mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 16:44:10 +08:00
2a55280a36
On 32-bit ARM, we may boot at HYP mode, or with the MMU and caches off (or both), even though the EFI spec does not actually support this. While booting at HYP mode is something we might tolerate, fiddling with the caches is a more serious issue, as disabling the caches is tricky to do safely from C code, and running without the Dcache makes it impossible to support unaligned memory accesses, which is another explicit requirement imposed by the EFI spec. So take note of the CPU mode and MMU state in the EFI stub diagnostic output so that we can easily diagnose any issues that may arise from this. E.g., EFI stub: Entering in SVC mode with MMU enabled Also, capture the CPSR and SCTLR system register values at EFI stub entry, and after ExitBootServices() returns, and check whether the MMU and Dcache were disabled at any point. If this is the case, a diagnostic message like the following will be emitted: efi: [Firmware Bug]: EFI stub was entered with MMU and Dcache disabled, please fix your firmware! efi: CPSR at EFI stub entry : 0x600001d3 efi: SCTLR at EFI stub entry : 0x00c51838 efi: CPSR after ExitBootServices() : 0x600001d3 efi: SCTLR after ExitBootServices(): 0x00c50838 Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Leif Lindholm <leif@nuviainc.com>
415 lines
12 KiB
C
415 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* EFI stub implementation that is shared by arm and arm64 architectures.
|
|
* This should be #included by the EFI stub implementation files.
|
|
*
|
|
* Copyright (C) 2013,2014 Linaro Limited
|
|
* Roy Franz <roy.franz@linaro.org
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
* Mark Salter <msalter@redhat.com>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/libfdt.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
/*
|
|
* This is the base address at which to start allocating virtual memory ranges
|
|
* for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
|
|
* any allocation we choose, and eliminate the risk of a conflict after kexec.
|
|
* The value chosen is the largest non-zero power of 2 suitable for this purpose
|
|
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
|
|
* be mapped efficiently.
|
|
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
|
|
* map everything below 1 GB. (512 MB is a reasonable upper bound for the
|
|
* entire footprint of the UEFI runtime services memory regions)
|
|
*/
|
|
#define EFI_RT_VIRTUAL_BASE SZ_512M
|
|
#define EFI_RT_VIRTUAL_SIZE SZ_512M
|
|
|
|
#ifdef CONFIG_ARM64
|
|
# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
|
|
#else
|
|
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
|
|
#endif
|
|
|
|
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
|
|
static bool flat_va_mapping;
|
|
|
|
const efi_system_table_t *efi_system_table;
|
|
|
|
static struct screen_info *setup_graphics(void)
|
|
{
|
|
efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
void **gop_handle = NULL;
|
|
struct screen_info *si = NULL;
|
|
|
|
size = 0;
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&gop_proto, NULL, &size, gop_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
si = alloc_screen_info();
|
|
if (!si)
|
|
return NULL;
|
|
status = efi_setup_gop(si, &gop_proto, size);
|
|
if (status != EFI_SUCCESS) {
|
|
free_screen_info(si);
|
|
return NULL;
|
|
}
|
|
}
|
|
return si;
|
|
}
|
|
|
|
static void install_memreserve_table(void)
|
|
{
|
|
struct linux_efi_memreserve *rsv;
|
|
efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
|
|
efi_status_t status;
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
|
|
(void **)&rsv);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memreserve entry!\n");
|
|
return;
|
|
}
|
|
|
|
rsv->next = 0;
|
|
rsv->size = 0;
|
|
atomic_set(&rsv->count, 0);
|
|
|
|
status = efi_bs_call(install_configuration_table,
|
|
&memreserve_table_guid, rsv);
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to install memreserve config table!\n");
|
|
}
|
|
|
|
static unsigned long get_dram_base(void)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long map_size, buff_size;
|
|
unsigned long membase = EFI_ERROR;
|
|
struct efi_memory_map map;
|
|
efi_memory_desc_t *md;
|
|
struct efi_boot_memmap boot_map;
|
|
|
|
boot_map.map = (efi_memory_desc_t **)&map.map;
|
|
boot_map.map_size = &map_size;
|
|
boot_map.desc_size = &map.desc_size;
|
|
boot_map.desc_ver = NULL;
|
|
boot_map.key_ptr = NULL;
|
|
boot_map.buff_size = &buff_size;
|
|
|
|
status = efi_get_memory_map(&boot_map);
|
|
if (status != EFI_SUCCESS)
|
|
return membase;
|
|
|
|
map.map_end = map.map + map_size;
|
|
|
|
for_each_efi_memory_desc_in_map(&map, md) {
|
|
if (md->attribute & EFI_MEMORY_WB) {
|
|
if (membase > md->phys_addr)
|
|
membase = md->phys_addr;
|
|
}
|
|
}
|
|
|
|
efi_bs_call(free_pool, map.map);
|
|
|
|
return membase;
|
|
}
|
|
|
|
/*
|
|
* This function handles the architcture specific differences between arm and
|
|
* arm64 regarding where the kernel image must be loaded and any memory that
|
|
* must be reserved. On failure it is required to free all
|
|
* all allocations it has made.
|
|
*/
|
|
efi_status_t handle_kernel_image(unsigned long *image_addr,
|
|
unsigned long *image_size,
|
|
unsigned long *reserve_addr,
|
|
unsigned long *reserve_size,
|
|
unsigned long dram_base,
|
|
efi_loaded_image_t *image);
|
|
|
|
asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
|
|
unsigned long fdt_addr,
|
|
unsigned long fdt_size);
|
|
|
|
/*
|
|
* EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
|
|
* that is described in the PE/COFF header. Most of the code is the same
|
|
* for both archictectures, with the arch-specific code provided in the
|
|
* handle_kernel_image() function.
|
|
*/
|
|
efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg)
|
|
{
|
|
efi_loaded_image_t *image;
|
|
efi_status_t status;
|
|
unsigned long image_addr;
|
|
unsigned long image_size = 0;
|
|
unsigned long dram_base;
|
|
/* addr/point and size pairs for memory management*/
|
|
unsigned long initrd_addr = 0;
|
|
unsigned long initrd_size = 0;
|
|
unsigned long fdt_addr = 0; /* Original DTB */
|
|
unsigned long fdt_size = 0;
|
|
char *cmdline_ptr = NULL;
|
|
int cmdline_size = 0;
|
|
efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
|
|
unsigned long reserve_addr = 0;
|
|
unsigned long reserve_size = 0;
|
|
enum efi_secureboot_mode secure_boot;
|
|
struct screen_info *si;
|
|
efi_properties_table_t *prop_tbl;
|
|
unsigned long max_addr;
|
|
|
|
efi_system_table = sys_table_arg;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
|
|
status = EFI_INVALID_PARAMETER;
|
|
goto fail;
|
|
}
|
|
|
|
status = check_platform_features();
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
|
|
/*
|
|
* Get a handle to the loaded image protocol. This is used to get
|
|
* information about the running image, such as size and the command
|
|
* line.
|
|
*/
|
|
status = efi_system_table->boottime->handle_protocol(handle,
|
|
&loaded_image_proto, (void *)&image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to get loaded image protocol\n");
|
|
goto fail;
|
|
}
|
|
|
|
dram_base = get_dram_base();
|
|
if (dram_base == EFI_ERROR) {
|
|
efi_err("Failed to find DRAM base\n");
|
|
status = EFI_LOAD_ERROR;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Get the command line from EFI, using the LOADED_IMAGE
|
|
* protocol. We are going to copy the command line into the
|
|
* device tree, so this can be allocated anywhere.
|
|
*/
|
|
cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
|
|
if (!cmdline_ptr) {
|
|
efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto fail;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
|
|
IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
|
|
cmdline_size == 0) {
|
|
status = efi_parse_options(CONFIG_CMDLINE);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail_free_cmdline;
|
|
}
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
|
|
status = efi_parse_options(cmdline_ptr);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail_free_cmdline;
|
|
}
|
|
}
|
|
|
|
efi_info("Booting Linux Kernel...\n");
|
|
|
|
si = setup_graphics();
|
|
|
|
status = handle_kernel_image(&image_addr, &image_size,
|
|
&reserve_addr,
|
|
&reserve_size,
|
|
dram_base, image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to relocate kernel\n");
|
|
goto fail_free_screeninfo;
|
|
}
|
|
|
|
efi_retrieve_tpm2_eventlog();
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation();
|
|
|
|
secure_boot = efi_get_secureboot();
|
|
|
|
/*
|
|
* Unauthenticated device tree data is a security hazard, so ignore
|
|
* 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
|
|
* boot is enabled if we can't determine its state.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
|
|
secure_boot != efi_secureboot_mode_disabled) {
|
|
if (strstr(cmdline_ptr, "dtb="))
|
|
efi_err("Ignoring DTB from command line.\n");
|
|
} else {
|
|
status = efi_load_dtb(image, &fdt_addr, &fdt_size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to load device tree!\n");
|
|
goto fail_free_image;
|
|
}
|
|
}
|
|
|
|
if (fdt_addr) {
|
|
efi_info("Using DTB from command line\n");
|
|
} else {
|
|
/* Look for a device tree configuration table entry. */
|
|
fdt_addr = (uintptr_t)get_fdt(&fdt_size);
|
|
if (fdt_addr)
|
|
efi_info("Using DTB from configuration table\n");
|
|
}
|
|
|
|
if (!fdt_addr)
|
|
efi_info("Generating empty DTB\n");
|
|
|
|
if (!efi_noinitrd) {
|
|
max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
|
|
status = efi_load_initrd(image, &initrd_addr, &initrd_size,
|
|
ULONG_MAX, max_addr);
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to load initrd!\n");
|
|
}
|
|
|
|
efi_random_get_seed();
|
|
|
|
/*
|
|
* If the NX PE data feature is enabled in the properties table, we
|
|
* should take care not to create a virtual mapping that changes the
|
|
* relative placement of runtime services code and data regions, as
|
|
* they may belong to the same PE/COFF executable image in memory.
|
|
* The easiest way to achieve that is to simply use a 1:1 mapping.
|
|
*/
|
|
prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
|
|
flat_va_mapping = prop_tbl &&
|
|
(prop_tbl->memory_protection_attribute &
|
|
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
|
|
|
|
/* hibernation expects the runtime regions to stay in the same place */
|
|
if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
|
|
/*
|
|
* Randomize the base of the UEFI runtime services region.
|
|
* Preserve the 2 MB alignment of the region by taking a
|
|
* shift of 21 bit positions into account when scaling
|
|
* the headroom value using a 32-bit random value.
|
|
*/
|
|
static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
|
|
EFI_RT_VIRTUAL_BASE -
|
|
EFI_RT_VIRTUAL_SIZE;
|
|
u32 rnd;
|
|
|
|
status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
|
|
if (status == EFI_SUCCESS) {
|
|
virtmap_base = EFI_RT_VIRTUAL_BASE +
|
|
(((headroom >> 21) * rnd) >> (32 - 21));
|
|
}
|
|
}
|
|
|
|
install_memreserve_table();
|
|
|
|
status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
|
|
efi_get_max_fdt_addr(dram_base),
|
|
initrd_addr, initrd_size,
|
|
cmdline_ptr, fdt_addr, fdt_size);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail_free_initrd;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM))
|
|
efi_handle_post_ebs_state();
|
|
|
|
efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
|
|
/* not reached */
|
|
|
|
fail_free_initrd:
|
|
efi_err("Failed to update FDT and exit boot services\n");
|
|
|
|
efi_free(initrd_size, initrd_addr);
|
|
efi_free(fdt_size, fdt_addr);
|
|
|
|
fail_free_image:
|
|
efi_free(image_size, image_addr);
|
|
efi_free(reserve_size, reserve_addr);
|
|
fail_free_screeninfo:
|
|
free_screen_info(si);
|
|
fail_free_cmdline:
|
|
efi_bs_call(free_pool, cmdline_ptr);
|
|
fail:
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* efi_get_virtmap() - create a virtual mapping for the EFI memory map
|
|
*
|
|
* This function populates the virt_addr fields of all memory region descriptors
|
|
* in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
|
|
* are also copied to @runtime_map, and their total count is returned in @count.
|
|
*/
|
|
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
|
|
unsigned long desc_size, efi_memory_desc_t *runtime_map,
|
|
int *count)
|
|
{
|
|
u64 efi_virt_base = virtmap_base;
|
|
efi_memory_desc_t *in, *out = runtime_map;
|
|
int l;
|
|
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
u64 paddr, size;
|
|
|
|
in = (void *)memory_map + l;
|
|
if (!(in->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
paddr = in->phys_addr;
|
|
size = in->num_pages * EFI_PAGE_SIZE;
|
|
|
|
in->virt_addr = in->phys_addr;
|
|
if (efi_novamap) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Make the mapping compatible with 64k pages: this allows
|
|
* a 4k page size kernel to kexec a 64k page size kernel and
|
|
* vice versa.
|
|
*/
|
|
if (!flat_va_mapping) {
|
|
|
|
paddr = round_down(in->phys_addr, SZ_64K);
|
|
size += in->phys_addr - paddr;
|
|
|
|
/*
|
|
* Avoid wasting memory on PTEs by choosing a virtual
|
|
* base that is compatible with section mappings if this
|
|
* region has the appropriate size and physical
|
|
* alignment. (Sections are 2 MB on 4k granule kernels)
|
|
*/
|
|
if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
|
|
efi_virt_base = round_up(efi_virt_base, SZ_2M);
|
|
else
|
|
efi_virt_base = round_up(efi_virt_base, SZ_64K);
|
|
|
|
in->virt_addr += efi_virt_base - paddr;
|
|
efi_virt_base += size;
|
|
}
|
|
|
|
memcpy(out, in, desc_size);
|
|
out = (void *)out + desc_size;
|
|
++*count;
|
|
}
|
|
}
|