mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
a782483cc1
Now that the hd_struct always has a block device attached to it, there is no need for having two size field that just get out of sync. Additionally the field in hd_struct did not use proper serialization, possibly allowing for torn writes. By only using the block_device field this problem also gets fixed. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Coly Li <colyli@suse.de> [bcache] Acked-by: Chao Yu <yuchao0@huawei.com> [f2fs] Signed-off-by: Jens Axboe <axboe@kernel.dk>
2887 lines
70 KiB
C
2887 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* bcache setup/teardown code, and some metadata io - read a superblock and
|
|
* figure out what to do with it.
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
#include "request.h"
|
|
#include "writeback.h"
|
|
#include "features.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/module.h>
|
|
#include <linux/random.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
unsigned int bch_cutoff_writeback;
|
|
unsigned int bch_cutoff_writeback_sync;
|
|
|
|
static const char bcache_magic[] = {
|
|
0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
|
|
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
|
|
};
|
|
|
|
static const char invalid_uuid[] = {
|
|
0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
|
|
0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
|
|
};
|
|
|
|
static struct kobject *bcache_kobj;
|
|
struct mutex bch_register_lock;
|
|
bool bcache_is_reboot;
|
|
LIST_HEAD(bch_cache_sets);
|
|
static LIST_HEAD(uncached_devices);
|
|
|
|
static int bcache_major;
|
|
static DEFINE_IDA(bcache_device_idx);
|
|
static wait_queue_head_t unregister_wait;
|
|
struct workqueue_struct *bcache_wq;
|
|
struct workqueue_struct *bch_journal_wq;
|
|
|
|
|
|
#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
|
|
/* limitation of partitions number on single bcache device */
|
|
#define BCACHE_MINORS 128
|
|
/* limitation of bcache devices number on single system */
|
|
#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
|
|
|
|
/* Superblock */
|
|
|
|
static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
|
|
{
|
|
unsigned int bucket_size = le16_to_cpu(s->bucket_size);
|
|
|
|
if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
|
|
bch_has_feature_large_bucket(sb))
|
|
bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
|
|
|
|
return bucket_size;
|
|
}
|
|
|
|
static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
|
|
struct cache_sb_disk *s)
|
|
{
|
|
const char *err;
|
|
unsigned int i;
|
|
|
|
sb->first_bucket= le16_to_cpu(s->first_bucket);
|
|
sb->nbuckets = le64_to_cpu(s->nbuckets);
|
|
sb->bucket_size = get_bucket_size(sb, s);
|
|
|
|
sb->nr_in_set = le16_to_cpu(s->nr_in_set);
|
|
sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
|
|
|
|
err = "Too many journal buckets";
|
|
if (sb->keys > SB_JOURNAL_BUCKETS)
|
|
goto err;
|
|
|
|
err = "Too many buckets";
|
|
if (sb->nbuckets > LONG_MAX)
|
|
goto err;
|
|
|
|
err = "Not enough buckets";
|
|
if (sb->nbuckets < 1 << 7)
|
|
goto err;
|
|
|
|
err = "Bad block size (not power of 2)";
|
|
if (!is_power_of_2(sb->block_size))
|
|
goto err;
|
|
|
|
err = "Bad block size (larger than page size)";
|
|
if (sb->block_size > PAGE_SECTORS)
|
|
goto err;
|
|
|
|
err = "Bad bucket size (not power of 2)";
|
|
if (!is_power_of_2(sb->bucket_size))
|
|
goto err;
|
|
|
|
err = "Bad bucket size (smaller than page size)";
|
|
if (sb->bucket_size < PAGE_SECTORS)
|
|
goto err;
|
|
|
|
err = "Invalid superblock: device too small";
|
|
if (get_capacity(bdev->bd_disk) <
|
|
sb->bucket_size * sb->nbuckets)
|
|
goto err;
|
|
|
|
err = "Bad UUID";
|
|
if (bch_is_zero(sb->set_uuid, 16))
|
|
goto err;
|
|
|
|
err = "Bad cache device number in set";
|
|
if (!sb->nr_in_set ||
|
|
sb->nr_in_set <= sb->nr_this_dev ||
|
|
sb->nr_in_set > MAX_CACHES_PER_SET)
|
|
goto err;
|
|
|
|
err = "Journal buckets not sequential";
|
|
for (i = 0; i < sb->keys; i++)
|
|
if (sb->d[i] != sb->first_bucket + i)
|
|
goto err;
|
|
|
|
err = "Too many journal buckets";
|
|
if (sb->first_bucket + sb->keys > sb->nbuckets)
|
|
goto err;
|
|
|
|
err = "Invalid superblock: first bucket comes before end of super";
|
|
if (sb->first_bucket * sb->bucket_size < 16)
|
|
goto err;
|
|
|
|
err = NULL;
|
|
err:
|
|
return err;
|
|
}
|
|
|
|
|
|
static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
|
|
struct cache_sb_disk **res)
|
|
{
|
|
const char *err;
|
|
struct cache_sb_disk *s;
|
|
struct page *page;
|
|
unsigned int i;
|
|
|
|
page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
|
|
SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
|
|
if (IS_ERR(page))
|
|
return "IO error";
|
|
s = page_address(page) + offset_in_page(SB_OFFSET);
|
|
|
|
sb->offset = le64_to_cpu(s->offset);
|
|
sb->version = le64_to_cpu(s->version);
|
|
|
|
memcpy(sb->magic, s->magic, 16);
|
|
memcpy(sb->uuid, s->uuid, 16);
|
|
memcpy(sb->set_uuid, s->set_uuid, 16);
|
|
memcpy(sb->label, s->label, SB_LABEL_SIZE);
|
|
|
|
sb->flags = le64_to_cpu(s->flags);
|
|
sb->seq = le64_to_cpu(s->seq);
|
|
sb->last_mount = le32_to_cpu(s->last_mount);
|
|
sb->keys = le16_to_cpu(s->keys);
|
|
|
|
for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
|
|
sb->d[i] = le64_to_cpu(s->d[i]);
|
|
|
|
pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
|
|
sb->version, sb->flags, sb->seq, sb->keys);
|
|
|
|
err = "Not a bcache superblock (bad offset)";
|
|
if (sb->offset != SB_SECTOR)
|
|
goto err;
|
|
|
|
err = "Not a bcache superblock (bad magic)";
|
|
if (memcmp(sb->magic, bcache_magic, 16))
|
|
goto err;
|
|
|
|
err = "Bad checksum";
|
|
if (s->csum != csum_set(s))
|
|
goto err;
|
|
|
|
err = "Bad UUID";
|
|
if (bch_is_zero(sb->uuid, 16))
|
|
goto err;
|
|
|
|
sb->block_size = le16_to_cpu(s->block_size);
|
|
|
|
err = "Superblock block size smaller than device block size";
|
|
if (sb->block_size << 9 < bdev_logical_block_size(bdev))
|
|
goto err;
|
|
|
|
switch (sb->version) {
|
|
case BCACHE_SB_VERSION_BDEV:
|
|
sb->data_offset = BDEV_DATA_START_DEFAULT;
|
|
break;
|
|
case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
|
|
case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
|
|
sb->data_offset = le64_to_cpu(s->data_offset);
|
|
|
|
err = "Bad data offset";
|
|
if (sb->data_offset < BDEV_DATA_START_DEFAULT)
|
|
goto err;
|
|
|
|
break;
|
|
case BCACHE_SB_VERSION_CDEV:
|
|
case BCACHE_SB_VERSION_CDEV_WITH_UUID:
|
|
err = read_super_common(sb, bdev, s);
|
|
if (err)
|
|
goto err;
|
|
break;
|
|
case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
|
|
/*
|
|
* Feature bits are needed in read_super_common(),
|
|
* convert them firstly.
|
|
*/
|
|
sb->feature_compat = le64_to_cpu(s->feature_compat);
|
|
sb->feature_incompat = le64_to_cpu(s->feature_incompat);
|
|
sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
|
|
err = read_super_common(sb, bdev, s);
|
|
if (err)
|
|
goto err;
|
|
break;
|
|
default:
|
|
err = "Unsupported superblock version";
|
|
goto err;
|
|
}
|
|
|
|
sb->last_mount = (u32)ktime_get_real_seconds();
|
|
*res = s;
|
|
return NULL;
|
|
err:
|
|
put_page(page);
|
|
return err;
|
|
}
|
|
|
|
static void write_bdev_super_endio(struct bio *bio)
|
|
{
|
|
struct cached_dev *dc = bio->bi_private;
|
|
|
|
if (bio->bi_status)
|
|
bch_count_backing_io_errors(dc, bio);
|
|
|
|
closure_put(&dc->sb_write);
|
|
}
|
|
|
|
static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
|
|
struct bio *bio)
|
|
{
|
|
unsigned int i;
|
|
|
|
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
|
|
bio->bi_iter.bi_sector = SB_SECTOR;
|
|
__bio_add_page(bio, virt_to_page(out), SB_SIZE,
|
|
offset_in_page(out));
|
|
|
|
out->offset = cpu_to_le64(sb->offset);
|
|
|
|
memcpy(out->uuid, sb->uuid, 16);
|
|
memcpy(out->set_uuid, sb->set_uuid, 16);
|
|
memcpy(out->label, sb->label, SB_LABEL_SIZE);
|
|
|
|
out->flags = cpu_to_le64(sb->flags);
|
|
out->seq = cpu_to_le64(sb->seq);
|
|
|
|
out->last_mount = cpu_to_le32(sb->last_mount);
|
|
out->first_bucket = cpu_to_le16(sb->first_bucket);
|
|
out->keys = cpu_to_le16(sb->keys);
|
|
|
|
for (i = 0; i < sb->keys; i++)
|
|
out->d[i] = cpu_to_le64(sb->d[i]);
|
|
|
|
if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
|
|
out->feature_compat = cpu_to_le64(sb->feature_compat);
|
|
out->feature_incompat = cpu_to_le64(sb->feature_incompat);
|
|
out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
|
|
}
|
|
|
|
out->version = cpu_to_le64(sb->version);
|
|
out->csum = csum_set(out);
|
|
|
|
pr_debug("ver %llu, flags %llu, seq %llu\n",
|
|
sb->version, sb->flags, sb->seq);
|
|
|
|
submit_bio(bio);
|
|
}
|
|
|
|
static void bch_write_bdev_super_unlock(struct closure *cl)
|
|
{
|
|
struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
|
|
|
|
up(&dc->sb_write_mutex);
|
|
}
|
|
|
|
void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
|
|
{
|
|
struct closure *cl = &dc->sb_write;
|
|
struct bio *bio = &dc->sb_bio;
|
|
|
|
down(&dc->sb_write_mutex);
|
|
closure_init(cl, parent);
|
|
|
|
bio_init(bio, dc->sb_bv, 1);
|
|
bio_set_dev(bio, dc->bdev);
|
|
bio->bi_end_io = write_bdev_super_endio;
|
|
bio->bi_private = dc;
|
|
|
|
closure_get(cl);
|
|
/* I/O request sent to backing device */
|
|
__write_super(&dc->sb, dc->sb_disk, bio);
|
|
|
|
closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
|
|
}
|
|
|
|
static void write_super_endio(struct bio *bio)
|
|
{
|
|
struct cache *ca = bio->bi_private;
|
|
|
|
/* is_read = 0 */
|
|
bch_count_io_errors(ca, bio->bi_status, 0,
|
|
"writing superblock");
|
|
closure_put(&ca->set->sb_write);
|
|
}
|
|
|
|
static void bcache_write_super_unlock(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, sb_write);
|
|
|
|
up(&c->sb_write_mutex);
|
|
}
|
|
|
|
void bcache_write_super(struct cache_set *c)
|
|
{
|
|
struct closure *cl = &c->sb_write;
|
|
struct cache *ca = c->cache;
|
|
struct bio *bio = &ca->sb_bio;
|
|
unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
|
|
|
|
down(&c->sb_write_mutex);
|
|
closure_init(cl, &c->cl);
|
|
|
|
ca->sb.seq++;
|
|
|
|
if (ca->sb.version < version)
|
|
ca->sb.version = version;
|
|
|
|
bio_init(bio, ca->sb_bv, 1);
|
|
bio_set_dev(bio, ca->bdev);
|
|
bio->bi_end_io = write_super_endio;
|
|
bio->bi_private = ca;
|
|
|
|
closure_get(cl);
|
|
__write_super(&ca->sb, ca->sb_disk, bio);
|
|
|
|
closure_return_with_destructor(cl, bcache_write_super_unlock);
|
|
}
|
|
|
|
/* UUID io */
|
|
|
|
static void uuid_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
|
|
|
|
cache_set_err_on(bio->bi_status, c, "accessing uuids");
|
|
bch_bbio_free(bio, c);
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void uuid_io_unlock(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
|
|
|
|
up(&c->uuid_write_mutex);
|
|
}
|
|
|
|
static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
|
|
struct bkey *k, struct closure *parent)
|
|
{
|
|
struct closure *cl = &c->uuid_write;
|
|
struct uuid_entry *u;
|
|
unsigned int i;
|
|
char buf[80];
|
|
|
|
BUG_ON(!parent);
|
|
down(&c->uuid_write_mutex);
|
|
closure_init(cl, parent);
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
struct bio *bio = bch_bbio_alloc(c);
|
|
|
|
bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
|
|
bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
|
|
|
|
bio->bi_end_io = uuid_endio;
|
|
bio->bi_private = cl;
|
|
bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
|
|
bch_bio_map(bio, c->uuids);
|
|
|
|
bch_submit_bbio(bio, c, k, i);
|
|
|
|
if (op != REQ_OP_WRITE)
|
|
break;
|
|
}
|
|
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
|
|
|
|
for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
|
|
if (!bch_is_zero(u->uuid, 16))
|
|
pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
|
|
u - c->uuids, u->uuid, u->label,
|
|
u->first_reg, u->last_reg, u->invalidated);
|
|
|
|
closure_return_with_destructor(cl, uuid_io_unlock);
|
|
}
|
|
|
|
static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
|
|
{
|
|
struct bkey *k = &j->uuid_bucket;
|
|
|
|
if (__bch_btree_ptr_invalid(c, k))
|
|
return "bad uuid pointer";
|
|
|
|
bkey_copy(&c->uuid_bucket, k);
|
|
uuid_io(c, REQ_OP_READ, 0, k, cl);
|
|
|
|
if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
|
|
struct uuid_entry_v0 *u0 = (void *) c->uuids;
|
|
struct uuid_entry *u1 = (void *) c->uuids;
|
|
int i;
|
|
|
|
closure_sync(cl);
|
|
|
|
/*
|
|
* Since the new uuid entry is bigger than the old, we have to
|
|
* convert starting at the highest memory address and work down
|
|
* in order to do it in place
|
|
*/
|
|
|
|
for (i = c->nr_uuids - 1;
|
|
i >= 0;
|
|
--i) {
|
|
memcpy(u1[i].uuid, u0[i].uuid, 16);
|
|
memcpy(u1[i].label, u0[i].label, 32);
|
|
|
|
u1[i].first_reg = u0[i].first_reg;
|
|
u1[i].last_reg = u0[i].last_reg;
|
|
u1[i].invalidated = u0[i].invalidated;
|
|
|
|
u1[i].flags = 0;
|
|
u1[i].sectors = 0;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int __uuid_write(struct cache_set *c)
|
|
{
|
|
BKEY_PADDED(key) k;
|
|
struct closure cl;
|
|
struct cache *ca = c->cache;
|
|
unsigned int size;
|
|
|
|
closure_init_stack(&cl);
|
|
lockdep_assert_held(&bch_register_lock);
|
|
|
|
if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
|
|
return 1;
|
|
|
|
size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
|
|
SET_KEY_SIZE(&k.key, size);
|
|
uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
|
|
closure_sync(&cl);
|
|
|
|
/* Only one bucket used for uuid write */
|
|
atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
|
|
|
|
bkey_copy(&c->uuid_bucket, &k.key);
|
|
bkey_put(c, &k.key);
|
|
return 0;
|
|
}
|
|
|
|
int bch_uuid_write(struct cache_set *c)
|
|
{
|
|
int ret = __uuid_write(c);
|
|
|
|
if (!ret)
|
|
bch_journal_meta(c, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
|
|
{
|
|
struct uuid_entry *u;
|
|
|
|
for (u = c->uuids;
|
|
u < c->uuids + c->nr_uuids; u++)
|
|
if (!memcmp(u->uuid, uuid, 16))
|
|
return u;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct uuid_entry *uuid_find_empty(struct cache_set *c)
|
|
{
|
|
static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
|
|
|
|
return uuid_find(c, zero_uuid);
|
|
}
|
|
|
|
/*
|
|
* Bucket priorities/gens:
|
|
*
|
|
* For each bucket, we store on disk its
|
|
* 8 bit gen
|
|
* 16 bit priority
|
|
*
|
|
* See alloc.c for an explanation of the gen. The priority is used to implement
|
|
* lru (and in the future other) cache replacement policies; for most purposes
|
|
* it's just an opaque integer.
|
|
*
|
|
* The gens and the priorities don't have a whole lot to do with each other, and
|
|
* it's actually the gens that must be written out at specific times - it's no
|
|
* big deal if the priorities don't get written, if we lose them we just reuse
|
|
* buckets in suboptimal order.
|
|
*
|
|
* On disk they're stored in a packed array, and in as many buckets are required
|
|
* to fit them all. The buckets we use to store them form a list; the journal
|
|
* header points to the first bucket, the first bucket points to the second
|
|
* bucket, et cetera.
|
|
*
|
|
* This code is used by the allocation code; periodically (whenever it runs out
|
|
* of buckets to allocate from) the allocation code will invalidate some
|
|
* buckets, but it can't use those buckets until their new gens are safely on
|
|
* disk.
|
|
*/
|
|
|
|
static void prio_endio(struct bio *bio)
|
|
{
|
|
struct cache *ca = bio->bi_private;
|
|
|
|
cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
|
|
bch_bbio_free(bio, ca->set);
|
|
closure_put(&ca->prio);
|
|
}
|
|
|
|
static void prio_io(struct cache *ca, uint64_t bucket, int op,
|
|
unsigned long op_flags)
|
|
{
|
|
struct closure *cl = &ca->prio;
|
|
struct bio *bio = bch_bbio_alloc(ca->set);
|
|
|
|
closure_init_stack(cl);
|
|
|
|
bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
|
|
bio_set_dev(bio, ca->bdev);
|
|
bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
|
|
|
|
bio->bi_end_io = prio_endio;
|
|
bio->bi_private = ca;
|
|
bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
|
|
bch_bio_map(bio, ca->disk_buckets);
|
|
|
|
closure_bio_submit(ca->set, bio, &ca->prio);
|
|
closure_sync(cl);
|
|
}
|
|
|
|
int bch_prio_write(struct cache *ca, bool wait)
|
|
{
|
|
int i;
|
|
struct bucket *b;
|
|
struct closure cl;
|
|
|
|
pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
|
|
fifo_used(&ca->free[RESERVE_PRIO]),
|
|
fifo_used(&ca->free[RESERVE_NONE]),
|
|
fifo_used(&ca->free_inc));
|
|
|
|
/*
|
|
* Pre-check if there are enough free buckets. In the non-blocking
|
|
* scenario it's better to fail early rather than starting to allocate
|
|
* buckets and do a cleanup later in case of failure.
|
|
*/
|
|
if (!wait) {
|
|
size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
|
|
fifo_used(&ca->free[RESERVE_NONE]);
|
|
if (prio_buckets(ca) > avail)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
lockdep_assert_held(&ca->set->bucket_lock);
|
|
|
|
ca->disk_buckets->seq++;
|
|
|
|
atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
|
|
&ca->meta_sectors_written);
|
|
|
|
for (i = prio_buckets(ca) - 1; i >= 0; --i) {
|
|
long bucket;
|
|
struct prio_set *p = ca->disk_buckets;
|
|
struct bucket_disk *d = p->data;
|
|
struct bucket_disk *end = d + prios_per_bucket(ca);
|
|
|
|
for (b = ca->buckets + i * prios_per_bucket(ca);
|
|
b < ca->buckets + ca->sb.nbuckets && d < end;
|
|
b++, d++) {
|
|
d->prio = cpu_to_le16(b->prio);
|
|
d->gen = b->gen;
|
|
}
|
|
|
|
p->next_bucket = ca->prio_buckets[i + 1];
|
|
p->magic = pset_magic(&ca->sb);
|
|
p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
|
|
|
|
bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
|
|
BUG_ON(bucket == -1);
|
|
|
|
mutex_unlock(&ca->set->bucket_lock);
|
|
prio_io(ca, bucket, REQ_OP_WRITE, 0);
|
|
mutex_lock(&ca->set->bucket_lock);
|
|
|
|
ca->prio_buckets[i] = bucket;
|
|
atomic_dec_bug(&ca->buckets[bucket].pin);
|
|
}
|
|
|
|
mutex_unlock(&ca->set->bucket_lock);
|
|
|
|
bch_journal_meta(ca->set, &cl);
|
|
closure_sync(&cl);
|
|
|
|
mutex_lock(&ca->set->bucket_lock);
|
|
|
|
/*
|
|
* Don't want the old priorities to get garbage collected until after we
|
|
* finish writing the new ones, and they're journalled
|
|
*/
|
|
for (i = 0; i < prio_buckets(ca); i++) {
|
|
if (ca->prio_last_buckets[i])
|
|
__bch_bucket_free(ca,
|
|
&ca->buckets[ca->prio_last_buckets[i]]);
|
|
|
|
ca->prio_last_buckets[i] = ca->prio_buckets[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int prio_read(struct cache *ca, uint64_t bucket)
|
|
{
|
|
struct prio_set *p = ca->disk_buckets;
|
|
struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
|
|
struct bucket *b;
|
|
unsigned int bucket_nr = 0;
|
|
int ret = -EIO;
|
|
|
|
for (b = ca->buckets;
|
|
b < ca->buckets + ca->sb.nbuckets;
|
|
b++, d++) {
|
|
if (d == end) {
|
|
ca->prio_buckets[bucket_nr] = bucket;
|
|
ca->prio_last_buckets[bucket_nr] = bucket;
|
|
bucket_nr++;
|
|
|
|
prio_io(ca, bucket, REQ_OP_READ, 0);
|
|
|
|
if (p->csum !=
|
|
bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
|
|
pr_warn("bad csum reading priorities\n");
|
|
goto out;
|
|
}
|
|
|
|
if (p->magic != pset_magic(&ca->sb)) {
|
|
pr_warn("bad magic reading priorities\n");
|
|
goto out;
|
|
}
|
|
|
|
bucket = p->next_bucket;
|
|
d = p->data;
|
|
}
|
|
|
|
b->prio = le16_to_cpu(d->prio);
|
|
b->gen = b->last_gc = d->gen;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Bcache device */
|
|
|
|
static int open_dev(struct block_device *b, fmode_t mode)
|
|
{
|
|
struct bcache_device *d = b->bd_disk->private_data;
|
|
|
|
if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
|
|
return -ENXIO;
|
|
|
|
closure_get(&d->cl);
|
|
return 0;
|
|
}
|
|
|
|
static void release_dev(struct gendisk *b, fmode_t mode)
|
|
{
|
|
struct bcache_device *d = b->private_data;
|
|
|
|
closure_put(&d->cl);
|
|
}
|
|
|
|
static int ioctl_dev(struct block_device *b, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct bcache_device *d = b->bd_disk->private_data;
|
|
|
|
return d->ioctl(d, mode, cmd, arg);
|
|
}
|
|
|
|
static const struct block_device_operations bcache_cached_ops = {
|
|
.submit_bio = cached_dev_submit_bio,
|
|
.open = open_dev,
|
|
.release = release_dev,
|
|
.ioctl = ioctl_dev,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static const struct block_device_operations bcache_flash_ops = {
|
|
.submit_bio = flash_dev_submit_bio,
|
|
.open = open_dev,
|
|
.release = release_dev,
|
|
.ioctl = ioctl_dev,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
void bcache_device_stop(struct bcache_device *d)
|
|
{
|
|
if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
|
|
/*
|
|
* closure_fn set to
|
|
* - cached device: cached_dev_flush()
|
|
* - flash dev: flash_dev_flush()
|
|
*/
|
|
closure_queue(&d->cl);
|
|
}
|
|
|
|
static void bcache_device_unlink(struct bcache_device *d)
|
|
{
|
|
lockdep_assert_held(&bch_register_lock);
|
|
|
|
if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
|
|
struct cache *ca = d->c->cache;
|
|
|
|
sysfs_remove_link(&d->c->kobj, d->name);
|
|
sysfs_remove_link(&d->kobj, "cache");
|
|
|
|
bd_unlink_disk_holder(ca->bdev, d->disk);
|
|
}
|
|
}
|
|
|
|
static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
|
|
const char *name)
|
|
{
|
|
struct cache *ca = c->cache;
|
|
int ret;
|
|
|
|
bd_link_disk_holder(ca->bdev, d->disk);
|
|
|
|
snprintf(d->name, BCACHEDEVNAME_SIZE,
|
|
"%s%u", name, d->id);
|
|
|
|
ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
|
|
if (ret < 0)
|
|
pr_err("Couldn't create device -> cache set symlink\n");
|
|
|
|
ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
|
|
if (ret < 0)
|
|
pr_err("Couldn't create cache set -> device symlink\n");
|
|
|
|
clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
|
|
}
|
|
|
|
static void bcache_device_detach(struct bcache_device *d)
|
|
{
|
|
lockdep_assert_held(&bch_register_lock);
|
|
|
|
atomic_dec(&d->c->attached_dev_nr);
|
|
|
|
if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
|
|
struct uuid_entry *u = d->c->uuids + d->id;
|
|
|
|
SET_UUID_FLASH_ONLY(u, 0);
|
|
memcpy(u->uuid, invalid_uuid, 16);
|
|
u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
|
|
bch_uuid_write(d->c);
|
|
}
|
|
|
|
bcache_device_unlink(d);
|
|
|
|
d->c->devices[d->id] = NULL;
|
|
closure_put(&d->c->caching);
|
|
d->c = NULL;
|
|
}
|
|
|
|
static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
|
|
unsigned int id)
|
|
{
|
|
d->id = id;
|
|
d->c = c;
|
|
c->devices[id] = d;
|
|
|
|
if (id >= c->devices_max_used)
|
|
c->devices_max_used = id + 1;
|
|
|
|
closure_get(&c->caching);
|
|
}
|
|
|
|
static inline int first_minor_to_idx(int first_minor)
|
|
{
|
|
return (first_minor/BCACHE_MINORS);
|
|
}
|
|
|
|
static inline int idx_to_first_minor(int idx)
|
|
{
|
|
return (idx * BCACHE_MINORS);
|
|
}
|
|
|
|
static void bcache_device_free(struct bcache_device *d)
|
|
{
|
|
struct gendisk *disk = d->disk;
|
|
|
|
lockdep_assert_held(&bch_register_lock);
|
|
|
|
if (disk)
|
|
pr_info("%s stopped\n", disk->disk_name);
|
|
else
|
|
pr_err("bcache device (NULL gendisk) stopped\n");
|
|
|
|
if (d->c)
|
|
bcache_device_detach(d);
|
|
|
|
if (disk) {
|
|
bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
|
|
|
|
if (disk_added)
|
|
del_gendisk(disk);
|
|
|
|
if (disk->queue)
|
|
blk_cleanup_queue(disk->queue);
|
|
|
|
ida_simple_remove(&bcache_device_idx,
|
|
first_minor_to_idx(disk->first_minor));
|
|
if (disk_added)
|
|
put_disk(disk);
|
|
}
|
|
|
|
bioset_exit(&d->bio_split);
|
|
kvfree(d->full_dirty_stripes);
|
|
kvfree(d->stripe_sectors_dirty);
|
|
|
|
closure_debug_destroy(&d->cl);
|
|
}
|
|
|
|
static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
|
|
sector_t sectors, struct block_device *cached_bdev,
|
|
const struct block_device_operations *ops)
|
|
{
|
|
struct request_queue *q;
|
|
const size_t max_stripes = min_t(size_t, INT_MAX,
|
|
SIZE_MAX / sizeof(atomic_t));
|
|
uint64_t n;
|
|
int idx;
|
|
|
|
if (!d->stripe_size)
|
|
d->stripe_size = 1 << 31;
|
|
|
|
n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
|
|
if (!n || n > max_stripes) {
|
|
pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
|
|
n);
|
|
return -ENOMEM;
|
|
}
|
|
d->nr_stripes = n;
|
|
|
|
n = d->nr_stripes * sizeof(atomic_t);
|
|
d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
|
|
if (!d->stripe_sectors_dirty)
|
|
return -ENOMEM;
|
|
|
|
n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
|
|
d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
|
|
if (!d->full_dirty_stripes)
|
|
return -ENOMEM;
|
|
|
|
idx = ida_simple_get(&bcache_device_idx, 0,
|
|
BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
|
|
if (idx < 0)
|
|
return idx;
|
|
|
|
if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
|
|
BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
|
|
goto err;
|
|
|
|
d->disk = alloc_disk(BCACHE_MINORS);
|
|
if (!d->disk)
|
|
goto err;
|
|
|
|
set_capacity(d->disk, sectors);
|
|
snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
|
|
|
|
d->disk->major = bcache_major;
|
|
d->disk->first_minor = idx_to_first_minor(idx);
|
|
d->disk->fops = ops;
|
|
d->disk->private_data = d;
|
|
|
|
q = blk_alloc_queue(NUMA_NO_NODE);
|
|
if (!q)
|
|
return -ENOMEM;
|
|
|
|
d->disk->queue = q;
|
|
q->limits.max_hw_sectors = UINT_MAX;
|
|
q->limits.max_sectors = UINT_MAX;
|
|
q->limits.max_segment_size = UINT_MAX;
|
|
q->limits.max_segments = BIO_MAX_PAGES;
|
|
blk_queue_max_discard_sectors(q, UINT_MAX);
|
|
q->limits.discard_granularity = 512;
|
|
q->limits.io_min = block_size;
|
|
q->limits.logical_block_size = block_size;
|
|
q->limits.physical_block_size = block_size;
|
|
|
|
if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
|
|
/*
|
|
* This should only happen with BCACHE_SB_VERSION_BDEV.
|
|
* Block/page size is checked for BCACHE_SB_VERSION_CDEV.
|
|
*/
|
|
pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
|
|
d->disk->disk_name, q->limits.logical_block_size,
|
|
PAGE_SIZE, bdev_logical_block_size(cached_bdev));
|
|
|
|
/* This also adjusts physical block size/min io size if needed */
|
|
blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
|
|
}
|
|
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
|
|
|
|
blk_queue_write_cache(q, true, true);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
ida_simple_remove(&bcache_device_idx, idx);
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
/* Cached device */
|
|
|
|
static void calc_cached_dev_sectors(struct cache_set *c)
|
|
{
|
|
uint64_t sectors = 0;
|
|
struct cached_dev *dc;
|
|
|
|
list_for_each_entry(dc, &c->cached_devs, list)
|
|
sectors += bdev_sectors(dc->bdev);
|
|
|
|
c->cached_dev_sectors = sectors;
|
|
}
|
|
|
|
#define BACKING_DEV_OFFLINE_TIMEOUT 5
|
|
static int cached_dev_status_update(void *arg)
|
|
{
|
|
struct cached_dev *dc = arg;
|
|
struct request_queue *q;
|
|
|
|
/*
|
|
* If this delayed worker is stopping outside, directly quit here.
|
|
* dc->io_disable might be set via sysfs interface, so check it
|
|
* here too.
|
|
*/
|
|
while (!kthread_should_stop() && !dc->io_disable) {
|
|
q = bdev_get_queue(dc->bdev);
|
|
if (blk_queue_dying(q))
|
|
dc->offline_seconds++;
|
|
else
|
|
dc->offline_seconds = 0;
|
|
|
|
if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
|
|
pr_err("%s: device offline for %d seconds\n",
|
|
dc->backing_dev_name,
|
|
BACKING_DEV_OFFLINE_TIMEOUT);
|
|
pr_err("%s: disable I/O request due to backing device offline\n",
|
|
dc->disk.name);
|
|
dc->io_disable = true;
|
|
/* let others know earlier that io_disable is true */
|
|
smp_mb();
|
|
bcache_device_stop(&dc->disk);
|
|
break;
|
|
}
|
|
schedule_timeout_interruptible(HZ);
|
|
}
|
|
|
|
wait_for_kthread_stop();
|
|
return 0;
|
|
}
|
|
|
|
|
|
int bch_cached_dev_run(struct cached_dev *dc)
|
|
{
|
|
struct bcache_device *d = &dc->disk;
|
|
char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
|
|
char *env[] = {
|
|
"DRIVER=bcache",
|
|
kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
|
|
kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
|
|
NULL,
|
|
};
|
|
|
|
if (dc->io_disable) {
|
|
pr_err("I/O disabled on cached dev %s\n",
|
|
dc->backing_dev_name);
|
|
kfree(env[1]);
|
|
kfree(env[2]);
|
|
kfree(buf);
|
|
return -EIO;
|
|
}
|
|
|
|
if (atomic_xchg(&dc->running, 1)) {
|
|
kfree(env[1]);
|
|
kfree(env[2]);
|
|
kfree(buf);
|
|
pr_info("cached dev %s is running already\n",
|
|
dc->backing_dev_name);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!d->c &&
|
|
BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
|
|
struct closure cl;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
|
|
bch_write_bdev_super(dc, &cl);
|
|
closure_sync(&cl);
|
|
}
|
|
|
|
add_disk(d->disk);
|
|
bd_link_disk_holder(dc->bdev, dc->disk.disk);
|
|
/*
|
|
* won't show up in the uevent file, use udevadm monitor -e instead
|
|
* only class / kset properties are persistent
|
|
*/
|
|
kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
|
|
kfree(env[1]);
|
|
kfree(env[2]);
|
|
kfree(buf);
|
|
|
|
if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
|
|
sysfs_create_link(&disk_to_dev(d->disk)->kobj,
|
|
&d->kobj, "bcache")) {
|
|
pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dc->status_update_thread = kthread_run(cached_dev_status_update,
|
|
dc, "bcache_status_update");
|
|
if (IS_ERR(dc->status_update_thread)) {
|
|
pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
|
|
* work dc->writeback_rate_update is running. Wait until the routine
|
|
* quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
|
|
* cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
|
|
* seconds, give up waiting here and continue to cancel it too.
|
|
*/
|
|
static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
|
|
{
|
|
int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
|
|
|
|
do {
|
|
if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
|
|
&dc->disk.flags))
|
|
break;
|
|
time_out--;
|
|
schedule_timeout_interruptible(1);
|
|
} while (time_out > 0);
|
|
|
|
if (time_out == 0)
|
|
pr_warn("give up waiting for dc->writeback_write_update to quit\n");
|
|
|
|
cancel_delayed_work_sync(&dc->writeback_rate_update);
|
|
}
|
|
|
|
static void cached_dev_detach_finish(struct work_struct *w)
|
|
{
|
|
struct cached_dev *dc = container_of(w, struct cached_dev, detach);
|
|
struct closure cl;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
|
|
BUG_ON(refcount_read(&dc->count));
|
|
|
|
|
|
if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
|
|
cancel_writeback_rate_update_dwork(dc);
|
|
|
|
if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
|
|
kthread_stop(dc->writeback_thread);
|
|
dc->writeback_thread = NULL;
|
|
}
|
|
|
|
memset(&dc->sb.set_uuid, 0, 16);
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
|
|
|
|
bch_write_bdev_super(dc, &cl);
|
|
closure_sync(&cl);
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
|
|
calc_cached_dev_sectors(dc->disk.c);
|
|
bcache_device_detach(&dc->disk);
|
|
list_move(&dc->list, &uncached_devices);
|
|
|
|
clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
|
|
clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
|
|
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
pr_info("Caching disabled for %s\n", dc->backing_dev_name);
|
|
|
|
/* Drop ref we took in cached_dev_detach() */
|
|
closure_put(&dc->disk.cl);
|
|
}
|
|
|
|
void bch_cached_dev_detach(struct cached_dev *dc)
|
|
{
|
|
lockdep_assert_held(&bch_register_lock);
|
|
|
|
if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
|
|
return;
|
|
|
|
if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
|
|
return;
|
|
|
|
/*
|
|
* Block the device from being closed and freed until we're finished
|
|
* detaching
|
|
*/
|
|
closure_get(&dc->disk.cl);
|
|
|
|
bch_writeback_queue(dc);
|
|
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
|
|
uint8_t *set_uuid)
|
|
{
|
|
uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
|
|
struct uuid_entry *u;
|
|
struct cached_dev *exist_dc, *t;
|
|
int ret = 0;
|
|
|
|
if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
|
|
(!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
|
|
return -ENOENT;
|
|
|
|
if (dc->disk.c) {
|
|
pr_err("Can't attach %s: already attached\n",
|
|
dc->backing_dev_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
|
|
pr_err("Can't attach %s: shutting down\n",
|
|
dc->backing_dev_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dc->sb.block_size < c->cache->sb.block_size) {
|
|
/* Will die */
|
|
pr_err("Couldn't attach %s: block size less than set's block size\n",
|
|
dc->backing_dev_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check whether already attached */
|
|
list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
|
|
if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
|
|
pr_err("Tried to attach %s but duplicate UUID already attached\n",
|
|
dc->backing_dev_name);
|
|
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
u = uuid_find(c, dc->sb.uuid);
|
|
|
|
if (u &&
|
|
(BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
|
|
BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
|
|
memcpy(u->uuid, invalid_uuid, 16);
|
|
u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
|
|
u = NULL;
|
|
}
|
|
|
|
if (!u) {
|
|
if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
|
|
pr_err("Couldn't find uuid for %s in set\n",
|
|
dc->backing_dev_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
u = uuid_find_empty(c);
|
|
if (!u) {
|
|
pr_err("Not caching %s, no room for UUID\n",
|
|
dc->backing_dev_name);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deadlocks since we're called via sysfs...
|
|
* sysfs_remove_file(&dc->kobj, &sysfs_attach);
|
|
*/
|
|
|
|
if (bch_is_zero(u->uuid, 16)) {
|
|
struct closure cl;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
memcpy(u->uuid, dc->sb.uuid, 16);
|
|
memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
|
|
u->first_reg = u->last_reg = rtime;
|
|
bch_uuid_write(c);
|
|
|
|
memcpy(dc->sb.set_uuid, c->set_uuid, 16);
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
|
|
|
|
bch_write_bdev_super(dc, &cl);
|
|
closure_sync(&cl);
|
|
} else {
|
|
u->last_reg = rtime;
|
|
bch_uuid_write(c);
|
|
}
|
|
|
|
bcache_device_attach(&dc->disk, c, u - c->uuids);
|
|
list_move(&dc->list, &c->cached_devs);
|
|
calc_cached_dev_sectors(c);
|
|
|
|
/*
|
|
* dc->c must be set before dc->count != 0 - paired with the mb in
|
|
* cached_dev_get()
|
|
*/
|
|
smp_wmb();
|
|
refcount_set(&dc->count, 1);
|
|
|
|
/* Block writeback thread, but spawn it */
|
|
down_write(&dc->writeback_lock);
|
|
if (bch_cached_dev_writeback_start(dc)) {
|
|
up_write(&dc->writeback_lock);
|
|
pr_err("Couldn't start writeback facilities for %s\n",
|
|
dc->disk.disk->disk_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
|
|
atomic_set(&dc->has_dirty, 1);
|
|
bch_writeback_queue(dc);
|
|
}
|
|
|
|
bch_sectors_dirty_init(&dc->disk);
|
|
|
|
ret = bch_cached_dev_run(dc);
|
|
if (ret && (ret != -EBUSY)) {
|
|
up_write(&dc->writeback_lock);
|
|
/*
|
|
* bch_register_lock is held, bcache_device_stop() is not
|
|
* able to be directly called. The kthread and kworker
|
|
* created previously in bch_cached_dev_writeback_start()
|
|
* have to be stopped manually here.
|
|
*/
|
|
kthread_stop(dc->writeback_thread);
|
|
cancel_writeback_rate_update_dwork(dc);
|
|
pr_err("Couldn't run cached device %s\n",
|
|
dc->backing_dev_name);
|
|
return ret;
|
|
}
|
|
|
|
bcache_device_link(&dc->disk, c, "bdev");
|
|
atomic_inc(&c->attached_dev_nr);
|
|
|
|
/* Allow the writeback thread to proceed */
|
|
up_write(&dc->writeback_lock);
|
|
|
|
pr_info("Caching %s as %s on set %pU\n",
|
|
dc->backing_dev_name,
|
|
dc->disk.disk->disk_name,
|
|
dc->disk.c->set_uuid);
|
|
return 0;
|
|
}
|
|
|
|
/* when dc->disk.kobj released */
|
|
void bch_cached_dev_release(struct kobject *kobj)
|
|
{
|
|
struct cached_dev *dc = container_of(kobj, struct cached_dev,
|
|
disk.kobj);
|
|
kfree(dc);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static void cached_dev_free(struct closure *cl)
|
|
{
|
|
struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
|
|
|
|
if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
|
|
cancel_writeback_rate_update_dwork(dc);
|
|
|
|
if (!IS_ERR_OR_NULL(dc->writeback_thread))
|
|
kthread_stop(dc->writeback_thread);
|
|
if (!IS_ERR_OR_NULL(dc->status_update_thread))
|
|
kthread_stop(dc->status_update_thread);
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
|
|
if (atomic_read(&dc->running))
|
|
bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
|
|
bcache_device_free(&dc->disk);
|
|
list_del(&dc->list);
|
|
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
if (dc->sb_disk)
|
|
put_page(virt_to_page(dc->sb_disk));
|
|
|
|
if (!IS_ERR_OR_NULL(dc->bdev))
|
|
blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
|
|
|
|
wake_up(&unregister_wait);
|
|
|
|
kobject_put(&dc->disk.kobj);
|
|
}
|
|
|
|
static void cached_dev_flush(struct closure *cl)
|
|
{
|
|
struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
|
|
struct bcache_device *d = &dc->disk;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
bcache_device_unlink(d);
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
bch_cache_accounting_destroy(&dc->accounting);
|
|
kobject_del(&d->kobj);
|
|
|
|
continue_at(cl, cached_dev_free, system_wq);
|
|
}
|
|
|
|
static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
|
|
{
|
|
int ret;
|
|
struct io *io;
|
|
struct request_queue *q = bdev_get_queue(dc->bdev);
|
|
|
|
__module_get(THIS_MODULE);
|
|
INIT_LIST_HEAD(&dc->list);
|
|
closure_init(&dc->disk.cl, NULL);
|
|
set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
|
|
kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
|
|
INIT_WORK(&dc->detach, cached_dev_detach_finish);
|
|
sema_init(&dc->sb_write_mutex, 1);
|
|
INIT_LIST_HEAD(&dc->io_lru);
|
|
spin_lock_init(&dc->io_lock);
|
|
bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
|
|
|
|
dc->sequential_cutoff = 4 << 20;
|
|
|
|
for (io = dc->io; io < dc->io + RECENT_IO; io++) {
|
|
list_add(&io->lru, &dc->io_lru);
|
|
hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
|
|
}
|
|
|
|
dc->disk.stripe_size = q->limits.io_opt >> 9;
|
|
|
|
if (dc->disk.stripe_size)
|
|
dc->partial_stripes_expensive =
|
|
q->limits.raid_partial_stripes_expensive;
|
|
|
|
ret = bcache_device_init(&dc->disk, block_size,
|
|
bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
|
|
dc->bdev, &bcache_cached_ops);
|
|
if (ret)
|
|
return ret;
|
|
|
|
blk_queue_io_opt(dc->disk.disk->queue,
|
|
max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
|
|
|
|
atomic_set(&dc->io_errors, 0);
|
|
dc->io_disable = false;
|
|
dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
|
|
/* default to auto */
|
|
dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
|
|
|
|
bch_cached_dev_request_init(dc);
|
|
bch_cached_dev_writeback_init(dc);
|
|
return 0;
|
|
}
|
|
|
|
/* Cached device - bcache superblock */
|
|
|
|
static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
|
|
struct block_device *bdev,
|
|
struct cached_dev *dc)
|
|
{
|
|
const char *err = "cannot allocate memory";
|
|
struct cache_set *c;
|
|
int ret = -ENOMEM;
|
|
|
|
bdevname(bdev, dc->backing_dev_name);
|
|
memcpy(&dc->sb, sb, sizeof(struct cache_sb));
|
|
dc->bdev = bdev;
|
|
dc->bdev->bd_holder = dc;
|
|
dc->sb_disk = sb_disk;
|
|
|
|
if (cached_dev_init(dc, sb->block_size << 9))
|
|
goto err;
|
|
|
|
err = "error creating kobject";
|
|
if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
|
|
goto err;
|
|
if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
|
|
goto err;
|
|
|
|
pr_info("registered backing device %s\n", dc->backing_dev_name);
|
|
|
|
list_add(&dc->list, &uncached_devices);
|
|
/* attach to a matched cache set if it exists */
|
|
list_for_each_entry(c, &bch_cache_sets, list)
|
|
bch_cached_dev_attach(dc, c, NULL);
|
|
|
|
if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
|
|
BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
|
|
err = "failed to run cached device";
|
|
ret = bch_cached_dev_run(dc);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
pr_notice("error %s: %s\n", dc->backing_dev_name, err);
|
|
bcache_device_stop(&dc->disk);
|
|
return ret;
|
|
}
|
|
|
|
/* Flash only volumes */
|
|
|
|
/* When d->kobj released */
|
|
void bch_flash_dev_release(struct kobject *kobj)
|
|
{
|
|
struct bcache_device *d = container_of(kobj, struct bcache_device,
|
|
kobj);
|
|
kfree(d);
|
|
}
|
|
|
|
static void flash_dev_free(struct closure *cl)
|
|
{
|
|
struct bcache_device *d = container_of(cl, struct bcache_device, cl);
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
atomic_long_sub(bcache_dev_sectors_dirty(d),
|
|
&d->c->flash_dev_dirty_sectors);
|
|
bcache_device_free(d);
|
|
mutex_unlock(&bch_register_lock);
|
|
kobject_put(&d->kobj);
|
|
}
|
|
|
|
static void flash_dev_flush(struct closure *cl)
|
|
{
|
|
struct bcache_device *d = container_of(cl, struct bcache_device, cl);
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
bcache_device_unlink(d);
|
|
mutex_unlock(&bch_register_lock);
|
|
kobject_del(&d->kobj);
|
|
continue_at(cl, flash_dev_free, system_wq);
|
|
}
|
|
|
|
static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
|
|
{
|
|
struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
|
|
GFP_KERNEL);
|
|
if (!d)
|
|
return -ENOMEM;
|
|
|
|
closure_init(&d->cl, NULL);
|
|
set_closure_fn(&d->cl, flash_dev_flush, system_wq);
|
|
|
|
kobject_init(&d->kobj, &bch_flash_dev_ktype);
|
|
|
|
if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
|
|
NULL, &bcache_flash_ops))
|
|
goto err;
|
|
|
|
bcache_device_attach(d, c, u - c->uuids);
|
|
bch_sectors_dirty_init(d);
|
|
bch_flash_dev_request_init(d);
|
|
add_disk(d->disk);
|
|
|
|
if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
|
|
goto err;
|
|
|
|
bcache_device_link(d, c, "volume");
|
|
|
|
return 0;
|
|
err:
|
|
kobject_put(&d->kobj);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int flash_devs_run(struct cache_set *c)
|
|
{
|
|
int ret = 0;
|
|
struct uuid_entry *u;
|
|
|
|
for (u = c->uuids;
|
|
u < c->uuids + c->nr_uuids && !ret;
|
|
u++)
|
|
if (UUID_FLASH_ONLY(u))
|
|
ret = flash_dev_run(c, u);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch_flash_dev_create(struct cache_set *c, uint64_t size)
|
|
{
|
|
struct uuid_entry *u;
|
|
|
|
if (test_bit(CACHE_SET_STOPPING, &c->flags))
|
|
return -EINTR;
|
|
|
|
if (!test_bit(CACHE_SET_RUNNING, &c->flags))
|
|
return -EPERM;
|
|
|
|
u = uuid_find_empty(c);
|
|
if (!u) {
|
|
pr_err("Can't create volume, no room for UUID\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
get_random_bytes(u->uuid, 16);
|
|
memset(u->label, 0, 32);
|
|
u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
|
|
|
|
SET_UUID_FLASH_ONLY(u, 1);
|
|
u->sectors = size >> 9;
|
|
|
|
bch_uuid_write(c);
|
|
|
|
return flash_dev_run(c, u);
|
|
}
|
|
|
|
bool bch_cached_dev_error(struct cached_dev *dc)
|
|
{
|
|
if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
|
|
return false;
|
|
|
|
dc->io_disable = true;
|
|
/* make others know io_disable is true earlier */
|
|
smp_mb();
|
|
|
|
pr_err("stop %s: too many IO errors on backing device %s\n",
|
|
dc->disk.disk->disk_name, dc->backing_dev_name);
|
|
|
|
bcache_device_stop(&dc->disk);
|
|
return true;
|
|
}
|
|
|
|
/* Cache set */
|
|
|
|
__printf(2, 3)
|
|
bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
if (c->on_error != ON_ERROR_PANIC &&
|
|
test_bit(CACHE_SET_STOPPING, &c->flags))
|
|
return false;
|
|
|
|
if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
|
|
pr_info("CACHE_SET_IO_DISABLE already set\n");
|
|
|
|
/*
|
|
* XXX: we can be called from atomic context
|
|
* acquire_console_sem();
|
|
*/
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
pr_err("error on %pU: %pV, disabling caching\n",
|
|
c->set_uuid, &vaf);
|
|
|
|
va_end(args);
|
|
|
|
if (c->on_error == ON_ERROR_PANIC)
|
|
panic("panic forced after error\n");
|
|
|
|
bch_cache_set_unregister(c);
|
|
return true;
|
|
}
|
|
|
|
/* When c->kobj released */
|
|
void bch_cache_set_release(struct kobject *kobj)
|
|
{
|
|
struct cache_set *c = container_of(kobj, struct cache_set, kobj);
|
|
|
|
kfree(c);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static void cache_set_free(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, cl);
|
|
struct cache *ca;
|
|
|
|
debugfs_remove(c->debug);
|
|
|
|
bch_open_buckets_free(c);
|
|
bch_btree_cache_free(c);
|
|
bch_journal_free(c);
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
bch_bset_sort_state_free(&c->sort);
|
|
free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
|
|
|
|
ca = c->cache;
|
|
if (ca) {
|
|
ca->set = NULL;
|
|
c->cache = NULL;
|
|
kobject_put(&ca->kobj);
|
|
}
|
|
|
|
|
|
if (c->moving_gc_wq)
|
|
destroy_workqueue(c->moving_gc_wq);
|
|
bioset_exit(&c->bio_split);
|
|
mempool_exit(&c->fill_iter);
|
|
mempool_exit(&c->bio_meta);
|
|
mempool_exit(&c->search);
|
|
kfree(c->devices);
|
|
|
|
list_del(&c->list);
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
pr_info("Cache set %pU unregistered\n", c->set_uuid);
|
|
wake_up(&unregister_wait);
|
|
|
|
closure_debug_destroy(&c->cl);
|
|
kobject_put(&c->kobj);
|
|
}
|
|
|
|
static void cache_set_flush(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, caching);
|
|
struct cache *ca = c->cache;
|
|
struct btree *b;
|
|
|
|
bch_cache_accounting_destroy(&c->accounting);
|
|
|
|
kobject_put(&c->internal);
|
|
kobject_del(&c->kobj);
|
|
|
|
if (!IS_ERR_OR_NULL(c->gc_thread))
|
|
kthread_stop(c->gc_thread);
|
|
|
|
if (!IS_ERR_OR_NULL(c->root))
|
|
list_add(&c->root->list, &c->btree_cache);
|
|
|
|
/*
|
|
* Avoid flushing cached nodes if cache set is retiring
|
|
* due to too many I/O errors detected.
|
|
*/
|
|
if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
|
|
list_for_each_entry(b, &c->btree_cache, list) {
|
|
mutex_lock(&b->write_lock);
|
|
if (btree_node_dirty(b))
|
|
__bch_btree_node_write(b, NULL);
|
|
mutex_unlock(&b->write_lock);
|
|
}
|
|
|
|
if (ca->alloc_thread)
|
|
kthread_stop(ca->alloc_thread);
|
|
|
|
if (c->journal.cur) {
|
|
cancel_delayed_work_sync(&c->journal.work);
|
|
/* flush last journal entry if needed */
|
|
c->journal.work.work.func(&c->journal.work.work);
|
|
}
|
|
|
|
closure_return(cl);
|
|
}
|
|
|
|
/*
|
|
* This function is only called when CACHE_SET_IO_DISABLE is set, which means
|
|
* cache set is unregistering due to too many I/O errors. In this condition,
|
|
* the bcache device might be stopped, it depends on stop_when_cache_set_failed
|
|
* value and whether the broken cache has dirty data:
|
|
*
|
|
* dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
|
|
* BCH_CACHED_STOP_AUTO 0 NO
|
|
* BCH_CACHED_STOP_AUTO 1 YES
|
|
* BCH_CACHED_DEV_STOP_ALWAYS 0 YES
|
|
* BCH_CACHED_DEV_STOP_ALWAYS 1 YES
|
|
*
|
|
* The expected behavior is, if stop_when_cache_set_failed is configured to
|
|
* "auto" via sysfs interface, the bcache device will not be stopped if the
|
|
* backing device is clean on the broken cache device.
|
|
*/
|
|
static void conditional_stop_bcache_device(struct cache_set *c,
|
|
struct bcache_device *d,
|
|
struct cached_dev *dc)
|
|
{
|
|
if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
|
|
pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
|
|
d->disk->disk_name, c->set_uuid);
|
|
bcache_device_stop(d);
|
|
} else if (atomic_read(&dc->has_dirty)) {
|
|
/*
|
|
* dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
|
|
* and dc->has_dirty == 1
|
|
*/
|
|
pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
|
|
d->disk->disk_name);
|
|
/*
|
|
* There might be a small time gap that cache set is
|
|
* released but bcache device is not. Inside this time
|
|
* gap, regular I/O requests will directly go into
|
|
* backing device as no cache set attached to. This
|
|
* behavior may also introduce potential inconsistence
|
|
* data in writeback mode while cache is dirty.
|
|
* Therefore before calling bcache_device_stop() due
|
|
* to a broken cache device, dc->io_disable should be
|
|
* explicitly set to true.
|
|
*/
|
|
dc->io_disable = true;
|
|
/* make others know io_disable is true earlier */
|
|
smp_mb();
|
|
bcache_device_stop(d);
|
|
} else {
|
|
/*
|
|
* dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
|
|
* and dc->has_dirty == 0
|
|
*/
|
|
pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
|
|
d->disk->disk_name);
|
|
}
|
|
}
|
|
|
|
static void __cache_set_unregister(struct closure *cl)
|
|
{
|
|
struct cache_set *c = container_of(cl, struct cache_set, caching);
|
|
struct cached_dev *dc;
|
|
struct bcache_device *d;
|
|
size_t i;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
|
|
for (i = 0; i < c->devices_max_used; i++) {
|
|
d = c->devices[i];
|
|
if (!d)
|
|
continue;
|
|
|
|
if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
|
|
test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
|
|
dc = container_of(d, struct cached_dev, disk);
|
|
bch_cached_dev_detach(dc);
|
|
if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
|
|
conditional_stop_bcache_device(c, d, dc);
|
|
} else {
|
|
bcache_device_stop(d);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
continue_at(cl, cache_set_flush, system_wq);
|
|
}
|
|
|
|
void bch_cache_set_stop(struct cache_set *c)
|
|
{
|
|
if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
|
|
/* closure_fn set to __cache_set_unregister() */
|
|
closure_queue(&c->caching);
|
|
}
|
|
|
|
void bch_cache_set_unregister(struct cache_set *c)
|
|
{
|
|
set_bit(CACHE_SET_UNREGISTERING, &c->flags);
|
|
bch_cache_set_stop(c);
|
|
}
|
|
|
|
#define alloc_meta_bucket_pages(gfp, sb) \
|
|
((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
|
|
|
|
struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
|
|
{
|
|
int iter_size;
|
|
struct cache *ca = container_of(sb, struct cache, sb);
|
|
struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
|
|
|
|
if (!c)
|
|
return NULL;
|
|
|
|
__module_get(THIS_MODULE);
|
|
closure_init(&c->cl, NULL);
|
|
set_closure_fn(&c->cl, cache_set_free, system_wq);
|
|
|
|
closure_init(&c->caching, &c->cl);
|
|
set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
|
|
|
|
/* Maybe create continue_at_noreturn() and use it here? */
|
|
closure_set_stopped(&c->cl);
|
|
closure_put(&c->cl);
|
|
|
|
kobject_init(&c->kobj, &bch_cache_set_ktype);
|
|
kobject_init(&c->internal, &bch_cache_set_internal_ktype);
|
|
|
|
bch_cache_accounting_init(&c->accounting, &c->cl);
|
|
|
|
memcpy(c->set_uuid, sb->set_uuid, 16);
|
|
|
|
c->cache = ca;
|
|
c->cache->set = c;
|
|
c->bucket_bits = ilog2(sb->bucket_size);
|
|
c->block_bits = ilog2(sb->block_size);
|
|
c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
|
|
c->devices_max_used = 0;
|
|
atomic_set(&c->attached_dev_nr, 0);
|
|
c->btree_pages = meta_bucket_pages(sb);
|
|
if (c->btree_pages > BTREE_MAX_PAGES)
|
|
c->btree_pages = max_t(int, c->btree_pages / 4,
|
|
BTREE_MAX_PAGES);
|
|
|
|
sema_init(&c->sb_write_mutex, 1);
|
|
mutex_init(&c->bucket_lock);
|
|
init_waitqueue_head(&c->btree_cache_wait);
|
|
spin_lock_init(&c->btree_cannibalize_lock);
|
|
init_waitqueue_head(&c->bucket_wait);
|
|
init_waitqueue_head(&c->gc_wait);
|
|
sema_init(&c->uuid_write_mutex, 1);
|
|
|
|
spin_lock_init(&c->btree_gc_time.lock);
|
|
spin_lock_init(&c->btree_split_time.lock);
|
|
spin_lock_init(&c->btree_read_time.lock);
|
|
|
|
bch_moving_init_cache_set(c);
|
|
|
|
INIT_LIST_HEAD(&c->list);
|
|
INIT_LIST_HEAD(&c->cached_devs);
|
|
INIT_LIST_HEAD(&c->btree_cache);
|
|
INIT_LIST_HEAD(&c->btree_cache_freeable);
|
|
INIT_LIST_HEAD(&c->btree_cache_freed);
|
|
INIT_LIST_HEAD(&c->data_buckets);
|
|
|
|
iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
|
|
sizeof(struct btree_iter_set);
|
|
|
|
c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
|
|
if (!c->devices)
|
|
goto err;
|
|
|
|
if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
|
|
goto err;
|
|
|
|
if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
|
|
sizeof(struct bbio) +
|
|
sizeof(struct bio_vec) * meta_bucket_pages(sb)))
|
|
goto err;
|
|
|
|
if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
|
|
goto err;
|
|
|
|
if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
|
|
BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
|
|
goto err;
|
|
|
|
c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
|
|
if (!c->uuids)
|
|
goto err;
|
|
|
|
c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
|
|
if (!c->moving_gc_wq)
|
|
goto err;
|
|
|
|
if (bch_journal_alloc(c))
|
|
goto err;
|
|
|
|
if (bch_btree_cache_alloc(c))
|
|
goto err;
|
|
|
|
if (bch_open_buckets_alloc(c))
|
|
goto err;
|
|
|
|
if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
|
|
goto err;
|
|
|
|
c->congested_read_threshold_us = 2000;
|
|
c->congested_write_threshold_us = 20000;
|
|
c->error_limit = DEFAULT_IO_ERROR_LIMIT;
|
|
c->idle_max_writeback_rate_enabled = 1;
|
|
WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
|
|
|
|
return c;
|
|
err:
|
|
bch_cache_set_unregister(c);
|
|
return NULL;
|
|
}
|
|
|
|
static int run_cache_set(struct cache_set *c)
|
|
{
|
|
const char *err = "cannot allocate memory";
|
|
struct cached_dev *dc, *t;
|
|
struct cache *ca = c->cache;
|
|
struct closure cl;
|
|
LIST_HEAD(journal);
|
|
struct journal_replay *l;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
c->nbuckets = ca->sb.nbuckets;
|
|
set_gc_sectors(c);
|
|
|
|
if (CACHE_SYNC(&c->cache->sb)) {
|
|
struct bkey *k;
|
|
struct jset *j;
|
|
|
|
err = "cannot allocate memory for journal";
|
|
if (bch_journal_read(c, &journal))
|
|
goto err;
|
|
|
|
pr_debug("btree_journal_read() done\n");
|
|
|
|
err = "no journal entries found";
|
|
if (list_empty(&journal))
|
|
goto err;
|
|
|
|
j = &list_entry(journal.prev, struct journal_replay, list)->j;
|
|
|
|
err = "IO error reading priorities";
|
|
if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
|
|
goto err;
|
|
|
|
/*
|
|
* If prio_read() fails it'll call cache_set_error and we'll
|
|
* tear everything down right away, but if we perhaps checked
|
|
* sooner we could avoid journal replay.
|
|
*/
|
|
|
|
k = &j->btree_root;
|
|
|
|
err = "bad btree root";
|
|
if (__bch_btree_ptr_invalid(c, k))
|
|
goto err;
|
|
|
|
err = "error reading btree root";
|
|
c->root = bch_btree_node_get(c, NULL, k,
|
|
j->btree_level,
|
|
true, NULL);
|
|
if (IS_ERR_OR_NULL(c->root))
|
|
goto err;
|
|
|
|
list_del_init(&c->root->list);
|
|
rw_unlock(true, c->root);
|
|
|
|
err = uuid_read(c, j, &cl);
|
|
if (err)
|
|
goto err;
|
|
|
|
err = "error in recovery";
|
|
if (bch_btree_check(c))
|
|
goto err;
|
|
|
|
bch_journal_mark(c, &journal);
|
|
bch_initial_gc_finish(c);
|
|
pr_debug("btree_check() done\n");
|
|
|
|
/*
|
|
* bcache_journal_next() can't happen sooner, or
|
|
* btree_gc_finish() will give spurious errors about last_gc >
|
|
* gc_gen - this is a hack but oh well.
|
|
*/
|
|
bch_journal_next(&c->journal);
|
|
|
|
err = "error starting allocator thread";
|
|
if (bch_cache_allocator_start(ca))
|
|
goto err;
|
|
|
|
/*
|
|
* First place it's safe to allocate: btree_check() and
|
|
* btree_gc_finish() have to run before we have buckets to
|
|
* allocate, and bch_bucket_alloc_set() might cause a journal
|
|
* entry to be written so bcache_journal_next() has to be called
|
|
* first.
|
|
*
|
|
* If the uuids were in the old format we have to rewrite them
|
|
* before the next journal entry is written:
|
|
*/
|
|
if (j->version < BCACHE_JSET_VERSION_UUID)
|
|
__uuid_write(c);
|
|
|
|
err = "bcache: replay journal failed";
|
|
if (bch_journal_replay(c, &journal))
|
|
goto err;
|
|
} else {
|
|
unsigned int j;
|
|
|
|
pr_notice("invalidating existing data\n");
|
|
ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
|
|
2, SB_JOURNAL_BUCKETS);
|
|
|
|
for (j = 0; j < ca->sb.keys; j++)
|
|
ca->sb.d[j] = ca->sb.first_bucket + j;
|
|
|
|
bch_initial_gc_finish(c);
|
|
|
|
err = "error starting allocator thread";
|
|
if (bch_cache_allocator_start(ca))
|
|
goto err;
|
|
|
|
mutex_lock(&c->bucket_lock);
|
|
bch_prio_write(ca, true);
|
|
mutex_unlock(&c->bucket_lock);
|
|
|
|
err = "cannot allocate new UUID bucket";
|
|
if (__uuid_write(c))
|
|
goto err;
|
|
|
|
err = "cannot allocate new btree root";
|
|
c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
|
|
if (IS_ERR_OR_NULL(c->root))
|
|
goto err;
|
|
|
|
mutex_lock(&c->root->write_lock);
|
|
bkey_copy_key(&c->root->key, &MAX_KEY);
|
|
bch_btree_node_write(c->root, &cl);
|
|
mutex_unlock(&c->root->write_lock);
|
|
|
|
bch_btree_set_root(c->root);
|
|
rw_unlock(true, c->root);
|
|
|
|
/*
|
|
* We don't want to write the first journal entry until
|
|
* everything is set up - fortunately journal entries won't be
|
|
* written until the SET_CACHE_SYNC() here:
|
|
*/
|
|
SET_CACHE_SYNC(&c->cache->sb, true);
|
|
|
|
bch_journal_next(&c->journal);
|
|
bch_journal_meta(c, &cl);
|
|
}
|
|
|
|
err = "error starting gc thread";
|
|
if (bch_gc_thread_start(c))
|
|
goto err;
|
|
|
|
closure_sync(&cl);
|
|
c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
|
|
bcache_write_super(c);
|
|
|
|
list_for_each_entry_safe(dc, t, &uncached_devices, list)
|
|
bch_cached_dev_attach(dc, c, NULL);
|
|
|
|
flash_devs_run(c);
|
|
|
|
set_bit(CACHE_SET_RUNNING, &c->flags);
|
|
return 0;
|
|
err:
|
|
while (!list_empty(&journal)) {
|
|
l = list_first_entry(&journal, struct journal_replay, list);
|
|
list_del(&l->list);
|
|
kfree(l);
|
|
}
|
|
|
|
closure_sync(&cl);
|
|
|
|
bch_cache_set_error(c, "%s", err);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static const char *register_cache_set(struct cache *ca)
|
|
{
|
|
char buf[12];
|
|
const char *err = "cannot allocate memory";
|
|
struct cache_set *c;
|
|
|
|
list_for_each_entry(c, &bch_cache_sets, list)
|
|
if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
|
|
if (c->cache)
|
|
return "duplicate cache set member";
|
|
|
|
goto found;
|
|
}
|
|
|
|
c = bch_cache_set_alloc(&ca->sb);
|
|
if (!c)
|
|
return err;
|
|
|
|
err = "error creating kobject";
|
|
if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
|
|
kobject_add(&c->internal, &c->kobj, "internal"))
|
|
goto err;
|
|
|
|
if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
|
|
goto err;
|
|
|
|
bch_debug_init_cache_set(c);
|
|
|
|
list_add(&c->list, &bch_cache_sets);
|
|
found:
|
|
sprintf(buf, "cache%i", ca->sb.nr_this_dev);
|
|
if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
|
|
sysfs_create_link(&c->kobj, &ca->kobj, buf))
|
|
goto err;
|
|
|
|
kobject_get(&ca->kobj);
|
|
ca->set = c;
|
|
ca->set->cache = ca;
|
|
|
|
err = "failed to run cache set";
|
|
if (run_cache_set(c) < 0)
|
|
goto err;
|
|
|
|
return NULL;
|
|
err:
|
|
bch_cache_set_unregister(c);
|
|
return err;
|
|
}
|
|
|
|
/* Cache device */
|
|
|
|
/* When ca->kobj released */
|
|
void bch_cache_release(struct kobject *kobj)
|
|
{
|
|
struct cache *ca = container_of(kobj, struct cache, kobj);
|
|
unsigned int i;
|
|
|
|
if (ca->set) {
|
|
BUG_ON(ca->set->cache != ca);
|
|
ca->set->cache = NULL;
|
|
}
|
|
|
|
free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
|
|
kfree(ca->prio_buckets);
|
|
vfree(ca->buckets);
|
|
|
|
free_heap(&ca->heap);
|
|
free_fifo(&ca->free_inc);
|
|
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
free_fifo(&ca->free[i]);
|
|
|
|
if (ca->sb_disk)
|
|
put_page(virt_to_page(ca->sb_disk));
|
|
|
|
if (!IS_ERR_OR_NULL(ca->bdev))
|
|
blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
|
|
|
|
kfree(ca);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static int cache_alloc(struct cache *ca)
|
|
{
|
|
size_t free;
|
|
size_t btree_buckets;
|
|
struct bucket *b;
|
|
int ret = -ENOMEM;
|
|
const char *err = NULL;
|
|
|
|
__module_get(THIS_MODULE);
|
|
kobject_init(&ca->kobj, &bch_cache_ktype);
|
|
|
|
bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
|
|
|
|
/*
|
|
* when ca->sb.njournal_buckets is not zero, journal exists,
|
|
* and in bch_journal_replay(), tree node may split,
|
|
* so bucket of RESERVE_BTREE type is needed,
|
|
* the worst situation is all journal buckets are valid journal,
|
|
* and all the keys need to replay,
|
|
* so the number of RESERVE_BTREE type buckets should be as much
|
|
* as journal buckets
|
|
*/
|
|
btree_buckets = ca->sb.njournal_buckets ?: 8;
|
|
free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
|
|
if (!free) {
|
|
ret = -EPERM;
|
|
err = "ca->sb.nbuckets is too small";
|
|
goto err_free;
|
|
}
|
|
|
|
if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
|
|
GFP_KERNEL)) {
|
|
err = "ca->free[RESERVE_BTREE] alloc failed";
|
|
goto err_btree_alloc;
|
|
}
|
|
|
|
if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
|
|
GFP_KERNEL)) {
|
|
err = "ca->free[RESERVE_PRIO] alloc failed";
|
|
goto err_prio_alloc;
|
|
}
|
|
|
|
if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
|
|
err = "ca->free[RESERVE_MOVINGGC] alloc failed";
|
|
goto err_movinggc_alloc;
|
|
}
|
|
|
|
if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
|
|
err = "ca->free[RESERVE_NONE] alloc failed";
|
|
goto err_none_alloc;
|
|
}
|
|
|
|
if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
|
|
err = "ca->free_inc alloc failed";
|
|
goto err_free_inc_alloc;
|
|
}
|
|
|
|
if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
|
|
err = "ca->heap alloc failed";
|
|
goto err_heap_alloc;
|
|
}
|
|
|
|
ca->buckets = vzalloc(array_size(sizeof(struct bucket),
|
|
ca->sb.nbuckets));
|
|
if (!ca->buckets) {
|
|
err = "ca->buckets alloc failed";
|
|
goto err_buckets_alloc;
|
|
}
|
|
|
|
ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
|
|
prio_buckets(ca), 2),
|
|
GFP_KERNEL);
|
|
if (!ca->prio_buckets) {
|
|
err = "ca->prio_buckets alloc failed";
|
|
goto err_prio_buckets_alloc;
|
|
}
|
|
|
|
ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
|
|
if (!ca->disk_buckets) {
|
|
err = "ca->disk_buckets alloc failed";
|
|
goto err_disk_buckets_alloc;
|
|
}
|
|
|
|
ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
|
|
|
|
for_each_bucket(b, ca)
|
|
atomic_set(&b->pin, 0);
|
|
return 0;
|
|
|
|
err_disk_buckets_alloc:
|
|
kfree(ca->prio_buckets);
|
|
err_prio_buckets_alloc:
|
|
vfree(ca->buckets);
|
|
err_buckets_alloc:
|
|
free_heap(&ca->heap);
|
|
err_heap_alloc:
|
|
free_fifo(&ca->free_inc);
|
|
err_free_inc_alloc:
|
|
free_fifo(&ca->free[RESERVE_NONE]);
|
|
err_none_alloc:
|
|
free_fifo(&ca->free[RESERVE_MOVINGGC]);
|
|
err_movinggc_alloc:
|
|
free_fifo(&ca->free[RESERVE_PRIO]);
|
|
err_prio_alloc:
|
|
free_fifo(&ca->free[RESERVE_BTREE]);
|
|
err_btree_alloc:
|
|
err_free:
|
|
module_put(THIS_MODULE);
|
|
if (err)
|
|
pr_notice("error %s: %s\n", ca->cache_dev_name, err);
|
|
return ret;
|
|
}
|
|
|
|
static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
|
|
struct block_device *bdev, struct cache *ca)
|
|
{
|
|
const char *err = NULL; /* must be set for any error case */
|
|
int ret = 0;
|
|
|
|
bdevname(bdev, ca->cache_dev_name);
|
|
memcpy(&ca->sb, sb, sizeof(struct cache_sb));
|
|
ca->bdev = bdev;
|
|
ca->bdev->bd_holder = ca;
|
|
ca->sb_disk = sb_disk;
|
|
|
|
if (blk_queue_discard(bdev_get_queue(bdev)))
|
|
ca->discard = CACHE_DISCARD(&ca->sb);
|
|
|
|
ret = cache_alloc(ca);
|
|
if (ret != 0) {
|
|
/*
|
|
* If we failed here, it means ca->kobj is not initialized yet,
|
|
* kobject_put() won't be called and there is no chance to
|
|
* call blkdev_put() to bdev in bch_cache_release(). So we
|
|
* explicitly call blkdev_put() here.
|
|
*/
|
|
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
|
|
if (ret == -ENOMEM)
|
|
err = "cache_alloc(): -ENOMEM";
|
|
else if (ret == -EPERM)
|
|
err = "cache_alloc(): cache device is too small";
|
|
else
|
|
err = "cache_alloc(): unknown error";
|
|
goto err;
|
|
}
|
|
|
|
if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
|
|
err = "error calling kobject_add";
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
err = register_cache_set(ca);
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
if (err) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
pr_info("registered cache device %s\n", ca->cache_dev_name);
|
|
|
|
out:
|
|
kobject_put(&ca->kobj);
|
|
|
|
err:
|
|
if (err)
|
|
pr_notice("error %s: %s\n", ca->cache_dev_name, err);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Global interfaces/init */
|
|
|
|
static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
|
|
const char *buffer, size_t size);
|
|
static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
|
|
struct kobj_attribute *attr,
|
|
const char *buffer, size_t size);
|
|
|
|
kobj_attribute_write(register, register_bcache);
|
|
kobj_attribute_write(register_quiet, register_bcache);
|
|
kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
|
|
|
|
static bool bch_is_open_backing(dev_t dev)
|
|
{
|
|
struct cache_set *c, *tc;
|
|
struct cached_dev *dc, *t;
|
|
|
|
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
|
|
list_for_each_entry_safe(dc, t, &c->cached_devs, list)
|
|
if (dc->bdev->bd_dev == dev)
|
|
return true;
|
|
list_for_each_entry_safe(dc, t, &uncached_devices, list)
|
|
if (dc->bdev->bd_dev == dev)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool bch_is_open_cache(dev_t dev)
|
|
{
|
|
struct cache_set *c, *tc;
|
|
|
|
list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
|
|
struct cache *ca = c->cache;
|
|
|
|
if (ca->bdev->bd_dev == dev)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool bch_is_open(dev_t dev)
|
|
{
|
|
return bch_is_open_cache(dev) || bch_is_open_backing(dev);
|
|
}
|
|
|
|
struct async_reg_args {
|
|
struct delayed_work reg_work;
|
|
char *path;
|
|
struct cache_sb *sb;
|
|
struct cache_sb_disk *sb_disk;
|
|
struct block_device *bdev;
|
|
};
|
|
|
|
static void register_bdev_worker(struct work_struct *work)
|
|
{
|
|
int fail = false;
|
|
struct async_reg_args *args =
|
|
container_of(work, struct async_reg_args, reg_work.work);
|
|
struct cached_dev *dc;
|
|
|
|
dc = kzalloc(sizeof(*dc), GFP_KERNEL);
|
|
if (!dc) {
|
|
fail = true;
|
|
put_page(virt_to_page(args->sb_disk));
|
|
blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
|
|
fail = true;
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
out:
|
|
if (fail)
|
|
pr_info("error %s: fail to register backing device\n",
|
|
args->path);
|
|
kfree(args->sb);
|
|
kfree(args->path);
|
|
kfree(args);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static void register_cache_worker(struct work_struct *work)
|
|
{
|
|
int fail = false;
|
|
struct async_reg_args *args =
|
|
container_of(work, struct async_reg_args, reg_work.work);
|
|
struct cache *ca;
|
|
|
|
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
|
|
if (!ca) {
|
|
fail = true;
|
|
put_page(virt_to_page(args->sb_disk));
|
|
blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
|
|
goto out;
|
|
}
|
|
|
|
/* blkdev_put() will be called in bch_cache_release() */
|
|
if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
|
|
fail = true;
|
|
|
|
out:
|
|
if (fail)
|
|
pr_info("error %s: fail to register cache device\n",
|
|
args->path);
|
|
kfree(args->sb);
|
|
kfree(args->path);
|
|
kfree(args);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static void register_device_aync(struct async_reg_args *args)
|
|
{
|
|
if (SB_IS_BDEV(args->sb))
|
|
INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
|
|
else
|
|
INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
|
|
|
|
/* 10 jiffies is enough for a delay */
|
|
queue_delayed_work(system_wq, &args->reg_work, 10);
|
|
}
|
|
|
|
static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
|
|
const char *buffer, size_t size)
|
|
{
|
|
const char *err;
|
|
char *path = NULL;
|
|
struct cache_sb *sb;
|
|
struct cache_sb_disk *sb_disk;
|
|
struct block_device *bdev;
|
|
ssize_t ret;
|
|
bool async_registration = false;
|
|
|
|
#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
|
|
async_registration = true;
|
|
#endif
|
|
|
|
ret = -EBUSY;
|
|
err = "failed to reference bcache module";
|
|
if (!try_module_get(THIS_MODULE))
|
|
goto out;
|
|
|
|
/* For latest state of bcache_is_reboot */
|
|
smp_mb();
|
|
err = "bcache is in reboot";
|
|
if (bcache_is_reboot)
|
|
goto out_module_put;
|
|
|
|
ret = -ENOMEM;
|
|
err = "cannot allocate memory";
|
|
path = kstrndup(buffer, size, GFP_KERNEL);
|
|
if (!path)
|
|
goto out_module_put;
|
|
|
|
sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
|
|
if (!sb)
|
|
goto out_free_path;
|
|
|
|
ret = -EINVAL;
|
|
err = "failed to open device";
|
|
bdev = blkdev_get_by_path(strim(path),
|
|
FMODE_READ|FMODE_WRITE|FMODE_EXCL,
|
|
sb);
|
|
if (IS_ERR(bdev)) {
|
|
if (bdev == ERR_PTR(-EBUSY)) {
|
|
dev_t dev;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
if (lookup_bdev(strim(path), &dev) == 0 &&
|
|
bch_is_open(dev))
|
|
err = "device already registered";
|
|
else
|
|
err = "device busy";
|
|
mutex_unlock(&bch_register_lock);
|
|
if (!IS_ERR(bdev))
|
|
bdput(bdev);
|
|
if (attr == &ksysfs_register_quiet)
|
|
goto done;
|
|
}
|
|
goto out_free_sb;
|
|
}
|
|
|
|
err = "failed to set blocksize";
|
|
if (set_blocksize(bdev, 4096))
|
|
goto out_blkdev_put;
|
|
|
|
err = read_super(sb, bdev, &sb_disk);
|
|
if (err)
|
|
goto out_blkdev_put;
|
|
|
|
err = "failed to register device";
|
|
|
|
if (async_registration) {
|
|
/* register in asynchronous way */
|
|
struct async_reg_args *args =
|
|
kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
|
|
|
|
if (!args) {
|
|
ret = -ENOMEM;
|
|
err = "cannot allocate memory";
|
|
goto out_put_sb_page;
|
|
}
|
|
|
|
args->path = path;
|
|
args->sb = sb;
|
|
args->sb_disk = sb_disk;
|
|
args->bdev = bdev;
|
|
register_device_aync(args);
|
|
/* No wait and returns to user space */
|
|
goto async_done;
|
|
}
|
|
|
|
if (SB_IS_BDEV(sb)) {
|
|
struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
|
|
|
|
if (!dc)
|
|
goto out_put_sb_page;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
ret = register_bdev(sb, sb_disk, bdev, dc);
|
|
mutex_unlock(&bch_register_lock);
|
|
/* blkdev_put() will be called in cached_dev_free() */
|
|
if (ret < 0)
|
|
goto out_free_sb;
|
|
} else {
|
|
struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
|
|
|
|
if (!ca)
|
|
goto out_put_sb_page;
|
|
|
|
/* blkdev_put() will be called in bch_cache_release() */
|
|
if (register_cache(sb, sb_disk, bdev, ca) != 0)
|
|
goto out_free_sb;
|
|
}
|
|
|
|
done:
|
|
kfree(sb);
|
|
kfree(path);
|
|
module_put(THIS_MODULE);
|
|
async_done:
|
|
return size;
|
|
|
|
out_put_sb_page:
|
|
put_page(virt_to_page(sb_disk));
|
|
out_blkdev_put:
|
|
blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
|
|
out_free_sb:
|
|
kfree(sb);
|
|
out_free_path:
|
|
kfree(path);
|
|
path = NULL;
|
|
out_module_put:
|
|
module_put(THIS_MODULE);
|
|
out:
|
|
pr_info("error %s: %s\n", path?path:"", err);
|
|
return ret;
|
|
}
|
|
|
|
|
|
struct pdev {
|
|
struct list_head list;
|
|
struct cached_dev *dc;
|
|
};
|
|
|
|
static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
|
|
struct kobj_attribute *attr,
|
|
const char *buffer,
|
|
size_t size)
|
|
{
|
|
LIST_HEAD(pending_devs);
|
|
ssize_t ret = size;
|
|
struct cached_dev *dc, *tdc;
|
|
struct pdev *pdev, *tpdev;
|
|
struct cache_set *c, *tc;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
|
|
pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
|
|
if (!pdev)
|
|
break;
|
|
pdev->dc = dc;
|
|
list_add(&pdev->list, &pending_devs);
|
|
}
|
|
|
|
list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
|
|
list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
|
|
char *pdev_set_uuid = pdev->dc->sb.set_uuid;
|
|
char *set_uuid = c->set_uuid;
|
|
|
|
if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
|
|
list_del(&pdev->list);
|
|
kfree(pdev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
|
|
pr_info("delete pdev %p\n", pdev);
|
|
list_del(&pdev->list);
|
|
bcache_device_stop(&pdev->dc->disk);
|
|
kfree(pdev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
|
|
{
|
|
if (bcache_is_reboot)
|
|
return NOTIFY_DONE;
|
|
|
|
if (code == SYS_DOWN ||
|
|
code == SYS_HALT ||
|
|
code == SYS_POWER_OFF) {
|
|
DEFINE_WAIT(wait);
|
|
unsigned long start = jiffies;
|
|
bool stopped = false;
|
|
|
|
struct cache_set *c, *tc;
|
|
struct cached_dev *dc, *tdc;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
|
|
if (bcache_is_reboot)
|
|
goto out;
|
|
|
|
/* New registration is rejected since now */
|
|
bcache_is_reboot = true;
|
|
/*
|
|
* Make registering caller (if there is) on other CPU
|
|
* core know bcache_is_reboot set to true earlier
|
|
*/
|
|
smp_mb();
|
|
|
|
if (list_empty(&bch_cache_sets) &&
|
|
list_empty(&uncached_devices))
|
|
goto out;
|
|
|
|
mutex_unlock(&bch_register_lock);
|
|
|
|
pr_info("Stopping all devices:\n");
|
|
|
|
/*
|
|
* The reason bch_register_lock is not held to call
|
|
* bch_cache_set_stop() and bcache_device_stop() is to
|
|
* avoid potential deadlock during reboot, because cache
|
|
* set or bcache device stopping process will acqurie
|
|
* bch_register_lock too.
|
|
*
|
|
* We are safe here because bcache_is_reboot sets to
|
|
* true already, register_bcache() will reject new
|
|
* registration now. bcache_is_reboot also makes sure
|
|
* bcache_reboot() won't be re-entered on by other thread,
|
|
* so there is no race in following list iteration by
|
|
* list_for_each_entry_safe().
|
|
*/
|
|
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
|
|
bch_cache_set_stop(c);
|
|
|
|
list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
|
|
bcache_device_stop(&dc->disk);
|
|
|
|
|
|
/*
|
|
* Give an early chance for other kthreads and
|
|
* kworkers to stop themselves
|
|
*/
|
|
schedule();
|
|
|
|
/* What's a condition variable? */
|
|
while (1) {
|
|
long timeout = start + 10 * HZ - jiffies;
|
|
|
|
mutex_lock(&bch_register_lock);
|
|
stopped = list_empty(&bch_cache_sets) &&
|
|
list_empty(&uncached_devices);
|
|
|
|
if (timeout < 0 || stopped)
|
|
break;
|
|
|
|
prepare_to_wait(&unregister_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
mutex_unlock(&bch_register_lock);
|
|
schedule_timeout(timeout);
|
|
}
|
|
|
|
finish_wait(&unregister_wait, &wait);
|
|
|
|
if (stopped)
|
|
pr_info("All devices stopped\n");
|
|
else
|
|
pr_notice("Timeout waiting for devices to be closed\n");
|
|
out:
|
|
mutex_unlock(&bch_register_lock);
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block reboot = {
|
|
.notifier_call = bcache_reboot,
|
|
.priority = INT_MAX, /* before any real devices */
|
|
};
|
|
|
|
static void bcache_exit(void)
|
|
{
|
|
bch_debug_exit();
|
|
bch_request_exit();
|
|
if (bcache_kobj)
|
|
kobject_put(bcache_kobj);
|
|
if (bcache_wq)
|
|
destroy_workqueue(bcache_wq);
|
|
if (bch_journal_wq)
|
|
destroy_workqueue(bch_journal_wq);
|
|
|
|
if (bcache_major)
|
|
unregister_blkdev(bcache_major, "bcache");
|
|
unregister_reboot_notifier(&reboot);
|
|
mutex_destroy(&bch_register_lock);
|
|
}
|
|
|
|
/* Check and fixup module parameters */
|
|
static void check_module_parameters(void)
|
|
{
|
|
if (bch_cutoff_writeback_sync == 0)
|
|
bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
|
|
else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
|
|
pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
|
|
bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
|
|
bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
|
|
}
|
|
|
|
if (bch_cutoff_writeback == 0)
|
|
bch_cutoff_writeback = CUTOFF_WRITEBACK;
|
|
else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
|
|
pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
|
|
bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
|
|
bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
|
|
}
|
|
|
|
if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
|
|
pr_warn("set bch_cutoff_writeback (%u) to %u\n",
|
|
bch_cutoff_writeback, bch_cutoff_writeback_sync);
|
|
bch_cutoff_writeback = bch_cutoff_writeback_sync;
|
|
}
|
|
}
|
|
|
|
static int __init bcache_init(void)
|
|
{
|
|
static const struct attribute *files[] = {
|
|
&ksysfs_register.attr,
|
|
&ksysfs_register_quiet.attr,
|
|
&ksysfs_pendings_cleanup.attr,
|
|
NULL
|
|
};
|
|
|
|
check_module_parameters();
|
|
|
|
mutex_init(&bch_register_lock);
|
|
init_waitqueue_head(&unregister_wait);
|
|
register_reboot_notifier(&reboot);
|
|
|
|
bcache_major = register_blkdev(0, "bcache");
|
|
if (bcache_major < 0) {
|
|
unregister_reboot_notifier(&reboot);
|
|
mutex_destroy(&bch_register_lock);
|
|
return bcache_major;
|
|
}
|
|
|
|
bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
|
|
if (!bcache_wq)
|
|
goto err;
|
|
|
|
bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
|
|
if (!bch_journal_wq)
|
|
goto err;
|
|
|
|
bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
|
|
if (!bcache_kobj)
|
|
goto err;
|
|
|
|
if (bch_request_init() ||
|
|
sysfs_create_files(bcache_kobj, files))
|
|
goto err;
|
|
|
|
bch_debug_init();
|
|
closure_debug_init();
|
|
|
|
bcache_is_reboot = false;
|
|
|
|
return 0;
|
|
err:
|
|
bcache_exit();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Module hooks
|
|
*/
|
|
module_exit(bcache_exit);
|
|
module_init(bcache_init);
|
|
|
|
module_param(bch_cutoff_writeback, uint, 0);
|
|
MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
|
|
|
|
module_param(bch_cutoff_writeback_sync, uint, 0);
|
|
MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
|
|
|
|
MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
|
|
MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
|
|
MODULE_LICENSE("GPL");
|