
|
static int __init swap_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *swap_kobj;
|
|
|
|
swap_kobj = kobject_create_and_add("swap", mm_kobj);
|
|
if (!swap_kobj) {
|
|
pr_err("failed to create swap kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(swap_kobj, &swap_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register swap group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(swap_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(swap_init_sysfs);
|
|
#endif
|