mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-22 18:44:44 +08:00
b464763cc3
Pressing a button on a remote control unit will typically lead to messages being sent several times per second until the button is released. Some remote control units indicate long key presses by sending special "repeat" messages, for which the protocol driver calls rc_repeat(). Other units repeat the same message over and over, which will be handled by calling rc_keydown(). The function rc_keydown() never set the LIRC "repeat" flag to distinguish repeated messages that were sent due to a long keypress, and messages sent due to repeated short keypresses. While a user-space program may implement special logic to distinguish long keypresses, it is much simpler to be able to rely on the flag. Commitde142c3241
("media: lirc: implement reading scancode") would never set the LIRC_SCANCODE_FLAG_REPEAT flag. Commitb66218fddf
("media: lirc: ensure lirc device receives nec repeats") fixed it up for rc_repeat() but not rc_keydown(). Signed-off-by: Marko Mäkelä <marko.makela@iki.fi> Co-developed-by: Sean Young <sean@mess.org> Signed-off-by: Sean Young <sean@mess.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
2096 lines
53 KiB
C
2096 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// rc-main.c - Remote Controller core module
|
|
//
|
|
// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <media/rc-core.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/input.h>
|
|
#include <linux/leds.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/device.h>
|
|
#include <linux/module.h>
|
|
#include "rc-core-priv.h"
|
|
|
|
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
|
|
#define IR_TAB_MIN_SIZE 256
|
|
#define IR_TAB_MAX_SIZE 8192
|
|
|
|
static const struct {
|
|
const char *name;
|
|
unsigned int repeat_period;
|
|
unsigned int scancode_bits;
|
|
} protocols[] = {
|
|
[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
|
|
[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
|
|
[RC_PROTO_RC5] = { .name = "rc-5",
|
|
.scancode_bits = 0x1f7f, .repeat_period = 114 },
|
|
[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
|
|
.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
|
|
[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
|
|
.scancode_bits = 0x2fff, .repeat_period = 114 },
|
|
[RC_PROTO_JVC] = { .name = "jvc",
|
|
.scancode_bits = 0xffff, .repeat_period = 125 },
|
|
[RC_PROTO_SONY12] = { .name = "sony-12",
|
|
.scancode_bits = 0x1f007f, .repeat_period = 100 },
|
|
[RC_PROTO_SONY15] = { .name = "sony-15",
|
|
.scancode_bits = 0xff007f, .repeat_period = 100 },
|
|
[RC_PROTO_SONY20] = { .name = "sony-20",
|
|
.scancode_bits = 0x1fff7f, .repeat_period = 100 },
|
|
[RC_PROTO_NEC] = { .name = "nec",
|
|
.scancode_bits = 0xffff, .repeat_period = 110 },
|
|
[RC_PROTO_NECX] = { .name = "nec-x",
|
|
.scancode_bits = 0xffffff, .repeat_period = 110 },
|
|
[RC_PROTO_NEC32] = { .name = "nec-32",
|
|
.scancode_bits = 0xffffffff, .repeat_period = 110 },
|
|
[RC_PROTO_SANYO] = { .name = "sanyo",
|
|
.scancode_bits = 0x1fffff, .repeat_period = 125 },
|
|
[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
|
|
.scancode_bits = 0xffffff, .repeat_period = 100 },
|
|
[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
|
|
.scancode_bits = 0x1fffff, .repeat_period = 100 },
|
|
[RC_PROTO_RC6_0] = { .name = "rc-6-0",
|
|
.scancode_bits = 0xffff, .repeat_period = 114 },
|
|
[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
|
|
.scancode_bits = 0xfffff, .repeat_period = 114 },
|
|
[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
|
|
.scancode_bits = 0xffffff, .repeat_period = 114 },
|
|
[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
|
|
.scancode_bits = 0xffffffff, .repeat_period = 114 },
|
|
[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
|
|
.scancode_bits = 0xffff7fff, .repeat_period = 114 },
|
|
[RC_PROTO_SHARP] = { .name = "sharp",
|
|
.scancode_bits = 0x1fff, .repeat_period = 125 },
|
|
[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
|
|
[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
|
|
[RC_PROTO_IMON] = { .name = "imon",
|
|
.scancode_bits = 0x7fffffff, .repeat_period = 114 },
|
|
[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
|
|
.scancode_bits = 0x00000fff, .repeat_period = 114 },
|
|
[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
|
|
.scancode_bits = 0x00ffffff, .repeat_period = 114 },
|
|
[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
|
|
.scancode_bits = 0xffffffff, .repeat_period = 114 },
|
|
[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
|
|
};
|
|
|
|
/* Used to keep track of known keymaps */
|
|
static LIST_HEAD(rc_map_list);
|
|
static DEFINE_SPINLOCK(rc_map_lock);
|
|
static struct led_trigger *led_feedback;
|
|
|
|
/* Used to keep track of rc devices */
|
|
static DEFINE_IDA(rc_ida);
|
|
|
|
static struct rc_map_list *seek_rc_map(const char *name)
|
|
{
|
|
struct rc_map_list *map = NULL;
|
|
|
|
spin_lock(&rc_map_lock);
|
|
list_for_each_entry(map, &rc_map_list, list) {
|
|
if (!strcmp(name, map->map.name)) {
|
|
spin_unlock(&rc_map_lock);
|
|
return map;
|
|
}
|
|
}
|
|
spin_unlock(&rc_map_lock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct rc_map *rc_map_get(const char *name)
|
|
{
|
|
|
|
struct rc_map_list *map;
|
|
|
|
map = seek_rc_map(name);
|
|
#ifdef CONFIG_MODULES
|
|
if (!map) {
|
|
int rc = request_module("%s", name);
|
|
if (rc < 0) {
|
|
pr_err("Couldn't load IR keymap %s\n", name);
|
|
return NULL;
|
|
}
|
|
msleep(20); /* Give some time for IR to register */
|
|
|
|
map = seek_rc_map(name);
|
|
}
|
|
#endif
|
|
if (!map) {
|
|
pr_err("IR keymap %s not found\n", name);
|
|
return NULL;
|
|
}
|
|
|
|
printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
|
|
|
|
return &map->map;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_get);
|
|
|
|
int rc_map_register(struct rc_map_list *map)
|
|
{
|
|
spin_lock(&rc_map_lock);
|
|
list_add_tail(&map->list, &rc_map_list);
|
|
spin_unlock(&rc_map_lock);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_register);
|
|
|
|
void rc_map_unregister(struct rc_map_list *map)
|
|
{
|
|
spin_lock(&rc_map_lock);
|
|
list_del(&map->list);
|
|
spin_unlock(&rc_map_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_unregister);
|
|
|
|
|
|
static struct rc_map_table empty[] = {
|
|
{ 0x2a, KEY_COFFEE },
|
|
};
|
|
|
|
static struct rc_map_list empty_map = {
|
|
.map = {
|
|
.scan = empty,
|
|
.size = ARRAY_SIZE(empty),
|
|
.rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
|
|
.name = RC_MAP_EMPTY,
|
|
}
|
|
};
|
|
|
|
/**
|
|
* scancode_to_u64() - converts scancode in &struct input_keymap_entry
|
|
* @ke: keymap entry containing scancode to be converted.
|
|
* @scancode: pointer to the location where converted scancode should
|
|
* be stored.
|
|
*
|
|
* This function is a version of input_scancode_to_scalar specialized for
|
|
* rc-core.
|
|
*/
|
|
static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
|
|
{
|
|
switch (ke->len) {
|
|
case 1:
|
|
*scancode = *((u8 *)ke->scancode);
|
|
break;
|
|
|
|
case 2:
|
|
*scancode = *((u16 *)ke->scancode);
|
|
break;
|
|
|
|
case 4:
|
|
*scancode = *((u32 *)ke->scancode);
|
|
break;
|
|
|
|
case 8:
|
|
*scancode = *((u64 *)ke->scancode);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_create_table() - initializes a scancode table
|
|
* @dev: the rc_dev device
|
|
* @rc_map: the rc_map to initialize
|
|
* @name: name to assign to the table
|
|
* @rc_proto: ir type to assign to the new table
|
|
* @size: initial size of the table
|
|
*
|
|
* This routine will initialize the rc_map and will allocate
|
|
* memory to hold at least the specified number of elements.
|
|
*
|
|
* return: zero on success or a negative error code
|
|
*/
|
|
static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
|
|
const char *name, u64 rc_proto, size_t size)
|
|
{
|
|
rc_map->name = kstrdup(name, GFP_KERNEL);
|
|
if (!rc_map->name)
|
|
return -ENOMEM;
|
|
rc_map->rc_proto = rc_proto;
|
|
rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
|
|
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
|
|
rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
|
|
if (!rc_map->scan) {
|
|
kfree(rc_map->name);
|
|
rc_map->name = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
|
|
rc_map->size, rc_map->alloc);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_free_table() - frees memory allocated by a scancode table
|
|
* @rc_map: the table whose mappings need to be freed
|
|
*
|
|
* This routine will free memory alloctaed for key mappings used by given
|
|
* scancode table.
|
|
*/
|
|
static void ir_free_table(struct rc_map *rc_map)
|
|
{
|
|
rc_map->size = 0;
|
|
kfree(rc_map->name);
|
|
rc_map->name = NULL;
|
|
kfree(rc_map->scan);
|
|
rc_map->scan = NULL;
|
|
}
|
|
|
|
/**
|
|
* ir_resize_table() - resizes a scancode table if necessary
|
|
* @dev: the rc_dev device
|
|
* @rc_map: the rc_map to resize
|
|
* @gfp_flags: gfp flags to use when allocating memory
|
|
*
|
|
* This routine will shrink the rc_map if it has lots of
|
|
* unused entries and grow it if it is full.
|
|
*
|
|
* return: zero on success or a negative error code
|
|
*/
|
|
static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
|
|
gfp_t gfp_flags)
|
|
{
|
|
unsigned int oldalloc = rc_map->alloc;
|
|
unsigned int newalloc = oldalloc;
|
|
struct rc_map_table *oldscan = rc_map->scan;
|
|
struct rc_map_table *newscan;
|
|
|
|
if (rc_map->size == rc_map->len) {
|
|
/* All entries in use -> grow keytable */
|
|
if (rc_map->alloc >= IR_TAB_MAX_SIZE)
|
|
return -ENOMEM;
|
|
|
|
newalloc *= 2;
|
|
dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
|
|
}
|
|
|
|
if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
|
|
/* Less than 1/3 of entries in use -> shrink keytable */
|
|
newalloc /= 2;
|
|
dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
|
|
}
|
|
|
|
if (newalloc == oldalloc)
|
|
return 0;
|
|
|
|
newscan = kmalloc(newalloc, gfp_flags);
|
|
if (!newscan)
|
|
return -ENOMEM;
|
|
|
|
memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
|
|
rc_map->scan = newscan;
|
|
rc_map->alloc = newalloc;
|
|
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
|
|
kfree(oldscan);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_update_mapping() - set a keycode in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @rc_map: scancode table to be adjusted
|
|
* @index: index of the mapping that needs to be updated
|
|
* @new_keycode: the desired keycode
|
|
*
|
|
* This routine is used to update scancode->keycode mapping at given
|
|
* position.
|
|
*
|
|
* return: previous keycode assigned to the mapping
|
|
*
|
|
*/
|
|
static unsigned int ir_update_mapping(struct rc_dev *dev,
|
|
struct rc_map *rc_map,
|
|
unsigned int index,
|
|
unsigned int new_keycode)
|
|
{
|
|
int old_keycode = rc_map->scan[index].keycode;
|
|
int i;
|
|
|
|
/* Did the user wish to remove the mapping? */
|
|
if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
|
|
dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
|
|
index, rc_map->scan[index].scancode);
|
|
rc_map->len--;
|
|
memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
|
|
(rc_map->len - index) * sizeof(struct rc_map_table));
|
|
} else {
|
|
dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
|
|
index,
|
|
old_keycode == KEY_RESERVED ? "New" : "Replacing",
|
|
rc_map->scan[index].scancode, new_keycode);
|
|
rc_map->scan[index].keycode = new_keycode;
|
|
__set_bit(new_keycode, dev->input_dev->keybit);
|
|
}
|
|
|
|
if (old_keycode != KEY_RESERVED) {
|
|
/* A previous mapping was updated... */
|
|
__clear_bit(old_keycode, dev->input_dev->keybit);
|
|
/* ... but another scancode might use the same keycode */
|
|
for (i = 0; i < rc_map->len; i++) {
|
|
if (rc_map->scan[i].keycode == old_keycode) {
|
|
__set_bit(old_keycode, dev->input_dev->keybit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Possibly shrink the keytable, failure is not a problem */
|
|
ir_resize_table(dev, rc_map, GFP_ATOMIC);
|
|
}
|
|
|
|
return old_keycode;
|
|
}
|
|
|
|
/**
|
|
* ir_establish_scancode() - set a keycode in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @rc_map: scancode table to be searched
|
|
* @scancode: the desired scancode
|
|
* @resize: controls whether we allowed to resize the table to
|
|
* accommodate not yet present scancodes
|
|
*
|
|
* This routine is used to locate given scancode in rc_map.
|
|
* If scancode is not yet present the routine will allocate a new slot
|
|
* for it.
|
|
*
|
|
* return: index of the mapping containing scancode in question
|
|
* or -1U in case of failure.
|
|
*/
|
|
static unsigned int ir_establish_scancode(struct rc_dev *dev,
|
|
struct rc_map *rc_map,
|
|
u64 scancode, bool resize)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Unfortunately, some hardware-based IR decoders don't provide
|
|
* all bits for the complete IR code. In general, they provide only
|
|
* the command part of the IR code. Yet, as it is possible to replace
|
|
* the provided IR with another one, it is needed to allow loading
|
|
* IR tables from other remotes. So, we support specifying a mask to
|
|
* indicate the valid bits of the scancodes.
|
|
*/
|
|
if (dev->scancode_mask)
|
|
scancode &= dev->scancode_mask;
|
|
|
|
/* First check if we already have a mapping for this ir command */
|
|
for (i = 0; i < rc_map->len; i++) {
|
|
if (rc_map->scan[i].scancode == scancode)
|
|
return i;
|
|
|
|
/* Keytable is sorted from lowest to highest scancode */
|
|
if (rc_map->scan[i].scancode >= scancode)
|
|
break;
|
|
}
|
|
|
|
/* No previous mapping found, we might need to grow the table */
|
|
if (rc_map->size == rc_map->len) {
|
|
if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
|
|
return -1U;
|
|
}
|
|
|
|
/* i is the proper index to insert our new keycode */
|
|
if (i < rc_map->len)
|
|
memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
|
|
(rc_map->len - i) * sizeof(struct rc_map_table));
|
|
rc_map->scan[i].scancode = scancode;
|
|
rc_map->scan[i].keycode = KEY_RESERVED;
|
|
rc_map->len++;
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* ir_setkeycode() - set a keycode in the scancode->keycode table
|
|
* @idev: the struct input_dev device descriptor
|
|
* @ke: Input keymap entry
|
|
* @old_keycode: result
|
|
*
|
|
* This routine is used to handle evdev EVIOCSKEY ioctl.
|
|
*
|
|
* return: -EINVAL if the keycode could not be inserted, otherwise zero.
|
|
*/
|
|
static int ir_setkeycode(struct input_dev *idev,
|
|
const struct input_keymap_entry *ke,
|
|
unsigned int *old_keycode)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
struct rc_map *rc_map = &rdev->rc_map;
|
|
unsigned int index;
|
|
u64 scancode;
|
|
int retval = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
|
|
index = ke->index;
|
|
if (index >= rc_map->len) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
retval = scancode_to_u64(ke, &scancode);
|
|
if (retval)
|
|
goto out;
|
|
|
|
index = ir_establish_scancode(rdev, rc_map, scancode, true);
|
|
if (index >= rc_map->len) {
|
|
retval = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ir_setkeytable() - sets several entries in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @from: the struct rc_map to copy entries from
|
|
*
|
|
* This routine is used to handle table initialization.
|
|
*
|
|
* return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
|
|
*/
|
|
static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
|
|
{
|
|
struct rc_map *rc_map = &dev->rc_map;
|
|
unsigned int i, index;
|
|
int rc;
|
|
|
|
rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
|
|
from->size);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < from->size; i++) {
|
|
index = ir_establish_scancode(dev, rc_map,
|
|
from->scan[i].scancode, false);
|
|
if (index >= rc_map->len) {
|
|
rc = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
ir_update_mapping(dev, rc_map, index,
|
|
from->scan[i].keycode);
|
|
}
|
|
|
|
if (rc)
|
|
ir_free_table(rc_map);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int rc_map_cmp(const void *key, const void *elt)
|
|
{
|
|
const u64 *scancode = key;
|
|
const struct rc_map_table *e = elt;
|
|
|
|
if (*scancode < e->scancode)
|
|
return -1;
|
|
else if (*scancode > e->scancode)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_lookup_by_scancode() - locate mapping by scancode
|
|
* @rc_map: the struct rc_map to search
|
|
* @scancode: scancode to look for in the table
|
|
*
|
|
* This routine performs binary search in RC keykeymap table for
|
|
* given scancode.
|
|
*
|
|
* return: index in the table, -1U if not found
|
|
*/
|
|
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
|
|
u64 scancode)
|
|
{
|
|
struct rc_map_table *res;
|
|
|
|
res = bsearch(&scancode, rc_map->scan, rc_map->len,
|
|
sizeof(struct rc_map_table), rc_map_cmp);
|
|
if (!res)
|
|
return -1U;
|
|
else
|
|
return res - rc_map->scan;
|
|
}
|
|
|
|
/**
|
|
* ir_getkeycode() - get a keycode from the scancode->keycode table
|
|
* @idev: the struct input_dev device descriptor
|
|
* @ke: Input keymap entry
|
|
*
|
|
* This routine is used to handle evdev EVIOCGKEY ioctl.
|
|
*
|
|
* return: always returns zero.
|
|
*/
|
|
static int ir_getkeycode(struct input_dev *idev,
|
|
struct input_keymap_entry *ke)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
struct rc_map *rc_map = &rdev->rc_map;
|
|
struct rc_map_table *entry;
|
|
unsigned long flags;
|
|
unsigned int index;
|
|
u64 scancode;
|
|
int retval;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
|
|
index = ke->index;
|
|
} else {
|
|
retval = scancode_to_u64(ke, &scancode);
|
|
if (retval)
|
|
goto out;
|
|
|
|
index = ir_lookup_by_scancode(rc_map, scancode);
|
|
}
|
|
|
|
if (index < rc_map->len) {
|
|
entry = &rc_map->scan[index];
|
|
|
|
ke->index = index;
|
|
ke->keycode = entry->keycode;
|
|
ke->len = sizeof(entry->scancode);
|
|
memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
|
|
} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
|
|
/*
|
|
* We do not really know the valid range of scancodes
|
|
* so let's respond with KEY_RESERVED to anything we
|
|
* do not have mapping for [yet].
|
|
*/
|
|
ke->index = index;
|
|
ke->keycode = KEY_RESERVED;
|
|
} else {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
retval = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @scancode: the scancode to look for
|
|
*
|
|
* This routine is used by drivers which need to convert a scancode to a
|
|
* keycode. Normally it should not be used since drivers should have no
|
|
* interest in keycodes.
|
|
*
|
|
* return: the corresponding keycode, or KEY_RESERVED
|
|
*/
|
|
u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
|
|
{
|
|
struct rc_map *rc_map = &dev->rc_map;
|
|
unsigned int keycode;
|
|
unsigned int index;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
index = ir_lookup_by_scancode(rc_map, scancode);
|
|
keycode = index < rc_map->len ?
|
|
rc_map->scan[index].keycode : KEY_RESERVED;
|
|
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
|
|
if (keycode != KEY_RESERVED)
|
|
dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
|
|
dev->device_name, scancode, keycode);
|
|
|
|
return keycode;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
|
|
|
|
/**
|
|
* ir_do_keyup() - internal function to signal the release of a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @sync: whether or not to call input_sync
|
|
*
|
|
* This function is used internally to release a keypress, it must be
|
|
* called with keylock held.
|
|
*/
|
|
static void ir_do_keyup(struct rc_dev *dev, bool sync)
|
|
{
|
|
if (!dev->keypressed)
|
|
return;
|
|
|
|
dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
|
|
del_timer(&dev->timer_repeat);
|
|
input_report_key(dev->input_dev, dev->last_keycode, 0);
|
|
led_trigger_event(led_feedback, LED_OFF);
|
|
if (sync)
|
|
input_sync(dev->input_dev);
|
|
dev->keypressed = false;
|
|
}
|
|
|
|
/**
|
|
* rc_keyup() - signals the release of a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
*
|
|
* This routine is used to signal that a key has been released on the
|
|
* remote control.
|
|
*/
|
|
void rc_keyup(struct rc_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keyup(dev, true);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keyup);
|
|
|
|
/**
|
|
* ir_timer_keyup() - generates a keyup event after a timeout
|
|
*
|
|
* @t: a pointer to the struct timer_list
|
|
*
|
|
* This routine will generate a keyup event some time after a keydown event
|
|
* is generated when no further activity has been detected.
|
|
*/
|
|
static void ir_timer_keyup(struct timer_list *t)
|
|
{
|
|
struct rc_dev *dev = from_timer(dev, t, timer_keyup);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* ir->keyup_jiffies is used to prevent a race condition if a
|
|
* hardware interrupt occurs at this point and the keyup timer
|
|
* event is moved further into the future as a result.
|
|
*
|
|
* The timer will then be reactivated and this function called
|
|
* again in the future. We need to exit gracefully in that case
|
|
* to allow the input subsystem to do its auto-repeat magic or
|
|
* a keyup event might follow immediately after the keydown.
|
|
*/
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
if (time_is_before_eq_jiffies(dev->keyup_jiffies))
|
|
ir_do_keyup(dev, true);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
|
|
/**
|
|
* ir_timer_repeat() - generates a repeat event after a timeout
|
|
*
|
|
* @t: a pointer to the struct timer_list
|
|
*
|
|
* This routine will generate a soft repeat event every REP_PERIOD
|
|
* milliseconds.
|
|
*/
|
|
static void ir_timer_repeat(struct timer_list *t)
|
|
{
|
|
struct rc_dev *dev = from_timer(dev, t, timer_repeat);
|
|
struct input_dev *input = dev->input_dev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
if (dev->keypressed) {
|
|
input_event(input, EV_KEY, dev->last_keycode, 2);
|
|
input_sync(input);
|
|
if (input->rep[REP_PERIOD])
|
|
mod_timer(&dev->timer_repeat, jiffies +
|
|
msecs_to_jiffies(input->rep[REP_PERIOD]));
|
|
}
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
|
|
static unsigned int repeat_period(int protocol)
|
|
{
|
|
if (protocol >= ARRAY_SIZE(protocols))
|
|
return 100;
|
|
|
|
return protocols[protocol].repeat_period;
|
|
}
|
|
|
|
/**
|
|
* rc_repeat() - signals that a key is still pressed
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
*
|
|
* This routine is used by IR decoders when a repeat message which does
|
|
* not include the necessary bits to reproduce the scancode has been
|
|
* received.
|
|
*/
|
|
void rc_repeat(struct rc_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int timeout = usecs_to_jiffies(dev->timeout) +
|
|
msecs_to_jiffies(repeat_period(dev->last_protocol));
|
|
struct lirc_scancode sc = {
|
|
.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
|
|
.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
|
|
.flags = LIRC_SCANCODE_FLAG_REPEAT |
|
|
(dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
|
|
};
|
|
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
lirc_scancode_event(dev, &sc);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
|
|
if (dev->last_scancode <= U32_MAX) {
|
|
input_event(dev->input_dev, EV_MSC, MSC_SCAN,
|
|
dev->last_scancode);
|
|
input_sync(dev->input_dev);
|
|
}
|
|
|
|
if (dev->keypressed) {
|
|
dev->keyup_jiffies = jiffies + timeout;
|
|
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_repeat);
|
|
|
|
/**
|
|
* ir_do_keydown() - internal function to process a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol of the keypress
|
|
* @scancode: the scancode of the keypress
|
|
* @keycode: the keycode of the keypress
|
|
* @toggle: the toggle value of the keypress
|
|
*
|
|
* This function is used internally to register a keypress, it must be
|
|
* called with keylock held.
|
|
*/
|
|
static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
|
|
u64 scancode, u32 keycode, u8 toggle)
|
|
{
|
|
bool new_event = (!dev->keypressed ||
|
|
dev->last_protocol != protocol ||
|
|
dev->last_scancode != scancode ||
|
|
dev->last_toggle != toggle);
|
|
struct lirc_scancode sc = {
|
|
.scancode = scancode, .rc_proto = protocol,
|
|
.flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
|
|
(!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
|
|
.keycode = keycode
|
|
};
|
|
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
lirc_scancode_event(dev, &sc);
|
|
|
|
if (new_event && dev->keypressed)
|
|
ir_do_keyup(dev, false);
|
|
|
|
if (scancode <= U32_MAX)
|
|
input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
|
|
|
|
dev->last_protocol = protocol;
|
|
dev->last_scancode = scancode;
|
|
dev->last_toggle = toggle;
|
|
dev->last_keycode = keycode;
|
|
|
|
if (new_event && keycode != KEY_RESERVED) {
|
|
/* Register a keypress */
|
|
dev->keypressed = true;
|
|
|
|
dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
|
|
dev->device_name, keycode, protocol, scancode);
|
|
input_report_key(dev->input_dev, keycode, 1);
|
|
|
|
led_trigger_event(led_feedback, LED_FULL);
|
|
}
|
|
|
|
/*
|
|
* For CEC, start sending repeat messages as soon as the first
|
|
* repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
|
|
* is non-zero. Otherwise, the input layer will generate repeat
|
|
* messages.
|
|
*/
|
|
if (!new_event && keycode != KEY_RESERVED &&
|
|
dev->allowed_protocols == RC_PROTO_BIT_CEC &&
|
|
!timer_pending(&dev->timer_repeat) &&
|
|
dev->input_dev->rep[REP_PERIOD] &&
|
|
!dev->input_dev->rep[REP_DELAY]) {
|
|
input_event(dev->input_dev, EV_KEY, keycode, 2);
|
|
mod_timer(&dev->timer_repeat, jiffies +
|
|
msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
|
|
}
|
|
|
|
input_sync(dev->input_dev);
|
|
}
|
|
|
|
/**
|
|
* rc_keydown() - generates input event for a key press
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol for the keypress
|
|
* @scancode: the scancode for the keypress
|
|
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
|
|
* support toggle values, this should be set to zero)
|
|
*
|
|
* This routine is used to signal that a key has been pressed on the
|
|
* remote control.
|
|
*/
|
|
void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
|
|
u8 toggle)
|
|
{
|
|
unsigned long flags;
|
|
u32 keycode = rc_g_keycode_from_table(dev, scancode);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
|
|
|
|
if (dev->keypressed) {
|
|
dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
|
|
msecs_to_jiffies(repeat_period(protocol));
|
|
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
|
|
}
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keydown);
|
|
|
|
/**
|
|
* rc_keydown_notimeout() - generates input event for a key press without
|
|
* an automatic keyup event at a later time
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol for the keypress
|
|
* @scancode: the scancode for the keypress
|
|
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
|
|
* support toggle values, this should be set to zero)
|
|
*
|
|
* This routine is used to signal that a key has been pressed on the
|
|
* remote control. The driver must manually call rc_keyup() at a later stage.
|
|
*/
|
|
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
|
|
u64 scancode, u8 toggle)
|
|
{
|
|
unsigned long flags;
|
|
u32 keycode = rc_g_keycode_from_table(dev, scancode);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
|
|
|
|
/**
|
|
* rc_validate_scancode() - checks that a scancode is valid for a protocol.
|
|
* For nec, it should do the opposite of ir_nec_bytes_to_scancode()
|
|
* @proto: protocol
|
|
* @scancode: scancode
|
|
*/
|
|
bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
|
|
{
|
|
switch (proto) {
|
|
/*
|
|
* NECX has a 16-bit address; if the lower 8 bits match the upper
|
|
* 8 bits inverted, then the address would match regular nec.
|
|
*/
|
|
case RC_PROTO_NECX:
|
|
if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
|
|
return false;
|
|
break;
|
|
/*
|
|
* NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
|
|
* of the command match the upper 8 bits inverted, then it would
|
|
* be either NEC or NECX.
|
|
*/
|
|
case RC_PROTO_NEC32:
|
|
if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
|
|
return false;
|
|
break;
|
|
/*
|
|
* If the customer code (top 32-bit) is 0x800f, it is MCE else it
|
|
* is regular mode-6a 32 bit
|
|
*/
|
|
case RC_PROTO_RC6_MCE:
|
|
if ((scancode & 0xffff0000) != 0x800f0000)
|
|
return false;
|
|
break;
|
|
case RC_PROTO_RC6_6A_32:
|
|
if ((scancode & 0xffff0000) == 0x800f0000)
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* rc_validate_filter() - checks that the scancode and mask are valid and
|
|
* provides sensible defaults
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @filter: the scancode and mask
|
|
*
|
|
* return: 0 or -EINVAL if the filter is not valid
|
|
*/
|
|
static int rc_validate_filter(struct rc_dev *dev,
|
|
struct rc_scancode_filter *filter)
|
|
{
|
|
u32 mask, s = filter->data;
|
|
enum rc_proto protocol = dev->wakeup_protocol;
|
|
|
|
if (protocol >= ARRAY_SIZE(protocols))
|
|
return -EINVAL;
|
|
|
|
mask = protocols[protocol].scancode_bits;
|
|
|
|
if (!rc_validate_scancode(protocol, s))
|
|
return -EINVAL;
|
|
|
|
filter->data &= mask;
|
|
filter->mask &= mask;
|
|
|
|
/*
|
|
* If we have to raw encode the IR for wakeup, we cannot have a mask
|
|
*/
|
|
if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rc_open(struct rc_dev *rdev)
|
|
{
|
|
int rval = 0;
|
|
|
|
if (!rdev)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rdev->lock);
|
|
|
|
if (!rdev->registered) {
|
|
rval = -ENODEV;
|
|
} else {
|
|
if (!rdev->users++ && rdev->open)
|
|
rval = rdev->open(rdev);
|
|
|
|
if (rval)
|
|
rdev->users--;
|
|
}
|
|
|
|
mutex_unlock(&rdev->lock);
|
|
|
|
return rval;
|
|
}
|
|
|
|
static int ir_open(struct input_dev *idev)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
|
|
return rc_open(rdev);
|
|
}
|
|
|
|
void rc_close(struct rc_dev *rdev)
|
|
{
|
|
if (rdev) {
|
|
mutex_lock(&rdev->lock);
|
|
|
|
if (!--rdev->users && rdev->close && rdev->registered)
|
|
rdev->close(rdev);
|
|
|
|
mutex_unlock(&rdev->lock);
|
|
}
|
|
}
|
|
|
|
static void ir_close(struct input_dev *idev)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
rc_close(rdev);
|
|
}
|
|
|
|
/* class for /sys/class/rc */
|
|
static char *rc_devnode(struct device *dev, umode_t *mode)
|
|
{
|
|
return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
|
|
}
|
|
|
|
static struct class rc_class = {
|
|
.name = "rc",
|
|
.devnode = rc_devnode,
|
|
};
|
|
|
|
/*
|
|
* These are the protocol textual descriptions that are
|
|
* used by the sysfs protocols file. Note that the order
|
|
* of the entries is relevant.
|
|
*/
|
|
static const struct {
|
|
u64 type;
|
|
const char *name;
|
|
const char *module_name;
|
|
} proto_names[] = {
|
|
{ RC_PROTO_BIT_NONE, "none", NULL },
|
|
{ RC_PROTO_BIT_OTHER, "other", NULL },
|
|
{ RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
|
|
{ RC_PROTO_BIT_RC5 |
|
|
RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
|
|
{ RC_PROTO_BIT_NEC |
|
|
RC_PROTO_BIT_NECX |
|
|
RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
|
|
{ RC_PROTO_BIT_RC6_0 |
|
|
RC_PROTO_BIT_RC6_6A_20 |
|
|
RC_PROTO_BIT_RC6_6A_24 |
|
|
RC_PROTO_BIT_RC6_6A_32 |
|
|
RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
|
|
{ RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
|
|
{ RC_PROTO_BIT_SONY12 |
|
|
RC_PROTO_BIT_SONY15 |
|
|
RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
|
|
{ RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
|
|
{ RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
|
|
{ RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
|
|
{ RC_PROTO_BIT_MCIR2_KBD |
|
|
RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
|
|
{ RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
|
|
{ RC_PROTO_BIT_CEC, "cec", NULL },
|
|
{ RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
|
|
{ RC_PROTO_BIT_RCMM12 |
|
|
RC_PROTO_BIT_RCMM24 |
|
|
RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" },
|
|
{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL },
|
|
};
|
|
|
|
/**
|
|
* struct rc_filter_attribute - Device attribute relating to a filter type.
|
|
* @attr: Device attribute.
|
|
* @type: Filter type.
|
|
* @mask: false for filter value, true for filter mask.
|
|
*/
|
|
struct rc_filter_attribute {
|
|
struct device_attribute attr;
|
|
enum rc_filter_type type;
|
|
bool mask;
|
|
};
|
|
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
|
|
|
|
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
|
|
struct rc_filter_attribute dev_attr_##_name = { \
|
|
.attr = __ATTR(_name, _mode, _show, _store), \
|
|
.type = (_type), \
|
|
.mask = (_mask), \
|
|
}
|
|
|
|
/**
|
|
* show_protocols() - shows the current IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine for input read the IR protocol type(s).
|
|
* it is triggered by reading /sys/class/rc/rc?/protocols.
|
|
* It returns the protocol names of supported protocols.
|
|
* Enabled protocols are printed in brackets.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_protocols and show_protocols.
|
|
*/
|
|
static ssize_t show_protocols(struct device *device,
|
|
struct device_attribute *mattr, char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 allowed, enabled;
|
|
char *tmp = buf;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
enabled = dev->enabled_protocols;
|
|
allowed = dev->allowed_protocols;
|
|
if (dev->raw && !allowed)
|
|
allowed = ir_raw_get_allowed_protocols();
|
|
|
|
mutex_unlock(&dev->lock);
|
|
|
|
dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
|
|
__func__, (long long)allowed, (long long)enabled);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (allowed & enabled & proto_names[i].type)
|
|
tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
|
|
else if (allowed & proto_names[i].type)
|
|
tmp += sprintf(tmp, "%s ", proto_names[i].name);
|
|
|
|
if (allowed & proto_names[i].type)
|
|
allowed &= ~proto_names[i].type;
|
|
}
|
|
|
|
#ifdef CONFIG_LIRC
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
tmp += sprintf(tmp, "[lirc] ");
|
|
#endif
|
|
|
|
if (tmp != buf)
|
|
tmp--;
|
|
*tmp = '\n';
|
|
|
|
return tmp + 1 - buf;
|
|
}
|
|
|
|
/**
|
|
* parse_protocol_change() - parses a protocol change request
|
|
* @dev: rc_dev device
|
|
* @protocols: pointer to the bitmask of current protocols
|
|
* @buf: pointer to the buffer with a list of changes
|
|
*
|
|
* Writing "+proto" will add a protocol to the protocol mask.
|
|
* Writing "-proto" will remove a protocol from protocol mask.
|
|
* Writing "proto" will enable only "proto".
|
|
* Writing "none" will disable all protocols.
|
|
* Returns the number of changes performed or a negative error code.
|
|
*/
|
|
static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
|
|
const char *buf)
|
|
{
|
|
const char *tmp;
|
|
unsigned count = 0;
|
|
bool enable, disable;
|
|
u64 mask;
|
|
int i;
|
|
|
|
while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
|
|
if (!*tmp)
|
|
break;
|
|
|
|
if (*tmp == '+') {
|
|
enable = true;
|
|
disable = false;
|
|
tmp++;
|
|
} else if (*tmp == '-') {
|
|
enable = false;
|
|
disable = true;
|
|
tmp++;
|
|
} else {
|
|
enable = false;
|
|
disable = false;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (!strcasecmp(tmp, proto_names[i].name)) {
|
|
mask = proto_names[i].type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(proto_names)) {
|
|
if (!strcasecmp(tmp, "lirc"))
|
|
mask = 0;
|
|
else {
|
|
dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
|
|
tmp);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
count++;
|
|
|
|
if (enable)
|
|
*protocols |= mask;
|
|
else if (disable)
|
|
*protocols &= ~mask;
|
|
else
|
|
*protocols = mask;
|
|
}
|
|
|
|
if (!count) {
|
|
dev_dbg(&dev->dev, "Protocol not specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void ir_raw_load_modules(u64 *protocols)
|
|
{
|
|
u64 available;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (proto_names[i].type == RC_PROTO_BIT_NONE ||
|
|
proto_names[i].type & (RC_PROTO_BIT_OTHER |
|
|
RC_PROTO_BIT_UNKNOWN))
|
|
continue;
|
|
|
|
available = ir_raw_get_allowed_protocols();
|
|
if (!(*protocols & proto_names[i].type & ~available))
|
|
continue;
|
|
|
|
if (!proto_names[i].module_name) {
|
|
pr_err("Can't enable IR protocol %s\n",
|
|
proto_names[i].name);
|
|
*protocols &= ~proto_names[i].type;
|
|
continue;
|
|
}
|
|
|
|
ret = request_module("%s", proto_names[i].module_name);
|
|
if (ret < 0) {
|
|
pr_err("Couldn't load IR protocol module %s\n",
|
|
proto_names[i].module_name);
|
|
*protocols &= ~proto_names[i].type;
|
|
continue;
|
|
}
|
|
msleep(20);
|
|
available = ir_raw_get_allowed_protocols();
|
|
if (!(*protocols & proto_names[i].type & ~available))
|
|
continue;
|
|
|
|
pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
|
|
proto_names[i].module_name,
|
|
proto_names[i].name);
|
|
*protocols &= ~proto_names[i].type;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* store_protocols() - changes the current/wakeup IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing the IR protocol type.
|
|
* It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
|
|
* See parse_protocol_change() for the valid commands.
|
|
* Returns @len on success or a negative error code.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_protocols and show_protocols.
|
|
*/
|
|
static ssize_t store_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 *current_protocols;
|
|
struct rc_scancode_filter *filter;
|
|
u64 old_protocols, new_protocols;
|
|
ssize_t rc;
|
|
|
|
dev_dbg(&dev->dev, "Normal protocol change requested\n");
|
|
current_protocols = &dev->enabled_protocols;
|
|
filter = &dev->scancode_filter;
|
|
|
|
if (!dev->change_protocol) {
|
|
dev_dbg(&dev->dev, "Protocol switching not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&dev->lock);
|
|
if (!dev->registered) {
|
|
mutex_unlock(&dev->lock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
old_protocols = *current_protocols;
|
|
new_protocols = old_protocols;
|
|
rc = parse_protocol_change(dev, &new_protocols, buf);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_load_modules(&new_protocols);
|
|
|
|
rc = dev->change_protocol(dev, &new_protocols);
|
|
if (rc < 0) {
|
|
dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
|
|
(long long)new_protocols);
|
|
goto out;
|
|
}
|
|
|
|
if (new_protocols != old_protocols) {
|
|
*current_protocols = new_protocols;
|
|
dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
|
|
(long long)new_protocols);
|
|
}
|
|
|
|
/*
|
|
* If a protocol change was attempted the filter may need updating, even
|
|
* if the actual protocol mask hasn't changed (since the driver may have
|
|
* cleared the filter).
|
|
* Try setting the same filter with the new protocol (if any).
|
|
* Fall back to clearing the filter.
|
|
*/
|
|
if (dev->s_filter && filter->mask) {
|
|
if (new_protocols)
|
|
rc = dev->s_filter(dev, filter);
|
|
else
|
|
rc = -1;
|
|
|
|
if (rc < 0) {
|
|
filter->data = 0;
|
|
filter->mask = 0;
|
|
dev->s_filter(dev, filter);
|
|
}
|
|
}
|
|
|
|
rc = len;
|
|
|
|
out:
|
|
mutex_unlock(&dev->lock);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* show_filter() - shows the current scancode filter value or mask
|
|
* @device: the device descriptor
|
|
* @attr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine to read a scancode filter value or mask.
|
|
* It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
|
|
* It prints the current scancode filter value or mask of the appropriate filter
|
|
* type in hexadecimal into @buf and returns the size of the buffer.
|
|
*
|
|
* Bits of the filter value corresponding to set bits in the filter mask are
|
|
* compared against input scancodes and non-matching scancodes are discarded.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_filter and show_filter.
|
|
*/
|
|
static ssize_t show_filter(struct device *device,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
|
|
struct rc_scancode_filter *filter;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL)
|
|
filter = &dev->scancode_filter;
|
|
else
|
|
filter = &dev->scancode_wakeup_filter;
|
|
|
|
if (fattr->mask)
|
|
val = filter->mask;
|
|
else
|
|
val = filter->data;
|
|
mutex_unlock(&dev->lock);
|
|
|
|
return sprintf(buf, "%#x\n", val);
|
|
}
|
|
|
|
/**
|
|
* store_filter() - changes the scancode filter value
|
|
* @device: the device descriptor
|
|
* @attr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing a scancode filter value or mask.
|
|
* It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
|
|
* Returns -EINVAL if an invalid filter value for the current protocol was
|
|
* specified or if scancode filtering is not supported by the driver, otherwise
|
|
* returns @len.
|
|
*
|
|
* Bits of the filter value corresponding to set bits in the filter mask are
|
|
* compared against input scancodes and non-matching scancodes are discarded.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_filter and show_filter.
|
|
*/
|
|
static ssize_t store_filter(struct device *device,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
|
|
struct rc_scancode_filter new_filter, *filter;
|
|
int ret;
|
|
unsigned long val;
|
|
int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL) {
|
|
set_filter = dev->s_filter;
|
|
filter = &dev->scancode_filter;
|
|
} else {
|
|
set_filter = dev->s_wakeup_filter;
|
|
filter = &dev->scancode_wakeup_filter;
|
|
}
|
|
|
|
if (!set_filter)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->lock);
|
|
if (!dev->registered) {
|
|
mutex_unlock(&dev->lock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
new_filter = *filter;
|
|
if (fattr->mask)
|
|
new_filter.mask = val;
|
|
else
|
|
new_filter.data = val;
|
|
|
|
if (fattr->type == RC_FILTER_WAKEUP) {
|
|
/*
|
|
* Refuse to set a filter unless a protocol is enabled
|
|
* and the filter is valid for that protocol
|
|
*/
|
|
if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
|
|
ret = rc_validate_filter(dev, &new_filter);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
if (ret != 0)
|
|
goto unlock;
|
|
}
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
|
|
val) {
|
|
/* refuse to set a filter unless a protocol is enabled */
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = set_filter(dev, &new_filter);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
*filter = new_filter;
|
|
|
|
unlock:
|
|
mutex_unlock(&dev->lock);
|
|
return (ret < 0) ? ret : len;
|
|
}
|
|
|
|
/**
|
|
* show_wakeup_protocols() - shows the wakeup IR protocol
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine for input read the IR protocol type(s).
|
|
* it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
|
|
* It returns the protocol names of supported protocols.
|
|
* The enabled protocols are printed in brackets.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_wakeup_protocols and show_wakeup_protocols.
|
|
*/
|
|
static ssize_t show_wakeup_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 allowed;
|
|
enum rc_proto enabled;
|
|
char *tmp = buf;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
allowed = dev->allowed_wakeup_protocols;
|
|
enabled = dev->wakeup_protocol;
|
|
|
|
mutex_unlock(&dev->lock);
|
|
|
|
dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
|
|
__func__, (long long)allowed, enabled);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
|
|
if (allowed & (1ULL << i)) {
|
|
if (i == enabled)
|
|
tmp += sprintf(tmp, "[%s] ", protocols[i].name);
|
|
else
|
|
tmp += sprintf(tmp, "%s ", protocols[i].name);
|
|
}
|
|
}
|
|
|
|
if (tmp != buf)
|
|
tmp--;
|
|
*tmp = '\n';
|
|
|
|
return tmp + 1 - buf;
|
|
}
|
|
|
|
/**
|
|
* store_wakeup_protocols() - changes the wakeup IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing the IR protocol type.
|
|
* It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
|
|
* Returns @len on success or a negative error code.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_wakeup_protocols and show_wakeup_protocols.
|
|
*/
|
|
static ssize_t store_wakeup_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
enum rc_proto protocol = RC_PROTO_UNKNOWN;
|
|
ssize_t rc;
|
|
u64 allowed;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
if (!dev->registered) {
|
|
mutex_unlock(&dev->lock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
allowed = dev->allowed_wakeup_protocols;
|
|
|
|
if (!sysfs_streq(buf, "none")) {
|
|
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
|
|
if ((allowed & (1ULL << i)) &&
|
|
sysfs_streq(buf, protocols[i].name)) {
|
|
protocol = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(protocols)) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (dev->encode_wakeup) {
|
|
u64 mask = 1ULL << protocol;
|
|
|
|
ir_raw_load_modules(&mask);
|
|
if (!mask) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dev->wakeup_protocol != protocol) {
|
|
dev->wakeup_protocol = protocol;
|
|
dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
|
|
|
|
if (protocol == RC_PROTO_RC6_MCE)
|
|
dev->scancode_wakeup_filter.data = 0x800f0000;
|
|
else
|
|
dev->scancode_wakeup_filter.data = 0;
|
|
dev->scancode_wakeup_filter.mask = 0;
|
|
|
|
rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
|
|
if (rc == 0)
|
|
rc = len;
|
|
} else {
|
|
rc = len;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&dev->lock);
|
|
return rc;
|
|
}
|
|
|
|
static void rc_dev_release(struct device *device)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
|
|
kfree(dev);
|
|
}
|
|
|
|
static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
if (!dev->registered)
|
|
ret = -ENODEV;
|
|
if (ret == 0 && dev->rc_map.name)
|
|
ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
|
|
if (ret == 0 && dev->driver_name)
|
|
ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
|
|
if (ret == 0 && dev->device_name)
|
|
ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
|
|
|
|
mutex_unlock(&dev->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Static device attribute struct with the sysfs attributes for IR's
|
|
*/
|
|
static struct device_attribute dev_attr_ro_protocols =
|
|
__ATTR(protocols, 0444, show_protocols, NULL);
|
|
static struct device_attribute dev_attr_rw_protocols =
|
|
__ATTR(protocols, 0644, show_protocols, store_protocols);
|
|
static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
|
|
store_wakeup_protocols);
|
|
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_NORMAL, false);
|
|
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_NORMAL, true);
|
|
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_WAKEUP, false);
|
|
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_WAKEUP, true);
|
|
|
|
static struct attribute *rc_dev_rw_protocol_attrs[] = {
|
|
&dev_attr_rw_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
|
|
.attrs = rc_dev_rw_protocol_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_ro_protocol_attrs[] = {
|
|
&dev_attr_ro_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
|
|
.attrs = rc_dev_ro_protocol_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_filter_attrs[] = {
|
|
&dev_attr_filter.attr.attr,
|
|
&dev_attr_filter_mask.attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_filter_attr_grp = {
|
|
.attrs = rc_dev_filter_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
|
|
&dev_attr_wakeup_filter.attr.attr,
|
|
&dev_attr_wakeup_filter_mask.attr.attr,
|
|
&dev_attr_wakeup_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
|
|
.attrs = rc_dev_wakeup_filter_attrs,
|
|
};
|
|
|
|
static const struct device_type rc_dev_type = {
|
|
.release = rc_dev_release,
|
|
.uevent = rc_dev_uevent,
|
|
};
|
|
|
|
struct rc_dev *rc_allocate_device(enum rc_driver_type type)
|
|
{
|
|
struct rc_dev *dev;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
if (type != RC_DRIVER_IR_RAW_TX) {
|
|
dev->input_dev = input_allocate_device();
|
|
if (!dev->input_dev) {
|
|
kfree(dev);
|
|
return NULL;
|
|
}
|
|
|
|
dev->input_dev->getkeycode = ir_getkeycode;
|
|
dev->input_dev->setkeycode = ir_setkeycode;
|
|
input_set_drvdata(dev->input_dev, dev);
|
|
|
|
dev->timeout = IR_DEFAULT_TIMEOUT;
|
|
timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
|
|
timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
|
|
|
|
spin_lock_init(&dev->rc_map.lock);
|
|
spin_lock_init(&dev->keylock);
|
|
}
|
|
mutex_init(&dev->lock);
|
|
|
|
dev->dev.type = &rc_dev_type;
|
|
dev->dev.class = &rc_class;
|
|
device_initialize(&dev->dev);
|
|
|
|
dev->driver_type = type;
|
|
|
|
__module_get(THIS_MODULE);
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_allocate_device);
|
|
|
|
void rc_free_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
input_free_device(dev->input_dev);
|
|
|
|
put_device(&dev->dev);
|
|
|
|
/* kfree(dev) will be called by the callback function
|
|
rc_dev_release() */
|
|
|
|
module_put(THIS_MODULE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_free_device);
|
|
|
|
static void devm_rc_alloc_release(struct device *dev, void *res)
|
|
{
|
|
rc_free_device(*(struct rc_dev **)res);
|
|
}
|
|
|
|
struct rc_dev *devm_rc_allocate_device(struct device *dev,
|
|
enum rc_driver_type type)
|
|
{
|
|
struct rc_dev **dr, *rc;
|
|
|
|
dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return NULL;
|
|
|
|
rc = rc_allocate_device(type);
|
|
if (!rc) {
|
|
devres_free(dr);
|
|
return NULL;
|
|
}
|
|
|
|
rc->dev.parent = dev;
|
|
rc->managed_alloc = true;
|
|
*dr = rc;
|
|
devres_add(dev, dr);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
|
|
|
|
static int rc_prepare_rx_device(struct rc_dev *dev)
|
|
{
|
|
int rc;
|
|
struct rc_map *rc_map;
|
|
u64 rc_proto;
|
|
|
|
if (!dev->map_name)
|
|
return -EINVAL;
|
|
|
|
rc_map = rc_map_get(dev->map_name);
|
|
if (!rc_map)
|
|
rc_map = rc_map_get(RC_MAP_EMPTY);
|
|
if (!rc_map || !rc_map->scan || rc_map->size == 0)
|
|
return -EINVAL;
|
|
|
|
rc = ir_setkeytable(dev, rc_map);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc_proto = BIT_ULL(rc_map->rc_proto);
|
|
|
|
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
|
|
dev->enabled_protocols = dev->allowed_protocols;
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_load_modules(&rc_proto);
|
|
|
|
if (dev->change_protocol) {
|
|
rc = dev->change_protocol(dev, &rc_proto);
|
|
if (rc < 0)
|
|
goto out_table;
|
|
dev->enabled_protocols = rc_proto;
|
|
}
|
|
|
|
/* Keyboard events */
|
|
set_bit(EV_KEY, dev->input_dev->evbit);
|
|
set_bit(EV_REP, dev->input_dev->evbit);
|
|
set_bit(EV_MSC, dev->input_dev->evbit);
|
|
set_bit(MSC_SCAN, dev->input_dev->mscbit);
|
|
|
|
/* Pointer/mouse events */
|
|
set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
|
|
set_bit(EV_REL, dev->input_dev->evbit);
|
|
set_bit(REL_X, dev->input_dev->relbit);
|
|
set_bit(REL_Y, dev->input_dev->relbit);
|
|
|
|
if (dev->open)
|
|
dev->input_dev->open = ir_open;
|
|
if (dev->close)
|
|
dev->input_dev->close = ir_close;
|
|
|
|
dev->input_dev->dev.parent = &dev->dev;
|
|
memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
|
|
dev->input_dev->phys = dev->input_phys;
|
|
dev->input_dev->name = dev->device_name;
|
|
|
|
return 0;
|
|
|
|
out_table:
|
|
ir_free_table(&dev->rc_map);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int rc_setup_rx_device(struct rc_dev *dev)
|
|
{
|
|
int rc;
|
|
|
|
/* rc_open will be called here */
|
|
rc = input_register_device(dev->input_dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Default delay of 250ms is too short for some protocols, especially
|
|
* since the timeout is currently set to 250ms. Increase it to 500ms,
|
|
* to avoid wrong repetition of the keycodes. Note that this must be
|
|
* set after the call to input_register_device().
|
|
*/
|
|
if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
|
|
dev->input_dev->rep[REP_DELAY] = 0;
|
|
else
|
|
dev->input_dev->rep[REP_DELAY] = 500;
|
|
|
|
/*
|
|
* As a repeat event on protocols like RC-5 and NEC take as long as
|
|
* 110/114ms, using 33ms as a repeat period is not the right thing
|
|
* to do.
|
|
*/
|
|
dev->input_dev->rep[REP_PERIOD] = 125;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rc_free_rx_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
if (dev->input_dev) {
|
|
input_unregister_device(dev->input_dev);
|
|
dev->input_dev = NULL;
|
|
}
|
|
|
|
ir_free_table(&dev->rc_map);
|
|
}
|
|
|
|
int rc_register_device(struct rc_dev *dev)
|
|
{
|
|
const char *path;
|
|
int attr = 0;
|
|
int minor;
|
|
int rc;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
|
|
if (minor < 0)
|
|
return minor;
|
|
|
|
dev->minor = minor;
|
|
dev_set_name(&dev->dev, "rc%u", dev->minor);
|
|
dev_set_drvdata(&dev->dev, dev);
|
|
|
|
dev->dev.groups = dev->sysfs_groups;
|
|
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
|
|
dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
|
|
else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
|
|
dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
|
|
if (dev->s_filter)
|
|
dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
|
|
if (dev->s_wakeup_filter)
|
|
dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
|
|
dev->sysfs_groups[attr++] = NULL;
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW) {
|
|
rc = ir_raw_event_prepare(dev);
|
|
if (rc < 0)
|
|
goto out_minor;
|
|
}
|
|
|
|
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
|
|
rc = rc_prepare_rx_device(dev);
|
|
if (rc)
|
|
goto out_raw;
|
|
}
|
|
|
|
dev->registered = true;
|
|
|
|
rc = device_add(&dev->dev);
|
|
if (rc)
|
|
goto out_rx_free;
|
|
|
|
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
|
|
dev_info(&dev->dev, "%s as %s\n",
|
|
dev->device_name ?: "Unspecified device", path ?: "N/A");
|
|
kfree(path);
|
|
|
|
/*
|
|
* once the input device is registered in rc_setup_rx_device,
|
|
* userspace can open the input device and rc_open() will be called
|
|
* as a result. This results in driver code being allowed to submit
|
|
* keycodes with rc_keydown, so lirc must be registered first.
|
|
*/
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
|
|
rc = lirc_register(dev);
|
|
if (rc < 0)
|
|
goto out_dev;
|
|
}
|
|
|
|
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
|
|
rc = rc_setup_rx_device(dev);
|
|
if (rc)
|
|
goto out_lirc;
|
|
}
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW) {
|
|
rc = ir_raw_event_register(dev);
|
|
if (rc < 0)
|
|
goto out_rx;
|
|
}
|
|
|
|
dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
|
|
dev->driver_name ? dev->driver_name : "unknown");
|
|
|
|
return 0;
|
|
|
|
out_rx:
|
|
rc_free_rx_device(dev);
|
|
out_lirc:
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
lirc_unregister(dev);
|
|
out_dev:
|
|
device_del(&dev->dev);
|
|
out_rx_free:
|
|
ir_free_table(&dev->rc_map);
|
|
out_raw:
|
|
ir_raw_event_free(dev);
|
|
out_minor:
|
|
ida_free(&rc_ida, minor);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_register_device);
|
|
|
|
static void devm_rc_release(struct device *dev, void *res)
|
|
{
|
|
rc_unregister_device(*(struct rc_dev **)res);
|
|
}
|
|
|
|
int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
|
|
{
|
|
struct rc_dev **dr;
|
|
int ret;
|
|
|
|
dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return -ENOMEM;
|
|
|
|
ret = rc_register_device(dev);
|
|
if (ret) {
|
|
devres_free(dr);
|
|
return ret;
|
|
}
|
|
|
|
*dr = dev;
|
|
devres_add(parent, dr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_rc_register_device);
|
|
|
|
void rc_unregister_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_event_unregister(dev);
|
|
|
|
del_timer_sync(&dev->timer_keyup);
|
|
del_timer_sync(&dev->timer_repeat);
|
|
|
|
mutex_lock(&dev->lock);
|
|
if (dev->users && dev->close)
|
|
dev->close(dev);
|
|
dev->registered = false;
|
|
mutex_unlock(&dev->lock);
|
|
|
|
rc_free_rx_device(dev);
|
|
|
|
/*
|
|
* lirc device should be freed with dev->registered = false, so
|
|
* that userspace polling will get notified.
|
|
*/
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
lirc_unregister(dev);
|
|
|
|
device_del(&dev->dev);
|
|
|
|
ida_free(&rc_ida, dev->minor);
|
|
|
|
if (!dev->managed_alloc)
|
|
rc_free_device(dev);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rc_unregister_device);
|
|
|
|
/*
|
|
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
|
|
*/
|
|
|
|
static int __init rc_core_init(void)
|
|
{
|
|
int rc = class_register(&rc_class);
|
|
if (rc) {
|
|
pr_err("rc_core: unable to register rc class\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = lirc_dev_init();
|
|
if (rc) {
|
|
pr_err("rc_core: unable to init lirc\n");
|
|
class_unregister(&rc_class);
|
|
return rc;
|
|
}
|
|
|
|
led_trigger_register_simple("rc-feedback", &led_feedback);
|
|
rc_map_register(&empty_map);
|
|
#ifdef CONFIG_MEDIA_CEC_RC
|
|
rc_map_register(&cec_map);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit rc_core_exit(void)
|
|
{
|
|
lirc_dev_exit();
|
|
class_unregister(&rc_class);
|
|
led_trigger_unregister_simple(led_feedback);
|
|
#ifdef CONFIG_MEDIA_CEC_RC
|
|
rc_map_unregister(&cec_map);
|
|
#endif
|
|
rc_map_unregister(&empty_map);
|
|
}
|
|
|
|
subsys_initcall(rc_core_init);
|
|
module_exit(rc_core_exit);
|
|
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_LICENSE("GPL v2");
|