linux/drivers/net/ethernet/intel/ice/ice_arfs.c
Anirudh Venkataramanan 1e23f076b2 ice: Delay netdev registration
Once a netdev is registered, the corresponding network interface can
be immediately used by userspace utilities (like say NetworkManager).
This can be problematic if the driver technically isn't fully up yet.

Move netdev registration to the end of probe, as by this time the
driver data structures and device will be initialized as expected.

However, delaying netdev registration causes a failure in the aRFS flow
where netdev->reg_state == NETREG_REGISTERED condition is checked. It's
not clear why this check was added to begin with, so remove it.
Local testing didn't indicate any issues with this change.

The state bit check in ice_open was put in as a stop-gap measure to
prevent a premature interface up operation. This is no longer needed,
so remove it.

Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-31 14:21:27 -07:00

662 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2018-2020, Intel Corporation. */
#include "ice.h"
/**
* ice_is_arfs_active - helper to check is aRFS is active
* @vsi: VSI to check
*/
static bool ice_is_arfs_active(struct ice_vsi *vsi)
{
return !!vsi->arfs_fltr_list;
}
/**
* ice_is_arfs_using_perfect_flow - check if aRFS has active perfect filters
* @hw: pointer to the HW structure
* @flow_type: flow type as Flow Director understands it
*
* Flow Director will query this function to see if aRFS is currently using
* the specified flow_type for perfect (4-tuple) filters.
*/
bool
ice_is_arfs_using_perfect_flow(struct ice_hw *hw, enum ice_fltr_ptype flow_type)
{
struct ice_arfs_active_fltr_cntrs *arfs_fltr_cntrs;
struct ice_pf *pf = hw->back;
struct ice_vsi *vsi;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return false;
arfs_fltr_cntrs = vsi->arfs_fltr_cntrs;
/* active counters can be updated by multiple CPUs */
smp_mb__before_atomic();
switch (flow_type) {
case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
return atomic_read(&arfs_fltr_cntrs->active_udpv4_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
return atomic_read(&arfs_fltr_cntrs->active_udpv6_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
return atomic_read(&arfs_fltr_cntrs->active_tcpv4_cnt) > 0;
case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
return atomic_read(&arfs_fltr_cntrs->active_tcpv6_cnt) > 0;
default:
return false;
}
}
/**
* ice_arfs_update_active_fltr_cntrs - update active filter counters for aRFS
* @vsi: VSI that aRFS is active on
* @entry: aRFS entry used to change counters
* @add: true to increment counter, false to decrement
*/
static void
ice_arfs_update_active_fltr_cntrs(struct ice_vsi *vsi,
struct ice_arfs_entry *entry, bool add)
{
struct ice_arfs_active_fltr_cntrs *fltr_cntrs = vsi->arfs_fltr_cntrs;
switch (entry->fltr_info.flow_type) {
case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
if (add)
atomic_inc(&fltr_cntrs->active_tcpv4_cnt);
else
atomic_dec(&fltr_cntrs->active_tcpv4_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
if (add)
atomic_inc(&fltr_cntrs->active_tcpv6_cnt);
else
atomic_dec(&fltr_cntrs->active_tcpv6_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
if (add)
atomic_inc(&fltr_cntrs->active_udpv4_cnt);
else
atomic_dec(&fltr_cntrs->active_udpv4_cnt);
break;
case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
if (add)
atomic_inc(&fltr_cntrs->active_udpv6_cnt);
else
atomic_dec(&fltr_cntrs->active_udpv6_cnt);
break;
default:
dev_err(ice_pf_to_dev(vsi->back), "aRFS: Failed to update filter counters, invalid filter type %d\n",
entry->fltr_info.flow_type);
}
}
/**
* ice_arfs_del_flow_rules - delete the rules passed in from HW
* @vsi: VSI for the flow rules that need to be deleted
* @del_list_head: head of the list of ice_arfs_entry(s) for rule deletion
*
* Loop through the delete list passed in and remove the rules from HW. After
* each rule is deleted, disconnect and free the ice_arfs_entry because it is no
* longer being referenced by the aRFS hash table.
*/
static void
ice_arfs_del_flow_rules(struct ice_vsi *vsi, struct hlist_head *del_list_head)
{
struct ice_arfs_entry *e;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
hlist_for_each_entry_safe(e, n, del_list_head, list_entry) {
int result;
result = ice_fdir_write_fltr(vsi->back, &e->fltr_info, false,
false);
if (!result)
ice_arfs_update_active_fltr_cntrs(vsi, e, false);
else
dev_dbg(dev, "Unable to delete aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
result, e->fltr_state, e->fltr_info.fltr_id,
e->flow_id, e->fltr_info.q_index);
/* The aRFS hash table is no longer referencing this entry */
hlist_del(&e->list_entry);
devm_kfree(dev, e);
}
}
/**
* ice_arfs_add_flow_rules - add the rules passed in from HW
* @vsi: VSI for the flow rules that need to be added
* @add_list_head: head of the list of ice_arfs_entry_ptr(s) for rule addition
*
* Loop through the add list passed in and remove the rules from HW. After each
* rule is added, disconnect and free the ice_arfs_entry_ptr node. Don't free
* the ice_arfs_entry(s) because they are still being referenced in the aRFS
* hash table.
*/
static void
ice_arfs_add_flow_rules(struct ice_vsi *vsi, struct hlist_head *add_list_head)
{
struct ice_arfs_entry_ptr *ep;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
hlist_for_each_entry_safe(ep, n, add_list_head, list_entry) {
int result;
result = ice_fdir_write_fltr(vsi->back,
&ep->arfs_entry->fltr_info, true,
false);
if (!result)
ice_arfs_update_active_fltr_cntrs(vsi, ep->arfs_entry,
true);
else
dev_dbg(dev, "Unable to add aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
result, ep->arfs_entry->fltr_state,
ep->arfs_entry->fltr_info.fltr_id,
ep->arfs_entry->flow_id,
ep->arfs_entry->fltr_info.q_index);
hlist_del(&ep->list_entry);
devm_kfree(dev, ep);
}
}
/**
* ice_arfs_is_flow_expired - check if the aRFS entry has expired
* @vsi: VSI containing the aRFS entry
* @arfs_entry: aRFS entry that's being checked for expiration
*
* Return true if the flow has expired, else false. This function should be used
* to determine whether or not an aRFS entry should be removed from the hardware
* and software structures.
*/
static bool
ice_arfs_is_flow_expired(struct ice_vsi *vsi, struct ice_arfs_entry *arfs_entry)
{
#define ICE_ARFS_TIME_DELTA_EXPIRATION msecs_to_jiffies(5000)
if (rps_may_expire_flow(vsi->netdev, arfs_entry->fltr_info.q_index,
arfs_entry->flow_id,
arfs_entry->fltr_info.fltr_id))
return true;
/* expiration timer only used for UDP filters */
if (arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV4_UDP &&
arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV6_UDP)
return false;
return time_in_range64(arfs_entry->time_activated +
ICE_ARFS_TIME_DELTA_EXPIRATION,
arfs_entry->time_activated, get_jiffies_64());
}
/**
* ice_arfs_update_flow_rules - add/delete aRFS rules in HW
* @vsi: the VSI to be forwarded to
* @idx: index into the table of aRFS filter lists. Obtained from skb->hash
* @add_list: list to populate with filters to be added to Flow Director
* @del_list: list to populate with filters to be deleted from Flow Director
*
* Iterate over the hlist at the index given in the aRFS hash table and
* determine if there are any aRFS entries that need to be either added or
* deleted in the HW. If the aRFS entry is marked as ICE_ARFS_INACTIVE the
* filter needs to be added to HW, else if it's marked as ICE_ARFS_ACTIVE and
* the flow has expired delete the filter from HW. The caller of this function
* is expected to add/delete rules on the add_list/del_list respectively.
*/
static void
ice_arfs_update_flow_rules(struct ice_vsi *vsi, u16 idx,
struct hlist_head *add_list,
struct hlist_head *del_list)
{
struct ice_arfs_entry *e;
struct hlist_node *n;
struct device *dev;
dev = ice_pf_to_dev(vsi->back);
/* go through the aRFS hlist at this idx and check for needed updates */
hlist_for_each_entry_safe(e, n, &vsi->arfs_fltr_list[idx], list_entry)
/* check if filter needs to be added to HW */
if (e->fltr_state == ICE_ARFS_INACTIVE) {
enum ice_fltr_ptype flow_type = e->fltr_info.flow_type;
struct ice_arfs_entry_ptr *ep =
devm_kzalloc(dev, sizeof(*ep), GFP_ATOMIC);
if (!ep)
continue;
INIT_HLIST_NODE(&ep->list_entry);
/* reference aRFS entry to add HW filter */
ep->arfs_entry = e;
hlist_add_head(&ep->list_entry, add_list);
e->fltr_state = ICE_ARFS_ACTIVE;
/* expiration timer only used for UDP flows */
if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP ||
flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
e->time_activated = get_jiffies_64();
} else if (e->fltr_state == ICE_ARFS_ACTIVE) {
/* check if filter needs to be removed from HW */
if (ice_arfs_is_flow_expired(vsi, e)) {
/* remove aRFS entry from hash table for delete
* and to prevent referencing it the next time
* through this hlist index
*/
hlist_del(&e->list_entry);
e->fltr_state = ICE_ARFS_TODEL;
/* save reference to aRFS entry for delete */
hlist_add_head(&e->list_entry, del_list);
}
}
}
/**
* ice_sync_arfs_fltrs - update all aRFS filters
* @pf: board private structure
*/
void ice_sync_arfs_fltrs(struct ice_pf *pf)
{
HLIST_HEAD(tmp_del_list);
HLIST_HEAD(tmp_add_list);
struct ice_vsi *pf_vsi;
unsigned int i;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
if (!ice_is_arfs_active(pf_vsi))
return;
spin_lock_bh(&pf_vsi->arfs_lock);
/* Once we process aRFS for the PF VSI get out */
for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
ice_arfs_update_flow_rules(pf_vsi, i, &tmp_add_list,
&tmp_del_list);
spin_unlock_bh(&pf_vsi->arfs_lock);
/* use list of ice_arfs_entry(s) for delete */
ice_arfs_del_flow_rules(pf_vsi, &tmp_del_list);
/* use list of ice_arfs_entry_ptr(s) for add */
ice_arfs_add_flow_rules(pf_vsi, &tmp_add_list);
}
/**
* ice_arfs_build_entry - builds an aRFS entry based on input
* @vsi: destination VSI for this flow
* @fk: flow dissector keys for creating the tuple
* @rxq_idx: Rx queue to steer this flow to
* @flow_id: passed down from the stack and saved for flow expiration
*
* returns an aRFS entry on success and NULL on failure
*/
static struct ice_arfs_entry *
ice_arfs_build_entry(struct ice_vsi *vsi, const struct flow_keys *fk,
u16 rxq_idx, u32 flow_id)
{
struct ice_arfs_entry *arfs_entry;
struct ice_fdir_fltr *fltr_info;
u8 ip_proto;
arfs_entry = devm_kzalloc(ice_pf_to_dev(vsi->back),
sizeof(*arfs_entry),
GFP_ATOMIC | __GFP_NOWARN);
if (!arfs_entry)
return NULL;
fltr_info = &arfs_entry->fltr_info;
fltr_info->q_index = rxq_idx;
fltr_info->dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX;
fltr_info->dest_vsi = vsi->idx;
ip_proto = fk->basic.ip_proto;
if (fk->basic.n_proto == htons(ETH_P_IP)) {
fltr_info->ip.v4.proto = ip_proto;
fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
ICE_FLTR_PTYPE_NONF_IPV4_TCP :
ICE_FLTR_PTYPE_NONF_IPV4_UDP;
fltr_info->ip.v4.src_ip = fk->addrs.v4addrs.src;
fltr_info->ip.v4.dst_ip = fk->addrs.v4addrs.dst;
fltr_info->ip.v4.src_port = fk->ports.src;
fltr_info->ip.v4.dst_port = fk->ports.dst;
} else { /* ETH_P_IPV6 */
fltr_info->ip.v6.proto = ip_proto;
fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
ICE_FLTR_PTYPE_NONF_IPV6_TCP :
ICE_FLTR_PTYPE_NONF_IPV6_UDP;
memcpy(&fltr_info->ip.v6.src_ip, &fk->addrs.v6addrs.src,
sizeof(struct in6_addr));
memcpy(&fltr_info->ip.v6.dst_ip, &fk->addrs.v6addrs.dst,
sizeof(struct in6_addr));
fltr_info->ip.v6.src_port = fk->ports.src;
fltr_info->ip.v6.dst_port = fk->ports.dst;
}
arfs_entry->flow_id = flow_id;
fltr_info->fltr_id =
atomic_inc_return(vsi->arfs_last_fltr_id) % RPS_NO_FILTER;
return arfs_entry;
}
/**
* ice_arfs_is_perfect_flow_set - Check to see if perfect flow is set
* @hw: pointer to HW structure
* @l3_proto: ETH_P_IP or ETH_P_IPV6 in network order
* @l4_proto: IPPROTO_UDP or IPPROTO_TCP
*
* We only support perfect (4-tuple) filters for aRFS. This function allows aRFS
* to check if perfect (4-tuple) flow rules are currently in place by Flow
* Director.
*/
static bool
ice_arfs_is_perfect_flow_set(struct ice_hw *hw, __be16 l3_proto, u8 l4_proto)
{
unsigned long *perfect_fltr = hw->fdir_perfect_fltr;
/* advanced Flow Director disabled, perfect filters always supported */
if (!perfect_fltr)
return true;
if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_UDP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_UDP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_TCP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_TCP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_UDP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_UDP, perfect_fltr);
else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_TCP)
return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_TCP, perfect_fltr);
return false;
}
/**
* ice_rx_flow_steer - steer the Rx flow to where application is being run
* @netdev: ptr to the netdev being adjusted
* @skb: buffer with required header information
* @rxq_idx: queue to which the flow needs to move
* @flow_id: flow identifier provided by the netdev
*
* Based on the skb, rxq_idx, and flow_id passed in add/update an entry in the
* aRFS hash table. Iterate over one of the hlists in the aRFS hash table and
* if the flow_id already exists in the hash table but the rxq_idx has changed
* mark the entry as ICE_ARFS_INACTIVE so it can get updated in HW, else
* if the entry is marked as ICE_ARFS_TODEL delete it from the aRFS hash table.
* If neither of the previous conditions are true then add a new entry in the
* aRFS hash table, which gets set to ICE_ARFS_INACTIVE by default so it can be
* added to HW.
*/
int
ice_rx_flow_steer(struct net_device *netdev, const struct sk_buff *skb,
u16 rxq_idx, u32 flow_id)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_arfs_entry *arfs_entry;
struct ice_vsi *vsi = np->vsi;
struct flow_keys fk;
struct ice_pf *pf;
__be16 n_proto;
u8 ip_proto;
u16 idx;
int ret;
/* failed to allocate memory for aRFS so don't crash */
if (unlikely(!vsi->arfs_fltr_list))
return -ENODEV;
pf = vsi->back;
if (skb->encapsulation)
return -EPROTONOSUPPORT;
if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
return -EPROTONOSUPPORT;
n_proto = fk.basic.n_proto;
/* Support only IPV4 and IPV6 */
if ((n_proto == htons(ETH_P_IP) && !ip_is_fragment(ip_hdr(skb))) ||
n_proto == htons(ETH_P_IPV6))
ip_proto = fk.basic.ip_proto;
else
return -EPROTONOSUPPORT;
/* Support only TCP and UDP */
if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
return -EPROTONOSUPPORT;
/* only support 4-tuple filters for aRFS */
if (!ice_arfs_is_perfect_flow_set(&pf->hw, n_proto, ip_proto))
return -EOPNOTSUPP;
/* choose the aRFS list bucket based on skb hash */
idx = skb_get_hash_raw(skb) & ICE_ARFS_LST_MASK;
/* search for entry in the bucket */
spin_lock_bh(&vsi->arfs_lock);
hlist_for_each_entry(arfs_entry, &vsi->arfs_fltr_list[idx],
list_entry) {
struct ice_fdir_fltr *fltr_info;
/* keep searching for the already existing arfs_entry flow */
if (arfs_entry->flow_id != flow_id)
continue;
fltr_info = &arfs_entry->fltr_info;
ret = fltr_info->fltr_id;
if (fltr_info->q_index == rxq_idx ||
arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
goto out;
/* update the queue to forward to on an already existing flow */
fltr_info->q_index = rxq_idx;
arfs_entry->fltr_state = ICE_ARFS_INACTIVE;
ice_arfs_update_active_fltr_cntrs(vsi, arfs_entry, false);
goto out_schedule_service_task;
}
arfs_entry = ice_arfs_build_entry(vsi, &fk, rxq_idx, flow_id);
if (!arfs_entry) {
ret = -ENOMEM;
goto out;
}
ret = arfs_entry->fltr_info.fltr_id;
INIT_HLIST_NODE(&arfs_entry->list_entry);
hlist_add_head(&arfs_entry->list_entry, &vsi->arfs_fltr_list[idx]);
out_schedule_service_task:
ice_service_task_schedule(pf);
out:
spin_unlock_bh(&vsi->arfs_lock);
return ret;
}
/**
* ice_init_arfs_cntrs - initialize aRFS counter values
* @vsi: VSI that aRFS counters need to be initialized on
*/
static int ice_init_arfs_cntrs(struct ice_vsi *vsi)
{
if (!vsi || vsi->type != ICE_VSI_PF)
return -EINVAL;
vsi->arfs_fltr_cntrs = kzalloc(sizeof(*vsi->arfs_fltr_cntrs),
GFP_KERNEL);
if (!vsi->arfs_fltr_cntrs)
return -ENOMEM;
vsi->arfs_last_fltr_id = kzalloc(sizeof(*vsi->arfs_last_fltr_id),
GFP_KERNEL);
if (!vsi->arfs_last_fltr_id) {
kfree(vsi->arfs_fltr_cntrs);
vsi->arfs_fltr_cntrs = NULL;
return -ENOMEM;
}
return 0;
}
/**
* ice_init_arfs - initialize aRFS resources
* @vsi: the VSI to be forwarded to
*/
void ice_init_arfs(struct ice_vsi *vsi)
{
struct hlist_head *arfs_fltr_list;
unsigned int i;
if (!vsi || vsi->type != ICE_VSI_PF)
return;
arfs_fltr_list = kzalloc(sizeof(*arfs_fltr_list) * ICE_MAX_ARFS_LIST,
GFP_KERNEL);
if (!arfs_fltr_list)
return;
if (ice_init_arfs_cntrs(vsi))
goto free_arfs_fltr_list;
for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
INIT_HLIST_HEAD(&arfs_fltr_list[i]);
spin_lock_init(&vsi->arfs_lock);
vsi->arfs_fltr_list = arfs_fltr_list;
return;
free_arfs_fltr_list:
kfree(arfs_fltr_list);
}
/**
* ice_clear_arfs - clear the aRFS hash table and any memory used for aRFS
* @vsi: the VSI to be forwarded to
*/
void ice_clear_arfs(struct ice_vsi *vsi)
{
struct device *dev;
unsigned int i;
if (!vsi || vsi->type != ICE_VSI_PF || !vsi->back ||
!vsi->arfs_fltr_list)
return;
dev = ice_pf_to_dev(vsi->back);
for (i = 0; i < ICE_MAX_ARFS_LIST; i++) {
struct ice_arfs_entry *r;
struct hlist_node *n;
spin_lock_bh(&vsi->arfs_lock);
hlist_for_each_entry_safe(r, n, &vsi->arfs_fltr_list[i],
list_entry) {
hlist_del(&r->list_entry);
devm_kfree(dev, r);
}
spin_unlock_bh(&vsi->arfs_lock);
}
kfree(vsi->arfs_fltr_list);
vsi->arfs_fltr_list = NULL;
kfree(vsi->arfs_last_fltr_id);
vsi->arfs_last_fltr_id = NULL;
kfree(vsi->arfs_fltr_cntrs);
vsi->arfs_fltr_cntrs = NULL;
}
/**
* ice_free_cpu_rx_rmap - free setup CPU reverse map
* @vsi: the VSI to be forwarded to
*/
void ice_free_cpu_rx_rmap(struct ice_vsi *vsi)
{
struct net_device *netdev;
if (!vsi || vsi->type != ICE_VSI_PF || !vsi->arfs_fltr_list)
return;
netdev = vsi->netdev;
if (!netdev || !netdev->rx_cpu_rmap)
return;
free_irq_cpu_rmap(netdev->rx_cpu_rmap);
netdev->rx_cpu_rmap = NULL;
}
/**
* ice_set_cpu_rx_rmap - setup CPU reverse map for each queue
* @vsi: the VSI to be forwarded to
*/
int ice_set_cpu_rx_rmap(struct ice_vsi *vsi)
{
struct net_device *netdev;
struct ice_pf *pf;
int base_idx, i;
if (!vsi || vsi->type != ICE_VSI_PF)
return -EINVAL;
pf = vsi->back;
netdev = vsi->netdev;
if (!pf || !netdev || !vsi->num_q_vectors)
return -EINVAL;
netdev_dbg(netdev, "Setup CPU RMAP: vsi type 0x%x, ifname %s, q_vectors %d\n",
vsi->type, netdev->name, vsi->num_q_vectors);
netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(vsi->num_q_vectors);
if (unlikely(!netdev->rx_cpu_rmap))
return -EINVAL;
base_idx = vsi->base_vector;
for (i = 0; i < vsi->num_q_vectors; i++)
if (irq_cpu_rmap_add(netdev->rx_cpu_rmap,
pf->msix_entries[base_idx + i].vector)) {
ice_free_cpu_rx_rmap(vsi);
return -EINVAL;
}
return 0;
}
/**
* ice_remove_arfs - remove/clear all aRFS resources
* @pf: device private structure
*/
void ice_remove_arfs(struct ice_pf *pf)
{
struct ice_vsi *pf_vsi;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
ice_free_cpu_rx_rmap(pf_vsi);
ice_clear_arfs(pf_vsi);
}
/**
* ice_rebuild_arfs - remove/clear all aRFS resources and rebuild after reset
* @pf: device private structure
*/
void ice_rebuild_arfs(struct ice_pf *pf)
{
struct ice_vsi *pf_vsi;
pf_vsi = ice_get_main_vsi(pf);
if (!pf_vsi)
return;
ice_remove_arfs(pf);
if (ice_set_cpu_rx_rmap(pf_vsi)) {
dev_err(ice_pf_to_dev(pf), "Failed to rebuild aRFS\n");
return;
}
ice_init_arfs(pf_vsi);
}