linux/arch/powerpc/kernel/fadump.c
Linus Torvalds 61307b7be4 The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.  Notable
 series include:
 
 - Lucas Stach has provided some page-mapping
   cleanup/consolidation/maintainability work in the series "mm/treewide:
   Remove pXd_huge() API".
 
 - In the series "Allow migrate on protnone reference with
   MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
   MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
   test.
 
 - In their series "Memory allocation profiling" Kent Overstreet and
   Suren Baghdasaryan have contributed a means of determining (via
   /proc/allocinfo) whereabouts in the kernel memory is being allocated:
   number of calls and amount of memory.
 
 - Matthew Wilcox has provided the series "Various significant MM
   patches" which does a number of rather unrelated things, but in largely
   similar code sites.
 
 - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
   Weiner has fixed the page allocator's handling of migratetype requests,
   with resulting improvements in compaction efficiency.
 
 - In the series "make the hugetlb migration strategy consistent" Baolin
   Wang has fixed a hugetlb migration issue, which should improve hugetlb
   allocation reliability.
 
 - Liu Shixin has hit an I/O meltdown caused by readahead in a
   memory-tight memcg.  Addressed in the series "Fix I/O high when memory
   almost met memcg limit".
 
 - In the series "mm/filemap: optimize folio adding and splitting" Kairui
   Song has optimized pagecache insertion, yielding ~10% performance
   improvement in one test.
 
 - Baoquan He has cleaned up and consolidated the early zone
   initialization code in the series "mm/mm_init.c: refactor
   free_area_init_core()".
 
 - Baoquan has also redone some MM initializatio code in the series
   "mm/init: minor clean up and improvement".
 
 - MM helper cleanups from Christoph Hellwig in his series "remove
   follow_pfn".
 
 - More cleanups from Matthew Wilcox in the series "Various page->flags
   cleanups".
 
 - Vlastimil Babka has contributed maintainability improvements in the
   series "memcg_kmem hooks refactoring".
 
 - More folio conversions and cleanups in Matthew Wilcox's series
 
 	"Convert huge_zero_page to huge_zero_folio"
 	"khugepaged folio conversions"
 	"Remove page_idle and page_young wrappers"
 	"Use folio APIs in procfs"
 	"Clean up __folio_put()"
 	"Some cleanups for memory-failure"
 	"Remove page_mapping()"
 	"More folio compat code removal"
 
 - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
   functions to work on folis".
 
 - Code consolidation and cleanup work related to GUP's handling of
   hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
 
 - Rick Edgecombe has developed some fixes to stack guard gaps in the
   series "Cover a guard gap corner case".
 
 - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
   "mm/ksm: fix ksm exec support for prctl".
 
 - Baolin Wang has implemented NUMA balancing for multi-size THPs.  This
   is a simple first-cut implementation for now.  The series is "support
   multi-size THP numa balancing".
 
 - Cleanups to vma handling helper functions from Matthew Wilcox in the
   series "Unify vma_address and vma_pgoff_address".
 
 - Some selftests maintenance work from Dev Jain in the series
   "selftests/mm: mremap_test: Optimizations and style fixes".
 
 - Improvements to the swapping of multi-size THPs from Ryan Roberts in
   the series "Swap-out mTHP without splitting".
 
 - Kefeng Wang has significantly optimized the handling of arm64's
   permission page faults in the series
 
 	"arch/mm/fault: accelerate pagefault when badaccess"
 	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
 
 - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
   GUP-fast".
 
 - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
   use struct vm_fault".
 
 - selftests build fixes from John Hubbard in the series "Fix
   selftests/mm build without requiring "make headers"".
 
 - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
   series "Improved Memory Tier Creation for CPUless NUMA Nodes".  Fixes
   the initialization code so that migration between different memory types
   works as intended.
 
 - David Hildenbrand has improved follow_pte() and fixed an errant driver
   in the series "mm: follow_pte() improvements and acrn follow_pte()
   fixes".
 
 - David also did some cleanup work on large folio mapcounts in his
   series "mm: mapcount for large folios + page_mapcount() cleanups".
 
 - Folio conversions in KSM in Alex Shi's series "transfer page to folio
   in KSM".
 
 - Barry Song has added some sysfs stats for monitoring multi-size THP's
   in the series "mm: add per-order mTHP alloc and swpout counters".
 
 - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
   and limit checking cleanups".
 
 - Matthew Wilcox has been looking at buffer_head code and found the
   documentation to be lacking.  The series is "Improve buffer head
   documentation".
 
 - Multi-size THPs get more work, this time from Lance Yang.  His series
   "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
   the freeing of these things.
 
 - Kemeng Shi has added more userspace-visible writeback instrumentation
   in the series "Improve visibility of writeback".
 
 - Kemeng Shi then sent some maintenance work on top in the series "Fix
   and cleanups to page-writeback".
 
 - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
   series "Improve anon_vma scalability for anon VMAs".  Intel's test bot
   reported an improbable 3x improvement in one test.
 
 - SeongJae Park adds some DAMON feature work in the series
 
 	"mm/damon: add a DAMOS filter type for page granularity access recheck"
 	"selftests/damon: add DAMOS quota goal test"
 
 - Also some maintenance work in the series
 
 	"mm/damon/paddr: simplify page level access re-check for pageout"
 	"mm/damon: misc fixes and improvements"
 
 - David Hildenbrand has disabled some known-to-fail selftests ni the
   series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
 
 - memcg metadata storage optimizations from Shakeel Butt in "memcg:
   reduce memory consumption by memcg stats".
 
 - DAX fixes and maintenance work from Vishal Verma in the series
   "dax/bus.c: Fixups for dax-bus locking".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
 jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
 nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
 =V3R/
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull mm updates from Andrew Morton:
 "The usual shower of singleton fixes and minor series all over MM,
  documented (hopefully adequately) in the respective changelogs.
  Notable series include:

   - Lucas Stach has provided some page-mapping cleanup/consolidation/
     maintainability work in the series "mm/treewide: Remove pXd_huge()
     API".

   - In the series "Allow migrate on protnone reference with
     MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
     MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
     one test.

   - In their series "Memory allocation profiling" Kent Overstreet and
     Suren Baghdasaryan have contributed a means of determining (via
     /proc/allocinfo) whereabouts in the kernel memory is being
     allocated: number of calls and amount of memory.

   - Matthew Wilcox has provided the series "Various significant MM
     patches" which does a number of rather unrelated things, but in
     largely similar code sites.

   - In his series "mm: page_alloc: freelist migratetype hygiene"
     Johannes Weiner has fixed the page allocator's handling of
     migratetype requests, with resulting improvements in compaction
     efficiency.

   - In the series "make the hugetlb migration strategy consistent"
     Baolin Wang has fixed a hugetlb migration issue, which should
     improve hugetlb allocation reliability.

   - Liu Shixin has hit an I/O meltdown caused by readahead in a
     memory-tight memcg. Addressed in the series "Fix I/O high when
     memory almost met memcg limit".

   - In the series "mm/filemap: optimize folio adding and splitting"
     Kairui Song has optimized pagecache insertion, yielding ~10%
     performance improvement in one test.

   - Baoquan He has cleaned up and consolidated the early zone
     initialization code in the series "mm/mm_init.c: refactor
     free_area_init_core()".

   - Baoquan has also redone some MM initializatio code in the series
     "mm/init: minor clean up and improvement".

   - MM helper cleanups from Christoph Hellwig in his series "remove
     follow_pfn".

   - More cleanups from Matthew Wilcox in the series "Various
     page->flags cleanups".

   - Vlastimil Babka has contributed maintainability improvements in the
     series "memcg_kmem hooks refactoring".

   - More folio conversions and cleanups in Matthew Wilcox's series:
	"Convert huge_zero_page to huge_zero_folio"
	"khugepaged folio conversions"
	"Remove page_idle and page_young wrappers"
	"Use folio APIs in procfs"
	"Clean up __folio_put()"
	"Some cleanups for memory-failure"
	"Remove page_mapping()"
	"More folio compat code removal"

   - David Hildenbrand chipped in with "fs/proc/task_mmu: convert
     hugetlb functions to work on folis".

   - Code consolidation and cleanup work related to GUP's handling of
     hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".

   - Rick Edgecombe has developed some fixes to stack guard gaps in the
     series "Cover a guard gap corner case".

   - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
     series "mm/ksm: fix ksm exec support for prctl".

   - Baolin Wang has implemented NUMA balancing for multi-size THPs.
     This is a simple first-cut implementation for now. The series is
     "support multi-size THP numa balancing".

   - Cleanups to vma handling helper functions from Matthew Wilcox in
     the series "Unify vma_address and vma_pgoff_address".

   - Some selftests maintenance work from Dev Jain in the series
     "selftests/mm: mremap_test: Optimizations and style fixes".

   - Improvements to the swapping of multi-size THPs from Ryan Roberts
     in the series "Swap-out mTHP without splitting".

   - Kefeng Wang has significantly optimized the handling of arm64's
     permission page faults in the series
	"arch/mm/fault: accelerate pagefault when badaccess"
	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"

   - GUP cleanups from David Hildenbrand in "mm/gup: consistently call
     it GUP-fast".

   - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
     path to use struct vm_fault".

   - selftests build fixes from John Hubbard in the series "Fix
     selftests/mm build without requiring "make headers"".

   - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
     series "Improved Memory Tier Creation for CPUless NUMA Nodes".
     Fixes the initialization code so that migration between different
     memory types works as intended.

   - David Hildenbrand has improved follow_pte() and fixed an errant
     driver in the series "mm: follow_pte() improvements and acrn
     follow_pte() fixes".

   - David also did some cleanup work on large folio mapcounts in his
     series "mm: mapcount for large folios + page_mapcount() cleanups".

   - Folio conversions in KSM in Alex Shi's series "transfer page to
     folio in KSM".

   - Barry Song has added some sysfs stats for monitoring multi-size
     THP's in the series "mm: add per-order mTHP alloc and swpout
     counters".

   - Some zswap cleanups from Yosry Ahmed in the series "zswap
     same-filled and limit checking cleanups".

   - Matthew Wilcox has been looking at buffer_head code and found the
     documentation to be lacking. The series is "Improve buffer head
     documentation".

   - Multi-size THPs get more work, this time from Lance Yang. His
     series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
     optimizes the freeing of these things.

   - Kemeng Shi has added more userspace-visible writeback
     instrumentation in the series "Improve visibility of writeback".

   - Kemeng Shi then sent some maintenance work on top in the series
     "Fix and cleanups to page-writeback".

   - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
     the series "Improve anon_vma scalability for anon VMAs". Intel's
     test bot reported an improbable 3x improvement in one test.

   - SeongJae Park adds some DAMON feature work in the series
	"mm/damon: add a DAMOS filter type for page granularity access recheck"
	"selftests/damon: add DAMOS quota goal test"

   - Also some maintenance work in the series
	"mm/damon/paddr: simplify page level access re-check for pageout"
	"mm/damon: misc fixes and improvements"

   - David Hildenbrand has disabled some known-to-fail selftests ni the
     series "selftests: mm: cow: flag vmsplice() hugetlb tests as
     XFAIL".

   - memcg metadata storage optimizations from Shakeel Butt in "memcg:
     reduce memory consumption by memcg stats".

   - DAX fixes and maintenance work from Vishal Verma in the series
     "dax/bus.c: Fixups for dax-bus locking""

* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
  memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
  selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
  selftests: cgroup: add tests to verify the zswap writeback path
  mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
  mm/damon/core: fix return value from damos_wmark_metric_value
  mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
  selftests: cgroup: remove redundant enabling of memory controller
  Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
  Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
  Docs/mm/damon/design: use a list for supported filters
  Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
  Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
  selftests/damon: classify tests for functionalities and regressions
  selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
  selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
  selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
  mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
  selftests/damon: add a test for DAMOS quota goal
  ...
2024-05-19 09:21:03 -07:00

1886 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Firmware Assisted dump: A robust mechanism to get reliable kernel crash
* dump with assistance from firmware. This approach does not use kexec,
* instead firmware assists in booting the kdump kernel while preserving
* memory contents. The most of the code implementation has been adapted
* from phyp assisted dump implementation written by Linas Vepstas and
* Manish Ahuja
*
* Copyright 2011 IBM Corporation
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
*/
#undef DEBUG
#define pr_fmt(fmt) "fadump: " fmt
#include <linux/string.h>
#include <linux/memblock.h>
#include <linux/delay.h>
#include <linux/seq_file.h>
#include <linux/crash_dump.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/cma.h>
#include <linux/hugetlb.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <asm/page.h>
#include <asm/fadump.h>
#include <asm/fadump-internal.h>
#include <asm/setup.h>
#include <asm/interrupt.h>
/*
* The CPU who acquired the lock to trigger the fadump crash should
* wait for other CPUs to enter.
*
* The timeout is in milliseconds.
*/
#define CRASH_TIMEOUT 500
static struct fw_dump fw_dump;
static void __init fadump_reserve_crash_area(u64 base);
#ifndef CONFIG_PRESERVE_FA_DUMP
static struct kobject *fadump_kobj;
static atomic_t cpus_in_fadump;
static DEFINE_MUTEX(fadump_mutex);
#define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
#define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
sizeof(struct fadump_memory_range))
static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
static struct fadump_mrange_info
reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
#ifdef CONFIG_CMA
static struct cma *fadump_cma;
/*
* fadump_cma_init() - Initialize CMA area from a fadump reserved memory
*
* This function initializes CMA area from fadump reserved memory.
* The total size of fadump reserved memory covers for boot memory size
* + cpu data size + hpte size and metadata.
* Initialize only the area equivalent to boot memory size for CMA use.
* The remaining portion of fadump reserved memory will be not given
* to CMA and pages for those will stay reserved. boot memory size is
* aligned per CMA requirement to satisy cma_init_reserved_mem() call.
* But for some reason even if it fails we still have the memory reservation
* with us and we can still continue doing fadump.
*/
static int __init fadump_cma_init(void)
{
unsigned long long base, size;
int rc;
if (!fw_dump.fadump_enabled)
return 0;
/*
* Do not use CMA if user has provided fadump=nocma kernel parameter.
* Return 1 to continue with fadump old behaviour.
*/
if (fw_dump.nocma)
return 1;
base = fw_dump.reserve_dump_area_start;
size = fw_dump.boot_memory_size;
if (!size)
return 0;
rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
if (rc) {
pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
/*
* Though the CMA init has failed we still have memory
* reservation with us. The reserved memory will be
* blocked from production system usage. Hence return 1,
* so that we can continue with fadump.
*/
return 1;
}
/*
* If CMA activation fails, keep the pages reserved, instead of
* exposing them to buddy allocator. Same as 'fadump=nocma' case.
*/
cma_reserve_pages_on_error(fadump_cma);
/*
* So we now have successfully initialized cma area for fadump.
*/
pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
"bytes of memory reserved for firmware-assisted dump\n",
cma_get_size(fadump_cma),
(unsigned long)cma_get_base(fadump_cma) >> 20,
fw_dump.reserve_dump_area_size);
return 1;
}
#else
static int __init fadump_cma_init(void) { return 1; }
#endif /* CONFIG_CMA */
/*
* Additional parameters meant for capture kernel are placed in a dedicated area.
* If this is capture kernel boot, append these parameters to bootargs.
*/
void __init fadump_append_bootargs(void)
{
char *append_args;
size_t len;
if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
return;
if (fw_dump.param_area >= fw_dump.boot_mem_top) {
if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
pr_warn("WARNING: Can't use additional parameters area!\n");
fw_dump.param_area = 0;
return;
}
}
append_args = (char *)fw_dump.param_area;
len = strlen(boot_command_line);
/*
* Too late to fail even if cmdline size exceeds. Truncate additional parameters
* to cmdline size and proceed anyway.
*/
if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
pr_debug("Cmdline: %s\n", boot_command_line);
snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
pr_info("Updated cmdline: %s\n", boot_command_line);
}
/* Scan the Firmware Assisted dump configuration details. */
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
int depth, void *data)
{
if (depth == 0) {
early_init_dt_scan_reserved_ranges(node);
return 0;
}
if (depth != 1)
return 0;
if (strcmp(uname, "rtas") == 0) {
rtas_fadump_dt_scan(&fw_dump, node);
return 1;
}
if (strcmp(uname, "ibm,opal") == 0) {
opal_fadump_dt_scan(&fw_dump, node);
return 1;
}
return 0;
}
/*
* If fadump is registered, check if the memory provided
* falls within boot memory area and reserved memory area.
*/
int is_fadump_memory_area(u64 addr, unsigned long size)
{
u64 d_start, d_end;
if (!fw_dump.dump_registered)
return 0;
if (!size)
return 0;
d_start = fw_dump.reserve_dump_area_start;
d_end = d_start + fw_dump.reserve_dump_area_size;
if (((addr + size) > d_start) && (addr <= d_end))
return 1;
return (addr <= fw_dump.boot_mem_top);
}
int should_fadump_crash(void)
{
if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
return 0;
return 1;
}
int is_fadump_active(void)
{
return fw_dump.dump_active;
}
/*
* Returns true, if there are no holes in memory area between d_start to d_end,
* false otherwise.
*/
static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
{
phys_addr_t reg_start, reg_end;
bool ret = false;
u64 i, start, end;
for_each_mem_range(i, &reg_start, &reg_end) {
start = max_t(u64, d_start, reg_start);
end = min_t(u64, d_end, reg_end);
if (d_start < end) {
/* Memory hole from d_start to start */
if (start > d_start)
break;
if (end == d_end) {
ret = true;
break;
}
d_start = end + 1;
}
}
return ret;
}
/*
* Returns true, if there are no holes in reserved memory area,
* false otherwise.
*/
bool is_fadump_reserved_mem_contiguous(void)
{
u64 d_start, d_end;
d_start = fw_dump.reserve_dump_area_start;
d_end = d_start + fw_dump.reserve_dump_area_size;
return is_fadump_mem_area_contiguous(d_start, d_end);
}
/* Print firmware assisted dump configurations for debugging purpose. */
static void __init fadump_show_config(void)
{
int i;
pr_debug("Support for firmware-assisted dump (fadump): %s\n",
(fw_dump.fadump_supported ? "present" : "no support"));
if (!fw_dump.fadump_supported)
return;
pr_debug("Fadump enabled : %s\n",
(fw_dump.fadump_enabled ? "yes" : "no"));
pr_debug("Dump Active : %s\n",
(fw_dump.dump_active ? "yes" : "no"));
pr_debug("Dump section sizes:\n");
pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
pr_debug("[%03d] base = %llx, size = %llx\n", i,
fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
}
}
/**
* fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
*
* Function to find the largest memory size we need to reserve during early
* boot process. This will be the size of the memory that is required for a
* kernel to boot successfully.
*
* This function has been taken from phyp-assisted dump feature implementation.
*
* returns larger of 256MB or 5% rounded down to multiples of 256MB.
*
* TODO: Come up with better approach to find out more accurate memory size
* that is required for a kernel to boot successfully.
*
*/
static __init u64 fadump_calculate_reserve_size(void)
{
u64 base, size, bootmem_min;
int ret;
if (fw_dump.reserve_bootvar)
pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
/*
* Check if the size is specified through crashkernel= cmdline
* option. If yes, then use that but ignore base as fadump reserves
* memory at a predefined offset.
*/
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
&size, &base, NULL, NULL);
if (ret == 0 && size > 0) {
unsigned long max_size;
if (fw_dump.reserve_bootvar)
pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
fw_dump.reserve_bootvar = (unsigned long)size;
/*
* Adjust if the boot memory size specified is above
* the upper limit.
*/
max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
if (fw_dump.reserve_bootvar > max_size) {
fw_dump.reserve_bootvar = max_size;
pr_info("Adjusted boot memory size to %luMB\n",
(fw_dump.reserve_bootvar >> 20));
}
return fw_dump.reserve_bootvar;
} else if (fw_dump.reserve_bootvar) {
/*
* 'fadump_reserve_mem=' is being used to reserve memory
* for firmware-assisted dump.
*/
return fw_dump.reserve_bootvar;
}
/* divide by 20 to get 5% of value */
size = memblock_phys_mem_size() / 20;
/* round it down in multiples of 256 */
size = size & ~0x0FFFFFFFUL;
/* Truncate to memory_limit. We don't want to over reserve the memory.*/
if (memory_limit && size > memory_limit)
size = memory_limit;
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
return (size > bootmem_min ? size : bootmem_min);
}
/*
* Calculate the total memory size required to be reserved for
* firmware-assisted dump registration.
*/
static unsigned long __init get_fadump_area_size(void)
{
unsigned long size = 0;
size += fw_dump.cpu_state_data_size;
size += fw_dump.hpte_region_size;
/*
* Account for pagesize alignment of boot memory area destination address.
* This faciliates in mmap reading of first kernel's memory.
*/
size = PAGE_ALIGN(size);
size += fw_dump.boot_memory_size;
size += sizeof(struct fadump_crash_info_header);
/* This is to hold kernel metadata on platforms that support it */
size += (fw_dump.ops->fadump_get_metadata_size ?
fw_dump.ops->fadump_get_metadata_size() : 0);
return size;
}
static int __init add_boot_mem_region(unsigned long rstart,
unsigned long rsize)
{
int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
int i = fw_dump.boot_mem_regs_cnt++;
if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
return 0;
}
pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
i, rstart, (rstart + rsize));
fw_dump.boot_mem_addr[i] = rstart;
fw_dump.boot_mem_sz[i] = rsize;
return 1;
}
/*
* Firmware usually has a hard limit on the data it can copy per region.
* Honour that by splitting a memory range into multiple regions.
*/
static int __init add_boot_mem_regions(unsigned long mstart,
unsigned long msize)
{
unsigned long rstart, rsize, max_size;
int ret = 1;
rstart = mstart;
max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
while (msize) {
if (msize > max_size)
rsize = max_size;
else
rsize = msize;
ret = add_boot_mem_region(rstart, rsize);
if (!ret)
break;
msize -= rsize;
rstart += rsize;
}
return ret;
}
static int __init fadump_get_boot_mem_regions(void)
{
unsigned long size, cur_size, hole_size, last_end;
unsigned long mem_size = fw_dump.boot_memory_size;
phys_addr_t reg_start, reg_end;
int ret = 1;
u64 i;
fw_dump.boot_mem_regs_cnt = 0;
last_end = 0;
hole_size = 0;
cur_size = 0;
for_each_mem_range(i, &reg_start, &reg_end) {
size = reg_end - reg_start;
hole_size += (reg_start - last_end);
if ((cur_size + size) >= mem_size) {
size = (mem_size - cur_size);
ret = add_boot_mem_regions(reg_start, size);
break;
}
mem_size -= size;
cur_size += size;
ret = add_boot_mem_regions(reg_start, size);
if (!ret)
break;
last_end = reg_end;
}
fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
return ret;
}
/*
* Returns true, if the given range overlaps with reserved memory ranges
* starting at idx. Also, updates idx to index of overlapping memory range
* with the given memory range.
* False, otherwise.
*/
static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
{
bool ret = false;
int i;
for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
u64 rbase = reserved_mrange_info.mem_ranges[i].base;
u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
if (end <= rbase)
break;
if ((end > rbase) && (base < rend)) {
*idx = i;
ret = true;
break;
}
}
return ret;
}
/*
* Locate a suitable memory area to reserve memory for FADump. While at it,
* lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
*/
static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
{
struct fadump_memory_range *mrngs;
phys_addr_t mstart, mend;
int idx = 0;
u64 i, ret = 0;
mrngs = reserved_mrange_info.mem_ranges;
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
&mstart, &mend, NULL) {
pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
i, mstart, mend, base);
if (mstart > base)
base = PAGE_ALIGN(mstart);
while ((mend > base) && ((mend - base) >= size)) {
if (!overlaps_reserved_ranges(base, base+size, &idx)) {
ret = base;
goto out;
}
base = mrngs[idx].base + mrngs[idx].size;
base = PAGE_ALIGN(base);
}
}
out:
return ret;
}
int __init fadump_reserve_mem(void)
{
u64 base, size, mem_boundary, bootmem_min;
int ret = 1;
if (!fw_dump.fadump_enabled)
return 0;
if (!fw_dump.fadump_supported) {
pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
goto error_out;
}
/*
* Initialize boot memory size
* If dump is active then we have already calculated the size during
* first kernel.
*/
if (!fw_dump.dump_active) {
fw_dump.boot_memory_size =
PAGE_ALIGN(fadump_calculate_reserve_size());
#ifdef CONFIG_CMA
if (!fw_dump.nocma) {
fw_dump.boot_memory_size =
ALIGN(fw_dump.boot_memory_size,
CMA_MIN_ALIGNMENT_BYTES);
}
#endif
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
if (fw_dump.boot_memory_size < bootmem_min) {
pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
fw_dump.boot_memory_size, bootmem_min);
goto error_out;
}
if (!fadump_get_boot_mem_regions()) {
pr_err("Too many holes in boot memory area to enable fadump\n");
goto error_out;
}
}
if (memory_limit)
mem_boundary = memory_limit;
else
mem_boundary = memblock_end_of_DRAM();
base = fw_dump.boot_mem_top;
size = get_fadump_area_size();
fw_dump.reserve_dump_area_size = size;
if (fw_dump.dump_active) {
pr_info("Firmware-assisted dump is active.\n");
#ifdef CONFIG_HUGETLB_PAGE
/*
* FADump capture kernel doesn't care much about hugepages.
* In fact, handling hugepages in capture kernel is asking for
* trouble. So, disable HugeTLB support when fadump is active.
*/
hugetlb_disabled = true;
#endif
/*
* If last boot has crashed then reserve all the memory
* above boot memory size so that we don't touch it until
* dump is written to disk by userspace tool. This memory
* can be released for general use by invalidating fadump.
*/
fadump_reserve_crash_area(base);
pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
pr_debug("Reserve dump area start address: 0x%lx\n",
fw_dump.reserve_dump_area_start);
} else {
/*
* Reserve memory at an offset closer to bottom of the RAM to
* minimize the impact of memory hot-remove operation.
*/
base = fadump_locate_reserve_mem(base, size);
if (!base || (base + size > mem_boundary)) {
pr_err("Failed to find memory chunk for reservation!\n");
goto error_out;
}
fw_dump.reserve_dump_area_start = base;
/*
* Calculate the kernel metadata address and register it with
* f/w if the platform supports.
*/
if (fw_dump.ops->fadump_setup_metadata &&
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
goto error_out;
if (memblock_reserve(base, size)) {
pr_err("Failed to reserve memory!\n");
goto error_out;
}
pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
(size >> 20), base, (memblock_phys_mem_size() >> 20));
ret = fadump_cma_init();
}
return ret;
error_out:
fw_dump.fadump_enabled = 0;
fw_dump.reserve_dump_area_size = 0;
return 0;
}
/* Look for fadump= cmdline option. */
static int __init early_fadump_param(char *p)
{
if (!p)
return 1;
if (strncmp(p, "on", 2) == 0)
fw_dump.fadump_enabled = 1;
else if (strncmp(p, "off", 3) == 0)
fw_dump.fadump_enabled = 0;
else if (strncmp(p, "nocma", 5) == 0) {
fw_dump.fadump_enabled = 1;
fw_dump.nocma = 1;
}
return 0;
}
early_param("fadump", early_fadump_param);
/*
* Look for fadump_reserve_mem= cmdline option
* TODO: Remove references to 'fadump_reserve_mem=' parameter,
* the sooner 'crashkernel=' parameter is accustomed to.
*/
static int __init early_fadump_reserve_mem(char *p)
{
if (p)
fw_dump.reserve_bootvar = memparse(p, &p);
return 0;
}
early_param("fadump_reserve_mem", early_fadump_reserve_mem);
void crash_fadump(struct pt_regs *regs, const char *str)
{
unsigned int msecs;
struct fadump_crash_info_header *fdh = NULL;
int old_cpu, this_cpu;
/* Do not include first CPU */
unsigned int ncpus = num_online_cpus() - 1;
if (!should_fadump_crash())
return;
/*
* old_cpu == -1 means this is the first CPU which has come here,
* go ahead and trigger fadump.
*
* old_cpu != -1 means some other CPU has already on its way
* to trigger fadump, just keep looping here.
*/
this_cpu = smp_processor_id();
old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
if (old_cpu != -1) {
atomic_inc(&cpus_in_fadump);
/*
* We can't loop here indefinitely. Wait as long as fadump
* is in force. If we race with fadump un-registration this
* loop will break and then we go down to normal panic path
* and reboot. If fadump is in force the first crashing
* cpu will definitely trigger fadump.
*/
while (fw_dump.dump_registered)
cpu_relax();
return;
}
fdh = __va(fw_dump.fadumphdr_addr);
fdh->crashing_cpu = crashing_cpu;
crash_save_vmcoreinfo();
if (regs)
fdh->regs = *regs;
else
ppc_save_regs(&fdh->regs);
fdh->cpu_mask = *cpu_online_mask;
/*
* If we came in via system reset, wait a while for the secondary
* CPUs to enter.
*/
if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
msecs = CRASH_TIMEOUT;
while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
mdelay(1);
}
fw_dump.ops->fadump_trigger(fdh, str);
}
u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
{
struct elf_prstatus prstatus;
memset(&prstatus, 0, sizeof(prstatus));
/*
* FIXME: How do i get PID? Do I really need it?
* prstatus.pr_pid = ????
*/
elf_core_copy_regs(&prstatus.pr_reg, regs);
buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
&prstatus, sizeof(prstatus));
return buf;
}
void __init fadump_update_elfcore_header(char *bufp)
{
struct elf_phdr *phdr;
bufp += sizeof(struct elfhdr);
/* First note is a place holder for cpu notes info. */
phdr = (struct elf_phdr *)bufp;
if (phdr->p_type == PT_NOTE) {
phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
phdr->p_offset = phdr->p_paddr;
phdr->p_filesz = fw_dump.cpu_notes_buf_size;
phdr->p_memsz = fw_dump.cpu_notes_buf_size;
}
return;
}
static void *__init fadump_alloc_buffer(unsigned long size)
{
unsigned long count, i;
struct page *page;
void *vaddr;
vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
if (!vaddr)
return NULL;
count = PAGE_ALIGN(size) / PAGE_SIZE;
page = virt_to_page(vaddr);
for (i = 0; i < count; i++)
mark_page_reserved(page + i);
return vaddr;
}
static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
{
free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
}
s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
{
/* Allocate buffer to hold cpu crash notes. */
fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
fw_dump.cpu_notes_buf_vaddr =
(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
if (!fw_dump.cpu_notes_buf_vaddr) {
pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
fw_dump.cpu_notes_buf_size);
return -ENOMEM;
}
pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
fw_dump.cpu_notes_buf_size,
fw_dump.cpu_notes_buf_vaddr);
return 0;
}
void fadump_free_cpu_notes_buf(void)
{
if (!fw_dump.cpu_notes_buf_vaddr)
return;
fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
fw_dump.cpu_notes_buf_size);
fw_dump.cpu_notes_buf_vaddr = 0;
fw_dump.cpu_notes_buf_size = 0;
}
static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
{
if (mrange_info->is_static) {
mrange_info->mem_range_cnt = 0;
return;
}
kfree(mrange_info->mem_ranges);
memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
(sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
}
/*
* Allocate or reallocate mem_ranges array in incremental units
* of PAGE_SIZE.
*/
static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
{
struct fadump_memory_range *new_array;
u64 new_size;
new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
new_size, mrange_info->name);
new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
if (new_array == NULL) {
pr_err("Insufficient memory for setting up %s memory ranges\n",
mrange_info->name);
fadump_free_mem_ranges(mrange_info);
return -ENOMEM;
}
mrange_info->mem_ranges = new_array;
mrange_info->mem_ranges_sz = new_size;
mrange_info->max_mem_ranges = (new_size /
sizeof(struct fadump_memory_range));
return 0;
}
static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
u64 base, u64 end)
{
struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
bool is_adjacent = false;
u64 start, size;
if (base == end)
return 0;
/*
* Fold adjacent memory ranges to bring down the memory ranges/
* PT_LOAD segments count.
*/
if (mrange_info->mem_range_cnt) {
start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
/*
* Boot memory area needs separate PT_LOAD segment(s) as it
* is moved to a different location at the time of crash.
* So, fold only if the region is not boot memory area.
*/
if ((start + size) == base && start >= fw_dump.boot_mem_top)
is_adjacent = true;
}
if (!is_adjacent) {
/* resize the array on reaching the limit */
if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
int ret;
if (mrange_info->is_static) {
pr_err("Reached array size limit for %s memory ranges\n",
mrange_info->name);
return -ENOSPC;
}
ret = fadump_alloc_mem_ranges(mrange_info);
if (ret)
return ret;
/* Update to the new resized array */
mem_ranges = mrange_info->mem_ranges;
}
start = base;
mem_ranges[mrange_info->mem_range_cnt].base = start;
mrange_info->mem_range_cnt++;
}
mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
mrange_info->name, (mrange_info->mem_range_cnt - 1),
start, end - 1, (end - start));
return 0;
}
static int fadump_init_elfcore_header(char *bufp)
{
struct elfhdr *elf;
elf = (struct elfhdr *) bufp;
bufp += sizeof(struct elfhdr);
memcpy(elf->e_ident, ELFMAG, SELFMAG);
elf->e_ident[EI_CLASS] = ELF_CLASS;
elf->e_ident[EI_DATA] = ELF_DATA;
elf->e_ident[EI_VERSION] = EV_CURRENT;
elf->e_ident[EI_OSABI] = ELF_OSABI;
memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
elf->e_type = ET_CORE;
elf->e_machine = ELF_ARCH;
elf->e_version = EV_CURRENT;
elf->e_entry = 0;
elf->e_phoff = sizeof(struct elfhdr);
elf->e_shoff = 0;
if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
elf->e_flags = 2;
else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
elf->e_flags = 1;
else
elf->e_flags = 0;
elf->e_ehsize = sizeof(struct elfhdr);
elf->e_phentsize = sizeof(struct elf_phdr);
elf->e_phnum = 0;
elf->e_shentsize = 0;
elf->e_shnum = 0;
elf->e_shstrndx = 0;
return 0;
}
/*
* If the given physical address falls within the boot memory region then
* return the relocated address that points to the dump region reserved
* for saving initial boot memory contents.
*/
static inline unsigned long fadump_relocate(unsigned long paddr)
{
unsigned long raddr, rstart, rend, rlast, hole_size;
int i;
hole_size = 0;
rlast = 0;
raddr = paddr;
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
rstart = fw_dump.boot_mem_addr[i];
rend = rstart + fw_dump.boot_mem_sz[i];
hole_size += (rstart - rlast);
if (paddr >= rstart && paddr < rend) {
raddr += fw_dump.boot_mem_dest_addr - hole_size;
break;
}
rlast = rend;
}
pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
return raddr;
}
static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
u64 size, unsigned long long offset)
{
phdr->p_align = 0;
phdr->p_memsz = size;
phdr->p_filesz = size;
phdr->p_paddr = start;
phdr->p_offset = offset;
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (unsigned long)__va(start);
}
static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
{
char *bufp;
struct elfhdr *elf;
struct elf_phdr *phdr;
u64 boot_mem_dest_offset;
unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
bufp = (char *) fw_dump.elfcorehdr_addr;
fadump_init_elfcore_header(bufp);
elf = (struct elfhdr *)bufp;
bufp += sizeof(struct elfhdr);
/*
* Set up ELF PT_NOTE, a placeholder for CPU notes information.
* The notes info will be populated later by platform-specific code.
* Hence, this PT_NOTE will always be the first ELF note.
*
* NOTE: Any new ELF note addition should be placed after this note.
*/
phdr = (struct elf_phdr *)bufp;
bufp += sizeof(struct elf_phdr);
phdr->p_type = PT_NOTE;
phdr->p_flags = 0;
phdr->p_vaddr = 0;
phdr->p_align = 0;
phdr->p_offset = 0;
phdr->p_paddr = 0;
phdr->p_filesz = 0;
phdr->p_memsz = 0;
/* Increment number of program headers. */
(elf->e_phnum)++;
/* setup ELF PT_NOTE for vmcoreinfo */
phdr = (struct elf_phdr *)bufp;
bufp += sizeof(struct elf_phdr);
phdr->p_type = PT_NOTE;
phdr->p_flags = 0;
phdr->p_vaddr = 0;
phdr->p_align = 0;
phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
/* Increment number of program headers. */
(elf->e_phnum)++;
/*
* Setup PT_LOAD sections. first include boot memory regions
* and then add rest of the memory regions.
*/
boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
phdr = (struct elf_phdr *)bufp;
bufp += sizeof(struct elf_phdr);
populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
fw_dump.boot_mem_sz[i],
boot_mem_dest_offset);
/* Increment number of program headers. */
(elf->e_phnum)++;
boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
}
/* Memory reserved for fadump in first kernel */
ra_start = fw_dump.reserve_dump_area_start;
ra_size = get_fadump_area_size();
ra_end = ra_start + ra_size;
phdr = (struct elf_phdr *)bufp;
for_each_mem_range(i, &mstart, &mend) {
/* Boot memory regions already added, skip them now */
if (mstart < fw_dump.boot_mem_top) {
if (mend > fw_dump.boot_mem_top)
mstart = fw_dump.boot_mem_top;
else
continue;
}
/* Handle memblock regions overlaps with fadump reserved area */
if ((ra_start < mend) && (ra_end > mstart)) {
if ((mstart < ra_start) && (mend > ra_end)) {
populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
/* Increment number of program headers. */
(elf->e_phnum)++;
bufp += sizeof(struct elf_phdr);
phdr = (struct elf_phdr *)bufp;
populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
} else if (mstart < ra_start) {
populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
} else if (ra_end < mend) {
populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
}
} else {
/* No overlap with fadump reserved memory region */
populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
}
/* Increment number of program headers. */
(elf->e_phnum)++;
bufp += sizeof(struct elf_phdr);
phdr = (struct elf_phdr *) bufp;
}
}
static unsigned long init_fadump_header(unsigned long addr)
{
struct fadump_crash_info_header *fdh;
if (!addr)
return 0;
fdh = __va(addr);
addr += sizeof(struct fadump_crash_info_header);
memset(fdh, 0, sizeof(struct fadump_crash_info_header));
fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
fdh->version = FADUMP_HEADER_VERSION;
/* We will set the crashing cpu id in crash_fadump() during crash. */
fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
/*
* The physical address and size of vmcoreinfo are required in the
* second kernel to prepare elfcorehdr.
*/
fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
fdh->pt_regs_sz = sizeof(struct pt_regs);
/*
* When LPAR is terminated by PYHP, ensure all possible CPUs'
* register data is processed while exporting the vmcore.
*/
fdh->cpu_mask = *cpu_possible_mask;
fdh->cpu_mask_sz = sizeof(struct cpumask);
return addr;
}
static int register_fadump(void)
{
unsigned long addr;
/*
* If no memory is reserved then we can not register for firmware-
* assisted dump.
*/
if (!fw_dump.reserve_dump_area_size)
return -ENODEV;
addr = fw_dump.fadumphdr_addr;
/* Initialize fadump crash info header. */
addr = init_fadump_header(addr);
/* register the future kernel dump with firmware. */
pr_debug("Registering for firmware-assisted kernel dump...\n");
return fw_dump.ops->fadump_register(&fw_dump);
}
void fadump_cleanup(void)
{
if (!fw_dump.fadump_supported)
return;
/* Invalidate the registration only if dump is active. */
if (fw_dump.dump_active) {
pr_debug("Invalidating firmware-assisted dump registration\n");
fw_dump.ops->fadump_invalidate(&fw_dump);
} else if (fw_dump.dump_registered) {
/* Un-register Firmware-assisted dump if it was registered. */
fw_dump.ops->fadump_unregister(&fw_dump);
}
if (fw_dump.ops->fadump_cleanup)
fw_dump.ops->fadump_cleanup(&fw_dump);
}
static void fadump_free_reserved_memory(unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
unsigned long time_limit = jiffies + HZ;
pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
free_reserved_page(pfn_to_page(pfn));
if (time_after(jiffies, time_limit)) {
cond_resched();
time_limit = jiffies + HZ;
}
}
}
/*
* Skip memory holes and free memory that was actually reserved.
*/
static void fadump_release_reserved_area(u64 start, u64 end)
{
unsigned long reg_spfn, reg_epfn;
u64 tstart, tend, spfn, epfn;
int i;
spfn = PHYS_PFN(start);
epfn = PHYS_PFN(end);
for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
tstart = max_t(u64, spfn, reg_spfn);
tend = min_t(u64, epfn, reg_epfn);
if (tstart < tend) {
fadump_free_reserved_memory(tstart, tend);
if (tend == epfn)
break;
spfn = tend;
}
}
}
/*
* Sort the mem ranges in-place and merge adjacent ranges
* to minimize the memory ranges count.
*/
static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
{
struct fadump_memory_range *mem_ranges;
u64 base, size;
int i, j, idx;
if (!reserved_mrange_info.mem_range_cnt)
return;
/* Sort the memory ranges */
mem_ranges = mrange_info->mem_ranges;
for (i = 0; i < mrange_info->mem_range_cnt; i++) {
idx = i;
for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
if (mem_ranges[idx].base > mem_ranges[j].base)
idx = j;
}
if (idx != i)
swap(mem_ranges[idx], mem_ranges[i]);
}
/* Merge adjacent reserved ranges */
idx = 0;
for (i = 1; i < mrange_info->mem_range_cnt; i++) {
base = mem_ranges[i-1].base;
size = mem_ranges[i-1].size;
if (mem_ranges[i].base == (base + size))
mem_ranges[idx].size += mem_ranges[i].size;
else {
idx++;
if (i == idx)
continue;
mem_ranges[idx] = mem_ranges[i];
}
}
mrange_info->mem_range_cnt = idx + 1;
}
/*
* Scan reserved-ranges to consider them while reserving/releasing
* memory for FADump.
*/
static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
{
const __be32 *prop;
int len, ret = -1;
unsigned long i;
/* reserved-ranges already scanned */
if (reserved_mrange_info.mem_range_cnt != 0)
return;
prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
if (!prop)
return;
/*
* Each reserved range is an (address,size) pair, 2 cells each,
* totalling 4 cells per range.
*/
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
u64 base, size;
base = of_read_number(prop + (i * 4) + 0, 2);
size = of_read_number(prop + (i * 4) + 2, 2);
if (size) {
ret = fadump_add_mem_range(&reserved_mrange_info,
base, base + size);
if (ret < 0) {
pr_warn("some reserved ranges are ignored!\n");
break;
}
}
}
/* Compact reserved ranges */
sort_and_merge_mem_ranges(&reserved_mrange_info);
}
/*
* Release the memory that was reserved during early boot to preserve the
* crash'ed kernel's memory contents except reserved dump area (permanent
* reservation) and reserved ranges used by F/W. The released memory will
* be available for general use.
*/
static void fadump_release_memory(u64 begin, u64 end)
{
u64 ra_start, ra_end, tstart;
int i, ret;
ra_start = fw_dump.reserve_dump_area_start;
ra_end = ra_start + fw_dump.reserve_dump_area_size;
/*
* If reserved ranges array limit is hit, overwrite the last reserved
* memory range with reserved dump area to ensure it is excluded from
* the memory being released (reused for next FADump registration).
*/
if (reserved_mrange_info.mem_range_cnt ==
reserved_mrange_info.max_mem_ranges)
reserved_mrange_info.mem_range_cnt--;
ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
if (ret != 0)
return;
/* Get the reserved ranges list in order first. */
sort_and_merge_mem_ranges(&reserved_mrange_info);
/* Exclude reserved ranges and release remaining memory */
tstart = begin;
for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
ra_start = reserved_mrange_info.mem_ranges[i].base;
ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
if (tstart >= ra_end)
continue;
if (tstart < ra_start)
fadump_release_reserved_area(tstart, ra_start);
tstart = ra_end;
}
if (tstart < end)
fadump_release_reserved_area(tstart, end);
}
static void fadump_free_elfcorehdr_buf(void)
{
if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
return;
/*
* Before freeing the memory of `elfcorehdr`, reset the global
* `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
* invalid memory.
*/
elfcorehdr_addr = ELFCORE_ADDR_ERR;
fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
fw_dump.elfcorehdr_addr = 0;
fw_dump.elfcorehdr_size = 0;
}
static void fadump_invalidate_release_mem(void)
{
mutex_lock(&fadump_mutex);
if (!fw_dump.dump_active) {
mutex_unlock(&fadump_mutex);
return;
}
fadump_cleanup();
mutex_unlock(&fadump_mutex);
fadump_free_elfcorehdr_buf();
fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
fadump_free_cpu_notes_buf();
/*
* Setup kernel metadata and initialize the kernel dump
* memory structure for FADump re-registration.
*/
if (fw_dump.ops->fadump_setup_metadata &&
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
pr_warn("Failed to setup kernel metadata!\n");
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
}
static ssize_t release_mem_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int input = -1;
if (!fw_dump.dump_active)
return -EPERM;
if (kstrtoint(buf, 0, &input))
return -EINVAL;
if (input == 1) {
/*
* Take away the '/proc/vmcore'. We are releasing the dump
* memory, hence it will not be valid anymore.
*/
#ifdef CONFIG_PROC_VMCORE
vmcore_cleanup();
#endif
fadump_invalidate_release_mem();
} else
return -EINVAL;
return count;
}
/* Release the reserved memory and disable the FADump */
static void __init unregister_fadump(void)
{
fadump_cleanup();
fadump_release_memory(fw_dump.reserve_dump_area_start,
fw_dump.reserve_dump_area_size);
fw_dump.fadump_enabled = 0;
kobject_put(fadump_kobj);
}
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
}
/*
* /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
* to usersapce that fadump re-registration is not required on memory
* hotplug events.
*/
static ssize_t hotplug_ready_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", 1);
}
static ssize_t mem_reserved_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
}
static ssize_t registered_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", fw_dump.dump_registered);
}
static ssize_t bootargs_append_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
}
static ssize_t bootargs_append_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
char *params;
if (!fw_dump.fadump_enabled || fw_dump.dump_active)
return -EPERM;
if (count >= COMMAND_LINE_SIZE)
return -EINVAL;
/*
* Fail here instead of handling this scenario with
* some silly workaround in capture kernel.
*/
if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
pr_err("Appending parameters exceeds cmdline size!\n");
return -ENOSPC;
}
params = __va(fw_dump.param_area);
strscpy_pad(params, buf, COMMAND_LINE_SIZE);
/* Remove newline character at the end. */
if (params[count-1] == '\n')
params[count-1] = '\0';
return count;
}
static ssize_t registered_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int ret = 0;
int input = -1;
if (!fw_dump.fadump_enabled || fw_dump.dump_active)
return -EPERM;
if (kstrtoint(buf, 0, &input))
return -EINVAL;
mutex_lock(&fadump_mutex);
switch (input) {
case 0:
if (fw_dump.dump_registered == 0) {
goto unlock_out;
}
/* Un-register Firmware-assisted dump */
pr_debug("Un-register firmware-assisted dump\n");
fw_dump.ops->fadump_unregister(&fw_dump);
break;
case 1:
if (fw_dump.dump_registered == 1) {
/* Un-register Firmware-assisted dump */
fw_dump.ops->fadump_unregister(&fw_dump);
}
/* Register Firmware-assisted dump */
ret = register_fadump();
break;
default:
ret = -EINVAL;
break;
}
unlock_out:
mutex_unlock(&fadump_mutex);
return ret < 0 ? ret : count;
}
static int fadump_region_show(struct seq_file *m, void *private)
{
if (!fw_dump.fadump_enabled)
return 0;
mutex_lock(&fadump_mutex);
fw_dump.ops->fadump_region_show(&fw_dump, m);
mutex_unlock(&fadump_mutex);
return 0;
}
static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
static struct kobj_attribute register_attr = __ATTR_RW(registered);
static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
static struct attribute *fadump_attrs[] = {
&enable_attr.attr,
&register_attr.attr,
&mem_reserved_attr.attr,
&hotplug_ready_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(fadump);
DEFINE_SHOW_ATTRIBUTE(fadump_region);
static void __init fadump_init_files(void)
{
int rc = 0;
fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
if (!fadump_kobj) {
pr_err("failed to create fadump kobject\n");
return;
}
debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
&fadump_region_fops);
if (fw_dump.dump_active) {
rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
if (rc)
pr_err("unable to create release_mem sysfs file (%d)\n",
rc);
}
rc = sysfs_create_groups(fadump_kobj, fadump_groups);
if (rc) {
pr_err("sysfs group creation failed (%d), unregistering FADump",
rc);
unregister_fadump();
return;
}
/*
* The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
* create symlink at old location to maintain backward compatibility.
*
* - fadump_enabled -> fadump/enabled
* - fadump_registered -> fadump/registered
* - fadump_release_mem -> fadump/release_mem
*/
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
"enabled", "fadump_enabled");
if (rc) {
pr_err("unable to create fadump_enabled symlink (%d)", rc);
return;
}
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
"registered",
"fadump_registered");
if (rc) {
pr_err("unable to create fadump_registered symlink (%d)", rc);
sysfs_remove_link(kernel_kobj, "fadump_enabled");
return;
}
if (fw_dump.dump_active) {
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
fadump_kobj,
"release_mem",
"fadump_release_mem");
if (rc)
pr_err("unable to create fadump_release_mem symlink (%d)",
rc);
}
return;
}
static int __init fadump_setup_elfcorehdr_buf(void)
{
int elf_phdr_cnt;
unsigned long elfcorehdr_size;
/*
* Program header for CPU notes comes first, followed by one for
* vmcoreinfo, and the remaining program headers correspond to
* memory regions.
*/
elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
if (!fw_dump.elfcorehdr_addr) {
pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
elfcorehdr_size);
return -ENOMEM;
}
fw_dump.elfcorehdr_size = elfcorehdr_size;
return 0;
}
/*
* Check if the fadump header of crashed kernel is compatible with fadump kernel.
*
* It checks the magic number, endianness, and size of non-primitive type
* members of fadump header to ensure safe dump collection.
*/
static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
{
if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
pr_err("Old magic number, can't process the dump.\n");
return false;
}
if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
else
pr_err("Fadump header is corrupted.\n");
return false;
}
/*
* Dump collection is not safe if the size of non-primitive type members
* of the fadump header do not match between crashed and fadump kernel.
*/
if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
fdh->cpu_mask_sz != sizeof(struct cpumask)) {
pr_err("Fadump header size mismatch.\n");
return false;
}
return true;
}
static void __init fadump_process(void)
{
struct fadump_crash_info_header *fdh;
fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
if (!fdh) {
pr_err("Crash info header is empty.\n");
goto err_out;
}
/* Avoid processing the dump if fadump header isn't compatible */
if (!is_fadump_header_compatible(fdh))
goto err_out;
/* Allocate buffer for elfcorehdr */
if (fadump_setup_elfcorehdr_buf())
goto err_out;
fadump_populate_elfcorehdr(fdh);
/* Let platform update the CPU notes in elfcorehdr */
if (fw_dump.ops->fadump_process(&fw_dump) < 0)
goto err_out;
/*
* elfcorehdr is now ready to be exported.
*
* set elfcorehdr_addr so that vmcore module will export the
* elfcorehdr through '/proc/vmcore'.
*/
elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
return;
err_out:
fadump_invalidate_release_mem();
}
/*
* Reserve memory to store additional parameters to be passed
* for fadump/capture kernel.
*/
static void __init fadump_setup_param_area(void)
{
phys_addr_t range_start, range_end;
if (!fw_dump.param_area_supported || fw_dump.dump_active)
return;
/* This memory can't be used by PFW or bootloader as it is shared across kernels */
if (radix_enabled()) {
/*
* Anywhere in the upper half should be good enough as all memory
* is accessible in real mode.
*/
range_start = memblock_end_of_DRAM() / 2;
range_end = memblock_end_of_DRAM();
} else {
/*
* Passing additional parameters is supported for hash MMU only
* if the first memory block size is 768MB or higher.
*/
if (ppc64_rma_size < 0x30000000)
return;
/*
* 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
* memory for passing additional parameters in this range to avoid
* being stomped on by PFW/bootloader.
*/
range_start = 0x2A000000;
range_end = range_start + 0x4000000;
}
fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
COMMAND_LINE_SIZE,
range_start,
range_end);
if (!fw_dump.param_area || sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr)) {
pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
return;
}
memset(phys_to_virt(fw_dump.param_area), 0, COMMAND_LINE_SIZE);
}
/*
* Prepare for firmware-assisted dump.
*/
int __init setup_fadump(void)
{
if (!fw_dump.fadump_supported)
return 0;
fadump_init_files();
fadump_show_config();
if (!fw_dump.fadump_enabled)
return 1;
/*
* If dump data is available then see if it is valid and prepare for
* saving it to the disk.
*/
if (fw_dump.dump_active) {
fadump_process();
}
/* Initialize the kernel dump memory structure and register with f/w */
else if (fw_dump.reserve_dump_area_size) {
fadump_setup_param_area();
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
register_fadump();
}
/*
* In case of panic, fadump is triggered via ppc_panic_event()
* panic notifier. Setting crash_kexec_post_notifiers to 'true'
* lets panic() function take crash friendly path before panic
* notifiers are invoked.
*/
crash_kexec_post_notifiers = true;
return 1;
}
/*
* Use subsys_initcall_sync() here because there is dependency with
* crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
* is done before registering with f/w.
*/
subsys_initcall_sync(setup_fadump);
#else /* !CONFIG_PRESERVE_FA_DUMP */
/* Scan the Firmware Assisted dump configuration details. */
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
int depth, void *data)
{
if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
return 0;
opal_fadump_dt_scan(&fw_dump, node);
return 1;
}
/*
* When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
* preserve crash data. The subsequent memory preserving kernel boot
* is likely to process this crash data.
*/
int __init fadump_reserve_mem(void)
{
if (fw_dump.dump_active) {
/*
* If last boot has crashed then reserve all the memory
* above boot memory to preserve crash data.
*/
pr_info("Preserving crash data for processing in next boot.\n");
fadump_reserve_crash_area(fw_dump.boot_mem_top);
} else
pr_debug("FADump-aware kernel..\n");
return 1;
}
#endif /* CONFIG_PRESERVE_FA_DUMP */
/* Preserve everything above the base address */
static void __init fadump_reserve_crash_area(u64 base)
{
u64 i, mstart, mend, msize;
for_each_mem_range(i, &mstart, &mend) {
msize = mend - mstart;
if ((mstart + msize) < base)
continue;
if (mstart < base) {
msize -= (base - mstart);
mstart = base;
}
pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
(msize >> 20), mstart);
memblock_reserve(mstart, msize);
}
}