linux/sound/soc/ti/omap-mcbsp.c
Uwe Kleine-König 9b6818bb3c
ASoC: ti: omap-mcbsp: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com>
Link: https://lore.kernel.org/r/20230315150745.67084-166-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-20 13:09:30 +00:00

1442 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
*
* Copyright (C) 2008 Nokia Corporation
*
* Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
* Peter Ujfalusi <peter.ujfalusi@ti.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include "omap-mcbsp-priv.h"
#include "omap-mcbsp.h"
#include "sdma-pcm.h"
#define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
enum {
OMAP_MCBSP_WORD_8 = 0,
OMAP_MCBSP_WORD_12,
OMAP_MCBSP_WORD_16,
OMAP_MCBSP_WORD_20,
OMAP_MCBSP_WORD_24,
OMAP_MCBSP_WORD_32,
};
static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
{
dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
dev_dbg(mcbsp->dev, "***********************\n");
}
static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
{
struct clk *fck_src;
const char *src;
int r;
if (fck_src_id == MCBSP_CLKS_PAD_SRC)
src = "pad_fck";
else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
src = "prcm_fck";
else
return -EINVAL;
fck_src = clk_get(mcbsp->dev, src);
if (IS_ERR(fck_src)) {
dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
return -EINVAL;
}
pm_runtime_put_sync(mcbsp->dev);
r = clk_set_parent(mcbsp->fclk, fck_src);
if (r)
dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
src);
pm_runtime_get_sync(mcbsp->dev);
clk_put(fck_src);
return r;
}
static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst;
irqst = MCBSP_READ(mcbsp, IRQST);
dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
if (irqst & RSYNCERREN)
dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
if (irqst & RFSREN)
dev_dbg(mcbsp->dev, "RX Frame Sync\n");
if (irqst & REOFEN)
dev_dbg(mcbsp->dev, "RX End Of Frame\n");
if (irqst & RRDYEN)
dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
if (irqst & RUNDFLEN)
dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
if (irqst & ROVFLEN)
dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
if (irqst & XSYNCERREN)
dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
if (irqst & XFSXEN)
dev_dbg(mcbsp->dev, "TX Frame Sync\n");
if (irqst & XEOFEN)
dev_dbg(mcbsp->dev, "TX End Of Frame\n");
if (irqst & XRDYEN)
dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
if (irqst & XUNDFLEN)
dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
if (irqst & XOVFLEN)
dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
if (irqst & XEMPTYEOFEN)
dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
MCBSP_WRITE(mcbsp, IRQST, irqst);
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst_spcr2;
irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
if (irqst_spcr2 & XSYNC_ERR) {
dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
irqst_spcr2);
/* Writing zero to XSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
}
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst_spcr1;
irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
if (irqst_spcr1 & RSYNC_ERR) {
dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
irqst_spcr1);
/* Writing zero to RSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
}
return IRQ_HANDLED;
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
const struct omap_mcbsp_reg_cfg *config)
{
dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
mcbsp->id, mcbsp->phys_base);
/* We write the given config */
MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
if (mcbsp->pdata->has_ccr) {
MCBSP_WRITE(mcbsp, XCCR, config->xccr);
MCBSP_WRITE(mcbsp, RCCR, config->rccr);
}
/* Enable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
/* Enable TX/RX sync error interrupts by default */
if (mcbsp->irq)
MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
}
/**
* omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
* @mcbsp: omap_mcbsp struct for the McBSP instance
* @stream: Stream direction (playback/capture)
*
* Returns the address of mcbsp data transmit register or data receive register
* to be used by DMA for transferring/receiving data
*/
static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
unsigned int stream)
{
int data_reg;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (mcbsp->pdata->reg_size == 2)
data_reg = OMAP_MCBSP_REG_DXR1;
else
data_reg = OMAP_MCBSP_REG_DXR;
} else {
if (mcbsp->pdata->reg_size == 2)
data_reg = OMAP_MCBSP_REG_DRR1;
else
data_reg = OMAP_MCBSP_REG_DRR;
}
return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
}
/*
* omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH2 register.
*/
static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (threshold && threshold <= mcbsp->max_tx_thres)
MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
}
/*
* omap_mcbsp_set_rx_threshold configures the receive threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH1 register.
*/
static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (threshold && threshold <= mcbsp->max_rx_thres)
MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
}
/*
* omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
*/
static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat;
/* Returns the number of free locations in the buffer */
buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
/* Number of slots are different in McBSP ports */
return mcbsp->pdata->buffer_size - buffstat;
}
/*
* omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
* to reach the threshold value (when the DMA will be triggered to read it)
*/
static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat, threshold;
/* Returns the number of used locations in the buffer */
buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
/* RX threshold */
threshold = MCBSP_READ(mcbsp, THRSH1);
/* Return the number of location till we reach the threshold limit */
if (threshold <= buffstat)
return 0;
else
return threshold - buffstat;
}
static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
int err;
reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
if (!reg_cache)
return -ENOMEM;
spin_lock(&mcbsp->lock);
if (!mcbsp->free) {
dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
err = -EBUSY;
goto err_kfree;
}
mcbsp->free = false;
mcbsp->reg_cache = reg_cache;
spin_unlock(&mcbsp->lock);
if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
mcbsp->pdata->ops->request(mcbsp->id - 1);
/*
* Make sure that transmitter, receiver and sample-rate generator are
* not running before activating IRQs.
*/
MCBSP_WRITE(mcbsp, SPCR1, 0);
MCBSP_WRITE(mcbsp, SPCR2, 0);
if (mcbsp->irq) {
err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
"McBSP", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request IRQ\n");
goto err_clk_disable;
}
} else {
err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
"McBSP TX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
goto err_clk_disable;
}
err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
"McBSP RX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
goto err_free_irq;
}
}
return 0;
err_free_irq:
free_irq(mcbsp->tx_irq, (void *)mcbsp);
err_clk_disable:
if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
spin_lock(&mcbsp->lock);
mcbsp->free = true;
mcbsp->reg_cache = NULL;
err_kfree:
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
return err;
}
static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
/* Disable interrupt requests */
if (mcbsp->irq) {
MCBSP_WRITE(mcbsp, IRQEN, 0);
free_irq(mcbsp->irq, (void *)mcbsp);
} else {
free_irq(mcbsp->rx_irq, (void *)mcbsp);
free_irq(mcbsp->tx_irq, (void *)mcbsp);
}
reg_cache = mcbsp->reg_cache;
/*
* Select CLKS source from internal source unconditionally before
* marking the McBSP port as free.
* If the external clock source via MCBSP_CLKS pin has been selected the
* system will refuse to enter idle if the CLKS pin source is not reset
* back to internal source.
*/
if (!mcbsp_omap1())
omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
spin_lock(&mcbsp->lock);
if (mcbsp->free)
dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
else
mcbsp->free = true;
mcbsp->reg_cache = NULL;
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
}
/*
* Here we start the McBSP, by enabling transmitter, receiver or both.
* If no transmitter or receiver is active prior calling, then sample-rate
* generator and frame sync are started.
*/
static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
{
int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
int rx = !tx;
int enable_srg = 0;
u16 w;
if (mcbsp->st_data)
omap_mcbsp_st_start(mcbsp);
/* Only enable SRG, if McBSP is master */
w = MCBSP_READ_CACHE(mcbsp, PCR0);
if (w & (FSXM | FSRM | CLKXM | CLKRM))
enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (enable_srg) {
/* Start the sample generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
}
/* Enable transmitter and receiver */
tx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | tx);
rx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w | rx);
/*
* Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
* REVISIT: 100us may give enough time for two CLKSRG, however
* due to some unknown PM related, clock gating etc. reason it
* is now at 500us.
*/
udelay(500);
if (enable_srg) {
/* Start frame sync */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
}
if (mcbsp->pdata->has_ccr) {
/* Release the transmitter and receiver */
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w &= ~(tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w &= ~(rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(mcbsp);
}
static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
{
int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
int rx = !tx;
int idle;
u16 w;
/* Reset transmitter */
tx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w |= (tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
/* Reset receiver */
rx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w |= (rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (idle) {
/* Reset the sample rate generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
}
if (mcbsp->st_data)
omap_mcbsp_st_stop(mcbsp);
}
#define max_thres(m) (mcbsp->pdata->buffer_size)
#define valid_threshold(m, val) ((val) <= max_thres(m))
#define THRESHOLD_PROP_BUILDER(prop) \
static ssize_t prop##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
\
return sysfs_emit(buf, "%u\n", mcbsp->prop); \
} \
\
static ssize_t prop##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t size) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
unsigned long val; \
int status; \
\
status = kstrtoul(buf, 0, &val); \
if (status) \
return status; \
\
if (!valid_threshold(mcbsp, val)) \
return -EDOM; \
\
mcbsp->prop = val; \
return size; \
} \
\
static DEVICE_ATTR_RW(prop)
THRESHOLD_PROP_BUILDER(max_tx_thres);
THRESHOLD_PROP_BUILDER(max_rx_thres);
static const char * const dma_op_modes[] = {
"element", "threshold",
};
static ssize_t dma_op_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int dma_op_mode, i = 0;
ssize_t len = 0;
const char * const *s;
dma_op_mode = mcbsp->dma_op_mode;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
if (dma_op_mode == i)
len += sysfs_emit_at(buf, len, "[%s] ", *s);
else
len += sysfs_emit_at(buf, len, "%s ", *s);
}
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static ssize_t dma_op_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int i;
i = sysfs_match_string(dma_op_modes, buf);
if (i < 0)
return i;
spin_lock_irq(&mcbsp->lock);
if (!mcbsp->free) {
size = -EBUSY;
goto unlock;
}
mcbsp->dma_op_mode = i;
unlock:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR_RW(dma_op_mode);
static const struct attribute *additional_attrs[] = {
&dev_attr_max_tx_thres.attr,
&dev_attr_max_rx_thres.attr,
&dev_attr_dma_op_mode.attr,
NULL,
};
static const struct attribute_group additional_attr_group = {
.attrs = (struct attribute **)additional_attrs,
};
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
static int omap_mcbsp_init(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
struct resource *res;
int ret;
spin_lock_init(&mcbsp->lock);
mcbsp->free = true;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mcbsp->io_base))
return PTR_ERR(mcbsp->io_base);
mcbsp->phys_base = res->start;
mcbsp->reg_cache_size = resource_size(res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
if (!res)
mcbsp->phys_dma_base = mcbsp->phys_base;
else
mcbsp->phys_dma_base = res->start;
/*
* OMAP1, 2 uses two interrupt lines: TX, RX
* OMAP2430, OMAP3 SoC have combined IRQ line as well.
* OMAP4 and newer SoC only have the combined IRQ line.
* Use the combined IRQ if available since it gives better debugging
* possibilities.
*/
mcbsp->irq = platform_get_irq_byname(pdev, "common");
if (mcbsp->irq == -ENXIO) {
mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
if (mcbsp->tx_irq == -ENXIO) {
mcbsp->irq = platform_get_irq(pdev, 0);
mcbsp->tx_irq = 0;
} else {
mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
mcbsp->irq = 0;
}
}
if (!pdev->dev.of_node) {
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
if (!res) {
dev_err(&pdev->dev, "invalid tx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[0] = res->start;
mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
if (!res) {
dev_err(&pdev->dev, "invalid rx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[1] = res->start;
mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
} else {
mcbsp->dma_data[0].filter_data = "tx";
mcbsp->dma_data[1].filter_data = "rx";
}
mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
SNDRV_PCM_STREAM_PLAYBACK);
mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
SNDRV_PCM_STREAM_CAPTURE);
mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(mcbsp->fclk)) {
ret = PTR_ERR(mcbsp->fclk);
dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
return ret;
}
mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
if (mcbsp->pdata->buffer_size) {
/*
* Initially configure the maximum thresholds to a safe value.
* The McBSP FIFO usage with these values should not go under
* 16 locations.
* If the whole FIFO without safety buffer is used, than there
* is a possibility that the DMA will be not able to push the
* new data on time, causing channel shifts in runtime.
*/
mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
if (ret) {
dev_err(mcbsp->dev,
"Unable to create additional controls\n");
return ret;
}
}
return omap_mcbsp_st_init(pdev);
}
/*
* Stream DMA parameters. DMA request line and port address are set runtime
* since they are different between OMAP1 and later OMAPs
*/
static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
unsigned int packet_size)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int words;
/* No need to proceed further if McBSP does not have FIFO */
if (mcbsp->pdata->buffer_size == 0)
return;
/*
* Configure McBSP threshold based on either:
* packet_size, when the sDMA is in packet mode, or based on the
* period size in THRESHOLD mode, otherwise use McBSP threshold = 1
* for mono streams.
*/
if (packet_size)
words = packet_size;
else
words = 1;
/* Configure McBSP internal buffer usage */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
omap_mcbsp_set_tx_threshold(mcbsp, words);
else
omap_mcbsp_set_rx_threshold(mcbsp, words);
}
static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *buffer_size = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
struct omap_mcbsp *mcbsp = rule->private;
struct snd_interval frames;
int size;
snd_interval_any(&frames);
size = mcbsp->pdata->buffer_size;
frames.min = size / channels->min;
frames.integer = 1;
return snd_interval_refine(buffer_size, &frames);
}
static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0;
if (!snd_soc_dai_active(cpu_dai))
err = omap_mcbsp_request(mcbsp);
/*
* OMAP3 McBSP FIFO is word structured.
* McBSP2 has 1024 + 256 = 1280 word long buffer,
* McBSP1,3,4,5 has 128 word long buffer
* This means that the size of the FIFO depends on the sample format.
* For example on McBSP3:
* 16bit samples: size is 128 * 2 = 256 bytes
* 32bit samples: size is 128 * 4 = 512 bytes
* It is simpler to place constraint for buffer and period based on
* channels.
* McBSP3 as example again (16 or 32 bit samples):
* 1 channel (mono): size is 128 frames (128 words)
* 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
* 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
*/
if (mcbsp->pdata->buffer_size) {
/*
* Rule for the buffer size. We should not allow
* smaller buffer than the FIFO size to avoid underruns.
* This applies only for the playback stream.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
omap_mcbsp_hwrule_min_buffersize,
mcbsp,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
/* Make sure, that the period size is always even */
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
}
return err;
}
static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
if (mcbsp->latency[stream2])
cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
mcbsp->latency[stream2]);
else if (mcbsp->latency[stream1])
cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
mcbsp->latency[stream1] = 0;
if (!snd_soc_dai_active(cpu_dai)) {
omap_mcbsp_free(mcbsp);
mcbsp->configured = 0;
}
}
static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
int latency = mcbsp->latency[stream2];
/* Prevent omap hardware from hitting off between FIFO fills */
if (!latency || mcbsp->latency[stream1] < latency)
latency = mcbsp->latency[stream1];
if (cpu_latency_qos_request_active(pm_qos_req))
cpu_latency_qos_update_request(pm_qos_req, latency);
else if (latency)
cpu_latency_qos_add_request(pm_qos_req, latency);
return 0;
}
static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mcbsp->active++;
omap_mcbsp_start(mcbsp, substream->stream);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
omap_mcbsp_stop(mcbsp, substream->stream);
mcbsp->active--;
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_sframes_t omap_mcbsp_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u16 fifo_use;
snd_pcm_sframes_t delay;
/* No need to proceed further if McBSP does not have FIFO */
if (mcbsp->pdata->buffer_size == 0)
return 0;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
else
fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
/*
* Divide the used locations with the channel count to get the
* FIFO usage in samples (don't care about partial samples in the
* buffer).
*/
delay = fifo_use / substream->runtime->channels;
return delay;
}
static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
struct snd_dmaengine_dai_dma_data *dma_data;
int wlen, channels, wpf;
int pkt_size = 0;
unsigned int format, div, framesize, master;
unsigned int buffer_size = mcbsp->pdata->buffer_size;
dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
channels = params_channels(params);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
wlen = 16;
break;
case SNDRV_PCM_FORMAT_S32_LE:
wlen = 32;
break;
default:
return -EINVAL;
}
if (buffer_size) {
int latency;
if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
int period_words, max_thrsh;
int divider = 0;
period_words = params_period_bytes(params) / (wlen / 8);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
max_thrsh = mcbsp->max_tx_thres;
else
max_thrsh = mcbsp->max_rx_thres;
/*
* Use sDMA packet mode if McBSP is in threshold mode:
* If period words less than the FIFO size the packet
* size is set to the number of period words, otherwise
* Look for the biggest threshold value which divides
* the period size evenly.
*/
divider = period_words / max_thrsh;
if (period_words % max_thrsh)
divider++;
while (period_words % divider &&
divider < period_words)
divider++;
if (divider == period_words)
return -EINVAL;
pkt_size = period_words / divider;
} else if (channels > 1) {
/* Use packet mode for non mono streams */
pkt_size = channels;
}
latency = (buffer_size - pkt_size) / channels;
latency = latency * USEC_PER_SEC /
(params->rate_num / params->rate_den);
mcbsp->latency[substream->stream] = latency;
omap_mcbsp_set_threshold(substream, pkt_size);
}
dma_data->maxburst = pkt_size;
if (mcbsp->configured) {
/* McBSP already configured by another stream */
return 0;
}
regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
wpf = channels;
if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
format == SND_SOC_DAIFMT_LEFT_J)) {
/* Use dual-phase frames */
regs->rcr2 |= RPHASE;
regs->xcr2 |= XPHASE;
/* Set 1 word per (McBSP) frame for phase1 and phase2 */
wpf--;
regs->rcr2 |= RFRLEN2(wpf - 1);
regs->xcr2 |= XFRLEN2(wpf - 1);
}
regs->rcr1 |= RFRLEN1(wpf - 1);
regs->xcr1 |= XFRLEN1(wpf - 1);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
break;
default:
/* Unsupported PCM format */
return -EINVAL;
}
/* In McBSP master modes, FRAME (i.e. sample rate) is generated
* by _counting_ BCLKs. Calculate frame size in BCLKs */
master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
if (master == SND_SOC_DAIFMT_BP_FP) {
div = mcbsp->clk_div ? mcbsp->clk_div : 1;
framesize = (mcbsp->in_freq / div) / params_rate(params);
if (framesize < wlen * channels) {
printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
"channels\n", __func__);
return -EINVAL;
}
} else
framesize = wlen * channels;
/* Set FS period and length in terms of bit clock periods */
regs->srgr2 &= ~FPER(0xfff);
regs->srgr1 &= ~FWID(0xff);
switch (format) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_LEFT_J:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID((framesize >> 1) - 1);
break;
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID(0);
break;
}
omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
mcbsp->wlen = wlen;
mcbsp->configured = 1;
return 0;
}
/*
* This must be called before _set_clkdiv and _set_sysclk since McBSP register
* cache is initialized here
*/
static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
bool inv_fs = false;
if (mcbsp->configured)
return 0;
mcbsp->fmt = fmt;
memset(regs, 0, sizeof(*regs));
/* Generic McBSP register settings */
regs->spcr2 |= XINTM(3) | FREE;
regs->spcr1 |= RINTM(3);
/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
if (!mcbsp->pdata->has_ccr) {
regs->rcr2 |= RFIG;
regs->xcr2 |= XFIG;
}
/* Configure XCCR/RCCR only for revisions which have ccr registers */
if (mcbsp->pdata->has_ccr) {
regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
break;
case SND_SOC_DAIFMT_LEFT_J:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
regs->spcr1 |= RJUST(2);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_A:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_B:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
/* Invert FS polarity configuration */
inv_fs = true;
break;
default:
/* Unsupported data format */
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
/* McBSP master. Set FS and bit clocks as outputs */
regs->pcr0 |= FSXM | FSRM |
CLKXM | CLKRM;
/* Sample rate generator drives the FS */
regs->srgr2 |= FSGM;
break;
case SND_SOC_DAIFMT_BC_FP:
/* McBSP slave. FS clock as output */
regs->srgr2 |= FSGM;
regs->pcr0 |= FSXM | FSRM;
break;
case SND_SOC_DAIFMT_BC_FC:
/* McBSP slave */
break;
default:
/* Unsupported master/slave configuration */
return -EINVAL;
}
/* Set bit clock (CLKX/CLKR) and FS polarities */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/*
* Normal BCLK + FS.
* FS active low. TX data driven on falling edge of bit clock
* and RX data sampled on rising edge of bit clock.
*/
regs->pcr0 |= FSXP | FSRP |
CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_NB_IF:
regs->pcr0 |= CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_IB_NF:
regs->pcr0 |= FSXP | FSRP;
break;
case SND_SOC_DAIFMT_IB_IF:
break;
default:
return -EINVAL;
}
if (inv_fs)
regs->pcr0 ^= FSXP | FSRP;
return 0;
}
static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
if (div_id != OMAP_MCBSP_CLKGDV)
return -ENODEV;
mcbsp->clk_div = div;
regs->srgr1 &= ~CLKGDV(0xff);
regs->srgr1 |= CLKGDV(div - 1);
return 0;
}
static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq,
int dir)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
int err = 0;
if (mcbsp->active) {
if (freq == mcbsp->in_freq)
return 0;
else
return -EBUSY;
}
mcbsp->in_freq = freq;
regs->srgr2 &= ~CLKSM;
regs->pcr0 &= ~SCLKME;
switch (clk_id) {
case OMAP_MCBSP_SYSCLK_CLK:
regs->srgr2 |= CLKSM;
break;
case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
if (mcbsp_omap1()) {
err = -EINVAL;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PRCM_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKS_EXT:
if (mcbsp_omap1()) {
err = 0;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PAD_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKX_EXT:
regs->srgr2 |= CLKSM;
regs->pcr0 |= SCLKME;
/*
* If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
* disable output on those pins. This enables to inject the
* reference clock through CLKX/CLKR. For this to work
* set_dai_sysclk() _needs_ to be called after set_dai_fmt().
*/
regs->pcr0 &= ~CLKXM;
break;
case OMAP_MCBSP_SYSCLK_CLKR_EXT:
regs->pcr0 |= SCLKME;
/* Disable ouput on CLKR pin in master mode */
regs->pcr0 &= ~CLKRM;
break;
default:
err = -ENODEV;
}
return err;
}
static const struct snd_soc_dai_ops mcbsp_dai_ops = {
.startup = omap_mcbsp_dai_startup,
.shutdown = omap_mcbsp_dai_shutdown,
.prepare = omap_mcbsp_dai_prepare,
.trigger = omap_mcbsp_dai_trigger,
.delay = omap_mcbsp_dai_delay,
.hw_params = omap_mcbsp_dai_hw_params,
.set_fmt = omap_mcbsp_dai_set_dai_fmt,
.set_clkdiv = omap_mcbsp_dai_set_clkdiv,
.set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
};
static int omap_mcbsp_probe(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_enable(mcbsp->dev);
snd_soc_dai_init_dma_data(dai,
&mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
&mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
return 0;
}
static int omap_mcbsp_remove(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_disable(mcbsp->dev);
return 0;
}
static struct snd_soc_dai_driver omap_mcbsp_dai = {
.probe = omap_mcbsp_probe,
.remove = omap_mcbsp_remove,
.playback = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.capture = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &mcbsp_dai_ops,
};
static const struct snd_soc_component_driver omap_mcbsp_component = {
.name = "omap-mcbsp",
.legacy_dai_naming = 1,
};
static struct omap_mcbsp_platform_data omap2420_pdata = {
.reg_step = 4,
.reg_size = 2,
};
static struct omap_mcbsp_platform_data omap2430_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
};
static struct omap_mcbsp_platform_data omap3_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static struct omap_mcbsp_platform_data omap4_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static const struct of_device_id omap_mcbsp_of_match[] = {
{
.compatible = "ti,omap2420-mcbsp",
.data = &omap2420_pdata,
},
{
.compatible = "ti,omap2430-mcbsp",
.data = &omap2430_pdata,
},
{
.compatible = "ti,omap3-mcbsp",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap4-mcbsp",
.data = &omap4_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
static int asoc_mcbsp_probe(struct platform_device *pdev)
{
struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct omap_mcbsp *mcbsp;
const struct of_device_id *match;
int ret;
match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
if (match) {
struct device_node *node = pdev->dev.of_node;
struct omap_mcbsp_platform_data *pdata_quirk = pdata;
int buffer_size;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct omap_mcbsp_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
memcpy(pdata, match->data, sizeof(*pdata));
if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
pdata->buffer_size = buffer_size;
if (pdata_quirk)
pdata->force_ick_on = pdata_quirk->force_ick_on;
} else if (!pdata) {
dev_err(&pdev->dev, "missing platform data.\n");
return -EINVAL;
}
mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
if (!mcbsp)
return -ENOMEM;
mcbsp->id = pdev->id;
mcbsp->pdata = pdata;
mcbsp->dev = &pdev->dev;
platform_set_drvdata(pdev, mcbsp);
ret = omap_mcbsp_init(pdev);
if (ret)
return ret;
if (mcbsp->pdata->reg_size == 2) {
omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
}
ret = devm_snd_soc_register_component(&pdev->dev,
&omap_mcbsp_component,
&omap_mcbsp_dai, 1);
if (ret)
return ret;
return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
}
static void asoc_mcbsp_remove(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id);
if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
}
static struct platform_driver asoc_mcbsp_driver = {
.driver = {
.name = "omap-mcbsp",
.of_match_table = omap_mcbsp_of_match,
},
.probe = asoc_mcbsp_probe,
.remove_new = asoc_mcbsp_remove,
};
module_platform_driver(asoc_mcbsp_driver);
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
MODULE_DESCRIPTION("OMAP I2S SoC Interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:omap-mcbsp");