linux/drivers/net/ethernet/intel/ice/ice_txrx.h
Jesse Brandeburg d59684a07e ice: refactor ITR data structures
Use a dedicated bitfield in order to both increase
the amount of checking around the length of ITR writes
as well as simplify the checks of dynamic mode.

Basically unpack the "high bit means dynamic" logic
into bitfields.

Also, remove some unused ITR defines.

Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-14 17:00:06 -07:00

389 lines
11 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018, Intel Corporation. */
#ifndef _ICE_TXRX_H_
#define _ICE_TXRX_H_
#include "ice_type.h"
#define ICE_DFLT_IRQ_WORK 256
#define ICE_RXBUF_3072 3072
#define ICE_RXBUF_2048 2048
#define ICE_RXBUF_1536 1536
#define ICE_MAX_CHAINED_RX_BUFS 5
#define ICE_MAX_BUF_TXD 8
#define ICE_MIN_TX_LEN 17
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define ICE_MAX_READ_REQ_SIZE 4096
#define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1)
#define ICE_MAX_DATA_PER_TXD_ALIGNED \
(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
#define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */
#define ICE_MAX_TXQ_PER_TXQG 128
/* Attempt to maximize the headroom available for incoming frames. We use a 2K
* buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
* This leaves us with 512 bytes of room. From that we need to deduct the
* space needed for the shared info and the padding needed to IP align the
* frame.
*
* Note: For cache line sizes 256 or larger this value is going to end
* up negative. In these cases we should fall back to the legacy
* receive path.
*/
#if (PAGE_SIZE < 8192)
#define ICE_2K_TOO_SMALL_WITH_PADDING \
((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
/**
* ice_compute_pad - compute the padding
* @rx_buf_len: buffer length
*
* Figure out the size of half page based on given buffer length and
* then subtract the skb_shared_info followed by subtraction of the
* actual buffer length; this in turn results in the actual space that
* is left for padding usage
*/
static inline int ice_compute_pad(int rx_buf_len)
{
int half_page_size;
half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
}
/**
* ice_skb_pad - determine the padding that we can supply
*
* Figure out the right Rx buffer size and based on that calculate the
* padding
*/
static inline int ice_skb_pad(void)
{
int rx_buf_len;
/* If a 2K buffer cannot handle a standard Ethernet frame then
* optimize padding for a 3K buffer instead of a 1.5K buffer.
*
* For a 3K buffer we need to add enough padding to allow for
* tailroom due to NET_IP_ALIGN possibly shifting us out of
* cache-line alignment.
*/
if (ICE_2K_TOO_SMALL_WITH_PADDING)
rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
else
rx_buf_len = ICE_RXBUF_1536;
/* if needed make room for NET_IP_ALIGN */
rx_buf_len -= NET_IP_ALIGN;
return ice_compute_pad(rx_buf_len);
}
#define ICE_SKB_PAD ice_skb_pad()
#else
#define ICE_2K_TOO_SMALL_WITH_PADDING false
#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
#endif
/* We are assuming that the cache line is always 64 Bytes here for ice.
* In order to make sure that is a correct assumption there is a check in probe
* to print a warning if the read from GLPCI_CNF2 tells us that the cache line
* size is 128 bytes. We do it this way because we do not want to read the
* GLPCI_CNF2 register or a variable containing the value on every pass through
* the Tx path.
*/
#define ICE_CACHE_LINE_BYTES 64
#define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \
sizeof(struct ice_tx_desc))
#define ICE_DESCS_FOR_CTX_DESC 1
#define ICE_DESCS_FOR_SKB_DATA_PTR 1
/* Tx descriptors needed, worst case */
#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
#define ICE_DESC_UNUSED(R) \
(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
(R)->next_to_clean - (R)->next_to_use - 1)
#define ICE_TX_FLAGS_TSO BIT(0)
#define ICE_TX_FLAGS_HW_VLAN BIT(1)
#define ICE_TX_FLAGS_SW_VLAN BIT(2)
/* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be
* freed instead of returned like skb packets.
*/
#define ICE_TX_FLAGS_DUMMY_PKT BIT(3)
#define ICE_TX_FLAGS_IPV4 BIT(5)
#define ICE_TX_FLAGS_IPV6 BIT(6)
#define ICE_TX_FLAGS_TUNNEL BIT(7)
#define ICE_TX_FLAGS_VLAN_M 0xffff0000
#define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000
#define ICE_TX_FLAGS_VLAN_PR_S 29
#define ICE_TX_FLAGS_VLAN_S 16
#define ICE_XDP_PASS 0
#define ICE_XDP_CONSUMED BIT(0)
#define ICE_XDP_TX BIT(1)
#define ICE_XDP_REDIR BIT(2)
#define ICE_RX_DMA_ATTR \
(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
#define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
struct ice_tx_buf {
struct ice_tx_desc *next_to_watch;
union {
struct sk_buff *skb;
void *raw_buf; /* used for XDP */
};
unsigned int bytecount;
unsigned short gso_segs;
u32 tx_flags;
DEFINE_DMA_UNMAP_LEN(len);
DEFINE_DMA_UNMAP_ADDR(dma);
};
struct ice_tx_offload_params {
u64 cd_qw1;
struct ice_ring *tx_ring;
u32 td_cmd;
u32 td_offset;
u32 td_l2tag1;
u32 cd_tunnel_params;
u16 cd_l2tag2;
u8 header_len;
};
struct ice_rx_buf {
union {
struct {
dma_addr_t dma;
struct page *page;
unsigned int page_offset;
u16 pagecnt_bias;
};
struct {
struct xdp_buff *xdp;
};
};
};
struct ice_q_stats {
u64 pkts;
u64 bytes;
};
struct ice_txq_stats {
u64 restart_q;
u64 tx_busy;
u64 tx_linearize;
int prev_pkt; /* negative if no pending Tx descriptors */
};
struct ice_rxq_stats {
u64 non_eop_descs;
u64 alloc_page_failed;
u64 alloc_buf_failed;
};
enum ice_ring_state_t {
ICE_TX_XPS_INIT_DONE,
ICE_TX_NBITS,
};
/* this enum matches hardware bits and is meant to be used by DYN_CTLN
* registers and QINT registers or more generally anywhere in the manual
* mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
* register but instead is a special value meaning "don't update" ITR0/1/2.
*/
enum ice_dyn_idx_t {
ICE_IDX_ITR0 = 0,
ICE_IDX_ITR1 = 1,
ICE_IDX_ITR2 = 2,
ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
};
/* Header split modes defined by DTYPE field of Rx RLAN context */
enum ice_rx_dtype {
ICE_RX_DTYPE_NO_SPLIT = 0,
ICE_RX_DTYPE_HEADER_SPLIT = 1,
ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
};
/* indices into GLINT_ITR registers */
#define ICE_RX_ITR ICE_IDX_ITR0
#define ICE_TX_ITR ICE_IDX_ITR1
#define ICE_ITR_8K 124
#define ICE_ITR_20K 50
#define ICE_ITR_MAX 8160 /* 0x1FE0 */
#define ICE_DFLT_TX_ITR ICE_ITR_20K
#define ICE_DFLT_RX_ITR ICE_ITR_20K
enum ice_dynamic_itr {
ITR_STATIC = 0,
ITR_DYNAMIC = 1
};
#define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
#define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */
#define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S)
#define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */
#define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK)
#define ICE_DFLT_INTRL 0
#define ICE_MAX_INTRL 236
#define ICE_IN_WB_ON_ITR_MODE 255
/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
* setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
* set the write-back latency to the usecs passed in.
*/
#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \
((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
GLINT_DYN_CTL_INTERVAL_M) | \
(((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
GLINT_DYN_CTL_WB_ON_ITR_M)
/* Legacy or Advanced Mode Queue */
#define ICE_TX_ADVANCED 0
#define ICE_TX_LEGACY 1
/* descriptor ring, associated with a VSI */
struct ice_ring {
/* CL1 - 1st cacheline starts here */
struct ice_ring *next; /* pointer to next ring in q_vector */
void *desc; /* Descriptor ring memory */
struct device *dev; /* Used for DMA mapping */
struct net_device *netdev; /* netdev ring maps to */
struct ice_vsi *vsi; /* Backreference to associated VSI */
struct ice_q_vector *q_vector; /* Backreference to associated vector */
u8 __iomem *tail;
union {
struct ice_tx_buf *tx_buf;
struct ice_rx_buf *rx_buf;
};
/* CL2 - 2nd cacheline starts here */
u16 q_index; /* Queue number of ring */
u16 q_handle; /* Queue handle per TC */
u8 ring_active:1; /* is ring online or not */
u16 count; /* Number of descriptors */
u16 reg_idx; /* HW register index of the ring */
/* used in interrupt processing */
u16 next_to_use;
u16 next_to_clean;
u16 next_to_alloc;
/* stats structs */
struct ice_q_stats stats;
struct u64_stats_sync syncp;
union {
struct ice_txq_stats tx_stats;
struct ice_rxq_stats rx_stats;
};
struct rcu_head rcu; /* to avoid race on free */
DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */
struct bpf_prog *xdp_prog;
struct xsk_buff_pool *xsk_pool;
u16 rx_offset;
/* CL3 - 3rd cacheline starts here */
struct xdp_rxq_info xdp_rxq;
struct sk_buff *skb;
/* CLX - the below items are only accessed infrequently and should be
* in their own cache line if possible
*/
#define ICE_TX_FLAGS_RING_XDP BIT(0)
#define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1)
u8 flags;
dma_addr_t dma; /* physical address of ring */
unsigned int size; /* length of descriptor ring in bytes */
u32 txq_teid; /* Added Tx queue TEID */
u16 rx_buf_len;
u8 dcb_tc; /* Traffic class of ring */
} ____cacheline_internodealigned_in_smp;
static inline bool ice_ring_uses_build_skb(struct ice_ring *ring)
{
return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
}
static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring)
{
ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
}
static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring)
{
ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
}
static inline bool ice_ring_is_xdp(struct ice_ring *ring)
{
return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
}
struct ice_ring_container {
/* head of linked-list of rings */
struct ice_ring *ring;
struct dim dim; /* data for net_dim algorithm */
u16 itr_idx; /* index in the interrupt vector */
/* this matches the maximum number of ITR bits, but in usec
* values, so it is shifted left one bit (bit zero is ignored)
*/
u16 itr_setting:13;
u16 itr_reserved:2;
u16 itr_mode:1;
};
struct ice_coalesce_stored {
u16 itr_tx;
u16 itr_rx;
u8 intrl;
u8 tx_valid;
u8 rx_valid;
};
/* iterator for handling rings in ring container */
#define ice_for_each_ring(pos, head) \
for (pos = (head).ring; pos; pos = pos->next)
static inline unsigned int ice_rx_pg_order(struct ice_ring *ring)
{
#if (PAGE_SIZE < 8192)
if (ring->rx_buf_len > (PAGE_SIZE / 2))
return 1;
#endif
return 0;
}
#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
union ice_32b_rx_flex_desc;
bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
void ice_clean_tx_ring(struct ice_ring *tx_ring);
void ice_clean_rx_ring(struct ice_ring *rx_ring);
int ice_setup_tx_ring(struct ice_ring *tx_ring);
int ice_setup_rx_ring(struct ice_ring *rx_ring);
void ice_free_tx_ring(struct ice_ring *tx_ring);
void ice_free_rx_ring(struct ice_ring *rx_ring);
int ice_napi_poll(struct napi_struct *napi, int budget);
int
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
u8 *raw_packet);
int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget);
void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring);
#endif /* _ICE_TXRX_H_ */