mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-27 04:54:41 +08:00
a54d806688
The current memslot code uses a (reverse gfn-ordered) memslot array for keeping track of them. Because the memslot array that is currently in use cannot be modified every memslot management operation (create, delete, move, change flags) has to make a copy of the whole array so it has a scratch copy to work on. Strictly speaking, however, it is only necessary to make copy of the memslot that is being modified, copying all the memslots currently present is just a limitation of the array-based memslot implementation. Two memslot sets, however, are still needed so the VM continues to run on the currently active set while the requested operation is being performed on the second, currently inactive one. In order to have two memslot sets, but only one copy of actual memslots it is necessary to split out the memslot data from the memslot sets. The memslots themselves should be also kept independent of each other so they can be individually added or deleted. These two memslot sets should normally point to the same set of memslots. They can, however, be desynchronized when performing a memslot management operation by replacing the memslot to be modified by its copy. After the operation is complete, both memslot sets once again point to the same, common set of memslot data. This commit implements the aforementioned idea. For tracking of gfns an ordinary rbtree is used since memslots cannot overlap in the guest address space and so this data structure is sufficient for ensuring that lookups are done quickly. The "last used slot" mini-caches (both per-slot set one and per-vCPU one), that keep track of the last found-by-gfn memslot, are still present in the new code. Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Message-Id: <17c0cf3663b760a0d3753d4ac08c0753e941b811.1638817641.git.maciej.szmigiero@oracle.com>
1215 lines
33 KiB
C
1215 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Secure pages management: Migration of pages between normal and secure
|
|
* memory of KVM guests.
|
|
*
|
|
* Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
|
|
*/
|
|
|
|
/*
|
|
* A pseries guest can be run as secure guest on Ultravisor-enabled
|
|
* POWER platforms. On such platforms, this driver will be used to manage
|
|
* the movement of guest pages between the normal memory managed by
|
|
* hypervisor (HV) and secure memory managed by Ultravisor (UV).
|
|
*
|
|
* The page-in or page-out requests from UV will come to HV as hcalls and
|
|
* HV will call back into UV via ultracalls to satisfy these page requests.
|
|
*
|
|
* Private ZONE_DEVICE memory equal to the amount of secure memory
|
|
* available in the platform for running secure guests is hotplugged.
|
|
* Whenever a page belonging to the guest becomes secure, a page from this
|
|
* private device memory is used to represent and track that secure page
|
|
* on the HV side. Some pages (like virtio buffers, VPA pages etc) are
|
|
* shared between UV and HV. However such pages aren't represented by
|
|
* device private memory and mappings to shared memory exist in both
|
|
* UV and HV page tables.
|
|
*/
|
|
|
|
/*
|
|
* Notes on locking
|
|
*
|
|
* kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
|
|
* page-in and page-out requests for the same GPA. Concurrent accesses
|
|
* can either come via UV (guest vCPUs requesting for same page)
|
|
* or when HV and guest simultaneously access the same page.
|
|
* This mutex serializes the migration of page from HV(normal) to
|
|
* UV(secure) and vice versa. So the serialization points are around
|
|
* migrate_vma routines and page-in/out routines.
|
|
*
|
|
* Per-guest mutex comes with a cost though. Mainly it serializes the
|
|
* fault path as page-out can occur when HV faults on accessing secure
|
|
* guest pages. Currently UV issues page-in requests for all the guest
|
|
* PFNs one at a time during early boot (UV_ESM uvcall), so this is
|
|
* not a cause for concern. Also currently the number of page-outs caused
|
|
* by HV touching secure pages is very very low. If an when UV supports
|
|
* overcommitting, then we might see concurrent guest driven page-outs.
|
|
*
|
|
* Locking order
|
|
*
|
|
* 1. kvm->srcu - Protects KVM memslots
|
|
* 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
|
|
* 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
|
|
* as sync-points for page-in/out
|
|
*/
|
|
|
|
/*
|
|
* Notes on page size
|
|
*
|
|
* Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
|
|
* and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
|
|
* secure GPAs at 64K page size and maintains one device PFN for each
|
|
* 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
|
|
* for 64K page at a time.
|
|
*
|
|
* HV faulting on secure pages: When HV touches any secure page, it
|
|
* faults and issues a UV_PAGE_OUT request with 64K page size. Currently
|
|
* UV splits and remaps the 2MB page if necessary and copies out the
|
|
* required 64K page contents.
|
|
*
|
|
* Shared pages: Whenever guest shares a secure page, UV will split and
|
|
* remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
|
|
*
|
|
* HV invalidating a page: When a regular page belonging to secure
|
|
* guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
|
|
* page size. Using 64K page size is correct here because any non-secure
|
|
* page will essentially be of 64K page size. Splitting by UV during sharing
|
|
* and page-out ensures this.
|
|
*
|
|
* Page fault handling: When HV handles page fault of a page belonging
|
|
* to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
|
|
* Using 64K size is correct here too as UV would have split the 2MB page
|
|
* into 64k mappings and would have done page-outs earlier.
|
|
*
|
|
* In summary, the current secure pages handling code in HV assumes
|
|
* 64K page size and in fact fails any page-in/page-out requests of
|
|
* non-64K size upfront. If and when UV starts supporting multiple
|
|
* page-sizes, we need to break this assumption.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/of.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s_uvmem.h>
|
|
|
|
static struct dev_pagemap kvmppc_uvmem_pgmap;
|
|
static unsigned long *kvmppc_uvmem_bitmap;
|
|
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
|
|
|
|
/*
|
|
* States of a GFN
|
|
* ---------------
|
|
* The GFN can be in one of the following states.
|
|
*
|
|
* (a) Secure - The GFN is secure. The GFN is associated with
|
|
* a Secure VM, the contents of the GFN is not accessible
|
|
* to the Hypervisor. This GFN can be backed by a secure-PFN,
|
|
* or can be backed by a normal-PFN with contents encrypted.
|
|
* The former is true when the GFN is paged-in into the
|
|
* ultravisor. The latter is true when the GFN is paged-out
|
|
* of the ultravisor.
|
|
*
|
|
* (b) Shared - The GFN is shared. The GFN is associated with a
|
|
* a secure VM. The contents of the GFN is accessible to
|
|
* Hypervisor. This GFN is backed by a normal-PFN and its
|
|
* content is un-encrypted.
|
|
*
|
|
* (c) Normal - The GFN is a normal. The GFN is associated with
|
|
* a normal VM. The contents of the GFN is accesible to
|
|
* the Hypervisor. Its content is never encrypted.
|
|
*
|
|
* States of a VM.
|
|
* ---------------
|
|
*
|
|
* Normal VM: A VM whose contents are always accessible to
|
|
* the hypervisor. All its GFNs are normal-GFNs.
|
|
*
|
|
* Secure VM: A VM whose contents are not accessible to the
|
|
* hypervisor without the VM's consent. Its GFNs are
|
|
* either Shared-GFN or Secure-GFNs.
|
|
*
|
|
* Transient VM: A Normal VM that is transitioning to secure VM.
|
|
* The transition starts on successful return of
|
|
* H_SVM_INIT_START, and ends on successful return
|
|
* of H_SVM_INIT_DONE. This transient VM, can have GFNs
|
|
* in any of the three states; i.e Secure-GFN, Shared-GFN,
|
|
* and Normal-GFN. The VM never executes in this state
|
|
* in supervisor-mode.
|
|
*
|
|
* Memory slot State.
|
|
* -----------------------------
|
|
* The state of a memory slot mirrors the state of the
|
|
* VM the memory slot is associated with.
|
|
*
|
|
* VM State transition.
|
|
* --------------------
|
|
*
|
|
* A VM always starts in Normal Mode.
|
|
*
|
|
* H_SVM_INIT_START moves the VM into transient state. During this
|
|
* time the Ultravisor may request some of its GFNs to be shared or
|
|
* secured. So its GFNs can be in one of the three GFN states.
|
|
*
|
|
* H_SVM_INIT_DONE moves the VM entirely from transient state to
|
|
* secure-state. At this point any left-over normal-GFNs are
|
|
* transitioned to Secure-GFN.
|
|
*
|
|
* H_SVM_INIT_ABORT moves the transient VM back to normal VM.
|
|
* All its GFNs are moved to Normal-GFNs.
|
|
*
|
|
* UV_TERMINATE transitions the secure-VM back to normal-VM. All
|
|
* the secure-GFN and shared-GFNs are tranistioned to normal-GFN
|
|
* Note: The contents of the normal-GFN is undefined at this point.
|
|
*
|
|
* GFN state implementation:
|
|
* -------------------------
|
|
*
|
|
* Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
|
|
* when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
|
|
* set, and contains the value of the secure-PFN.
|
|
* It is associated with a normal-PFN; also called mem_pfn, when
|
|
* the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
|
|
* The value of the normal-PFN is not tracked.
|
|
*
|
|
* Shared GFN is associated with a normal-PFN. Its pfn[] has
|
|
* KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
|
|
* is not tracked.
|
|
*
|
|
* Normal GFN is associated with normal-PFN. Its pfn[] has
|
|
* no flag set. The value of the normal-PFN is not tracked.
|
|
*
|
|
* Life cycle of a GFN
|
|
* --------------------
|
|
*
|
|
* --------------------------------------------------------------
|
|
* | | Share | Unshare | SVM |H_SVM_INIT_DONE|
|
|
* | |operation |operation | abort/ | |
|
|
* | | | | terminate | |
|
|
* -------------------------------------------------------------
|
|
* | | | | | |
|
|
* | Secure | Shared | Secure |Normal |Secure |
|
|
* | | | | | |
|
|
* | Shared | Shared | Secure |Normal |Shared |
|
|
* | | | | | |
|
|
* | Normal | Shared | Secure |Normal |Secure |
|
|
* --------------------------------------------------------------
|
|
*
|
|
* Life cycle of a VM
|
|
* --------------------
|
|
*
|
|
* --------------------------------------------------------------------
|
|
* | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
|
|
* | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
|
|
* | | | | | | |
|
|
* --------- ----------------------------------------------------------
|
|
* | | | | | | |
|
|
* | Normal | Normal | Transient|Error |Error |Normal |
|
|
* | | | | | | |
|
|
* | Secure | Error | Error |Error |Error |Normal |
|
|
* | | | | | | |
|
|
* |Transient| N/A | Error |Secure |Normal |Normal |
|
|
* --------------------------------------------------------------------
|
|
*/
|
|
|
|
#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
|
|
#define KVMPPC_GFN_MEM_PFN (1UL << 62)
|
|
#define KVMPPC_GFN_SHARED (1UL << 61)
|
|
#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
|
|
#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
|
|
#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
|
|
|
|
struct kvmppc_uvmem_slot {
|
|
struct list_head list;
|
|
unsigned long nr_pfns;
|
|
unsigned long base_pfn;
|
|
unsigned long *pfns;
|
|
};
|
|
struct kvmppc_uvmem_page_pvt {
|
|
struct kvm *kvm;
|
|
unsigned long gpa;
|
|
bool skip_page_out;
|
|
bool remove_gfn;
|
|
};
|
|
|
|
bool kvmppc_uvmem_available(void)
|
|
{
|
|
/*
|
|
* If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
|
|
* and our data structures have been initialized successfully.
|
|
*/
|
|
return !!kvmppc_uvmem_bitmap;
|
|
}
|
|
|
|
int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
|
|
if (!p->pfns) {
|
|
kfree(p);
|
|
return -ENOMEM;
|
|
}
|
|
p->nr_pfns = slot->npages;
|
|
p->base_pfn = slot->base_gfn;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
list_add(&p->list, &kvm->arch.uvmem_pfns);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All device PFNs are already released by the time we come here.
|
|
*/
|
|
void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
|
|
{
|
|
struct kvmppc_uvmem_slot *p, *next;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
|
|
if (p->base_pfn == slot->base_gfn) {
|
|
vfree(p->pfns);
|
|
list_del(&p->list);
|
|
kfree(p);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
}
|
|
|
|
static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
|
|
unsigned long flag, unsigned long uvmem_pfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
|
|
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
|
|
unsigned long index = gfn - p->base_pfn;
|
|
|
|
if (flag == KVMPPC_GFN_UVMEM_PFN)
|
|
p->pfns[index] = uvmem_pfn | flag;
|
|
else
|
|
p->pfns[index] = flag;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
|
|
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
|
|
unsigned long uvmem_pfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
|
|
}
|
|
|
|
/* mark the GFN as secure-GFN associated with a memory-PFN. */
|
|
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
|
|
}
|
|
|
|
/* mark the GFN as a shared GFN. */
|
|
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
|
|
}
|
|
|
|
/* mark the GFN as a non-existent GFN. */
|
|
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
|
|
{
|
|
kvmppc_mark_gfn(gfn, kvm, 0, 0);
|
|
}
|
|
|
|
/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
|
|
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
|
|
unsigned long *uvmem_pfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
|
|
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
|
|
unsigned long index = gfn - p->base_pfn;
|
|
|
|
if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
|
|
if (uvmem_pfn)
|
|
*uvmem_pfn = p->pfns[index] &
|
|
KVMPPC_GFN_PFN_MASK;
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* starting from *gfn search for the next available GFN that is not yet
|
|
* transitioned to a secure GFN. return the value of that GFN in *gfn. If a
|
|
* GFN is found, return true, else return false
|
|
*
|
|
* Must be called with kvm->arch.uvmem_lock held.
|
|
*/
|
|
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
|
|
struct kvm *kvm, unsigned long *gfn)
|
|
{
|
|
struct kvmppc_uvmem_slot *p;
|
|
bool ret = false;
|
|
unsigned long i;
|
|
|
|
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
|
|
if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
|
|
break;
|
|
if (!p)
|
|
return ret;
|
|
/*
|
|
* The code below assumes, one to one correspondence between
|
|
* kvmppc_uvmem_slot and memslot.
|
|
*/
|
|
for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
|
|
unsigned long index = i - p->base_pfn;
|
|
|
|
if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
|
|
*gfn = i;
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int kvmppc_memslot_page_merge(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot, bool merge)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn;
|
|
unsigned long end, start = gfn_to_hva(kvm, gfn);
|
|
int ret = 0;
|
|
struct vm_area_struct *vma;
|
|
int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
|
|
|
|
if (kvm_is_error_hva(start))
|
|
return H_STATE;
|
|
|
|
end = start + (memslot->npages << PAGE_SHIFT);
|
|
|
|
mmap_write_lock(kvm->mm);
|
|
do {
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
|
|
merge_flag, &vma->vm_flags);
|
|
if (ret) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
start = vma->vm_end;
|
|
} while (end > vma->vm_end);
|
|
|
|
mmap_write_unlock(kvm->mm);
|
|
return ret;
|
|
}
|
|
|
|
static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
|
|
kvmppc_uvmem_slot_free(kvm, memslot);
|
|
kvmppc_memslot_page_merge(kvm, memslot, true);
|
|
}
|
|
|
|
static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
int ret = H_PARAMETER;
|
|
|
|
if (kvmppc_memslot_page_merge(kvm, memslot, false))
|
|
return ret;
|
|
|
|
if (kvmppc_uvmem_slot_init(kvm, memslot))
|
|
goto out1;
|
|
|
|
ret = uv_register_mem_slot(kvm->arch.lpid,
|
|
memslot->base_gfn << PAGE_SHIFT,
|
|
memslot->npages * PAGE_SIZE,
|
|
0, memslot->id);
|
|
if (ret < 0) {
|
|
ret = H_PARAMETER;
|
|
goto out;
|
|
}
|
|
return 0;
|
|
out:
|
|
kvmppc_uvmem_slot_free(kvm, memslot);
|
|
out1:
|
|
kvmppc_memslot_page_merge(kvm, memslot, true);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot, *m;
|
|
int ret = H_SUCCESS;
|
|
int srcu_idx, bkt;
|
|
|
|
kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
|
|
|
|
if (!kvmppc_uvmem_bitmap)
|
|
return H_UNSUPPORTED;
|
|
|
|
/* Only radix guests can be secure guests */
|
|
if (!kvm_is_radix(kvm))
|
|
return H_UNSUPPORTED;
|
|
|
|
/* NAK the transition to secure if not enabled */
|
|
if (!kvm->arch.svm_enabled)
|
|
return H_AUTHORITY;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
/* register the memslot */
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, bkt, slots) {
|
|
ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(m, bkt, slots) {
|
|
if (m == memslot)
|
|
break;
|
|
__kvmppc_uvmem_memslot_delete(kvm, memslot);
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Provision a new page on HV side and copy over the contents
|
|
* from secure memory using UV_PAGE_OUT uvcall.
|
|
* Caller must held kvm->arch.uvmem_lock.
|
|
*/
|
|
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end, unsigned long page_shift,
|
|
struct kvm *kvm, unsigned long gpa)
|
|
{
|
|
unsigned long src_pfn, dst_pfn = 0;
|
|
struct migrate_vma mig;
|
|
struct page *dpage, *spage;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn;
|
|
int ret = U_SUCCESS;
|
|
|
|
memset(&mig, 0, sizeof(mig));
|
|
mig.vma = vma;
|
|
mig.start = start;
|
|
mig.end = end;
|
|
mig.src = &src_pfn;
|
|
mig.dst = &dst_pfn;
|
|
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
|
|
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
|
|
|
|
/* The requested page is already paged-out, nothing to do */
|
|
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
|
|
return ret;
|
|
|
|
ret = migrate_vma_setup(&mig);
|
|
if (ret)
|
|
return -1;
|
|
|
|
spage = migrate_pfn_to_page(*mig.src);
|
|
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
|
|
goto out_finalize;
|
|
|
|
if (!is_zone_device_page(spage))
|
|
goto out_finalize;
|
|
|
|
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
|
|
if (!dpage) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
lock_page(dpage);
|
|
pvt = spage->zone_device_data;
|
|
pfn = page_to_pfn(dpage);
|
|
|
|
/*
|
|
* This function is used in two cases:
|
|
* - When HV touches a secure page, for which we do UV_PAGE_OUT
|
|
* - When a secure page is converted to shared page, we *get*
|
|
* the page to essentially unmap the device page. In this
|
|
* case we skip page-out.
|
|
*/
|
|
if (!pvt->skip_page_out)
|
|
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
|
|
gpa, 0, page_shift);
|
|
|
|
if (ret == U_SUCCESS)
|
|
*mig.dst = migrate_pfn(pfn);
|
|
else {
|
|
unlock_page(dpage);
|
|
__free_page(dpage);
|
|
goto out_finalize;
|
|
}
|
|
|
|
migrate_vma_pages(&mig);
|
|
|
|
out_finalize:
|
|
migrate_vma_finalize(&mig);
|
|
return ret;
|
|
}
|
|
|
|
static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long page_shift,
|
|
struct kvm *kvm, unsigned long gpa)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Drop device pages that we maintain for the secure guest
|
|
*
|
|
* We first mark the pages to be skipped from UV_PAGE_OUT when there
|
|
* is HV side fault on these pages. Next we *get* these pages, forcing
|
|
* fault on them, do fault time migration to replace the device PTEs in
|
|
* QEMU page table with normal PTEs from newly allocated pages.
|
|
*/
|
|
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
|
|
struct kvm *kvm, bool skip_page_out)
|
|
{
|
|
int i;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
struct page *uvmem_page;
|
|
struct vm_area_struct *vma = NULL;
|
|
unsigned long uvmem_pfn, gfn;
|
|
unsigned long addr;
|
|
|
|
mmap_read_lock(kvm->mm);
|
|
|
|
addr = slot->userspace_addr;
|
|
|
|
gfn = slot->base_gfn;
|
|
for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
|
|
|
|
/* Fetch the VMA if addr is not in the latest fetched one */
|
|
if (!vma || addr >= vma->vm_end) {
|
|
vma = vma_lookup(kvm->mm, addr);
|
|
if (!vma) {
|
|
pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = skip_page_out;
|
|
pvt->remove_gfn = true;
|
|
|
|
if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
|
|
PAGE_SHIFT, kvm, pvt->gpa))
|
|
pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
|
|
pvt->gpa, addr);
|
|
} else {
|
|
/* Remove the shared flag if any */
|
|
kvmppc_gfn_remove(gfn, kvm);
|
|
}
|
|
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
}
|
|
|
|
mmap_read_unlock(kvm->mm);
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
|
|
{
|
|
int srcu_idx, bkt;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
/*
|
|
* Expect to be called only after INIT_START and before INIT_DONE.
|
|
* If INIT_DONE was completed, use normal VM termination sequence.
|
|
*/
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return H_STATE;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
|
|
kvmppc_uvmem_drop_pages(memslot, kvm, false);
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
kvm->arch.secure_guest = 0;
|
|
uv_svm_terminate(kvm->arch.lpid);
|
|
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* Get a free device PFN from the pool
|
|
*
|
|
* Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
|
|
* PFN will be used to keep track of the secure page on HV side.
|
|
*
|
|
* Called with kvm->arch.uvmem_lock held
|
|
*/
|
|
static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
|
|
{
|
|
struct page *dpage = NULL;
|
|
unsigned long bit, uvmem_pfn;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn_last, pfn_first;
|
|
|
|
pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
|
|
pfn_last = pfn_first +
|
|
(range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
|
|
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
|
|
pfn_last - pfn_first);
|
|
if (bit >= (pfn_last - pfn_first))
|
|
goto out;
|
|
bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
|
|
pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
|
|
if (!pvt)
|
|
goto out_clear;
|
|
|
|
uvmem_pfn = bit + pfn_first;
|
|
kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
|
|
|
|
pvt->gpa = gpa;
|
|
pvt->kvm = kvm;
|
|
|
|
dpage = pfn_to_page(uvmem_pfn);
|
|
dpage->zone_device_data = pvt;
|
|
get_page(dpage);
|
|
lock_page(dpage);
|
|
return dpage;
|
|
out_clear:
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
|
|
out:
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Alloc a PFN from private device memory pool. If @pagein is true,
|
|
* copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
|
|
*/
|
|
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end, unsigned long gpa, struct kvm *kvm,
|
|
unsigned long page_shift,
|
|
bool pagein)
|
|
{
|
|
unsigned long src_pfn, dst_pfn = 0;
|
|
struct migrate_vma mig;
|
|
struct page *spage;
|
|
unsigned long pfn;
|
|
struct page *dpage;
|
|
int ret = 0;
|
|
|
|
memset(&mig, 0, sizeof(mig));
|
|
mig.vma = vma;
|
|
mig.start = start;
|
|
mig.end = end;
|
|
mig.src = &src_pfn;
|
|
mig.dst = &dst_pfn;
|
|
mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
|
|
|
|
ret = migrate_vma_setup(&mig);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
dpage = kvmppc_uvmem_get_page(gpa, kvm);
|
|
if (!dpage) {
|
|
ret = -1;
|
|
goto out_finalize;
|
|
}
|
|
|
|
if (pagein) {
|
|
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
|
|
spage = migrate_pfn_to_page(*mig.src);
|
|
if (spage) {
|
|
ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
|
|
gpa, 0, page_shift);
|
|
if (ret)
|
|
goto out_finalize;
|
|
}
|
|
}
|
|
|
|
*mig.dst = migrate_pfn(page_to_pfn(dpage));
|
|
migrate_vma_pages(&mig);
|
|
out_finalize:
|
|
migrate_vma_finalize(&mig);
|
|
return ret;
|
|
}
|
|
|
|
static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start, end;
|
|
int ret = 0;
|
|
|
|
mmap_read_lock(kvm->mm);
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
|
|
ret = H_STATE;
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
break;
|
|
|
|
end = start + (1UL << PAGE_SHIFT);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
break;
|
|
|
|
ret = kvmppc_svm_page_in(vma, start, end,
|
|
(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
|
|
if (ret) {
|
|
ret = H_STATE;
|
|
break;
|
|
}
|
|
|
|
/* relinquish the cpu if needed */
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
mmap_read_unlock(kvm->mm);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int srcu_idx, bkt;
|
|
long ret = H_SUCCESS;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
/* migrate any unmoved normal pfn to device pfns*/
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, bkt, slots) {
|
|
ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
|
|
if (ret) {
|
|
/*
|
|
* The pages will remain transitioned.
|
|
* Its the callers responsibility to
|
|
* terminate the VM, which will undo
|
|
* all state of the VM. Till then
|
|
* this VM is in a erroneous state.
|
|
* Its KVMPPC_SECURE_INIT_DONE will
|
|
* remain unset.
|
|
*/
|
|
ret = H_STATE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
|
|
pr_info("LPID %d went secure\n", kvm->arch.lpid);
|
|
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Shares the page with HV, thus making it a normal page.
|
|
*
|
|
* - If the page is already secure, then provision a new page and share
|
|
* - If the page is a normal page, share the existing page
|
|
*
|
|
* In the former case, uses dev_pagemap_ops.migrate_to_ram handler
|
|
* to unmap the device page from QEMU's page tables.
|
|
*/
|
|
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long page_shift)
|
|
{
|
|
|
|
int ret = H_PARAMETER;
|
|
struct page *uvmem_page;
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
unsigned long pfn;
|
|
unsigned long gfn = gpa >> page_shift;
|
|
int srcu_idx;
|
|
unsigned long uvmem_pfn;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = true;
|
|
/*
|
|
* do not drop the GFN. It is a valid GFN
|
|
* that is transitioned to a shared GFN.
|
|
*/
|
|
pvt->remove_gfn = false;
|
|
}
|
|
|
|
retry:
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
if (is_error_noslot_pfn(pfn))
|
|
goto out;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
|
|
uvmem_page = pfn_to_page(uvmem_pfn);
|
|
pvt = uvmem_page->zone_device_data;
|
|
pvt->skip_page_out = true;
|
|
pvt->remove_gfn = false; /* it continues to be a valid GFN */
|
|
kvm_release_pfn_clean(pfn);
|
|
goto retry;
|
|
}
|
|
|
|
if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
|
|
page_shift)) {
|
|
kvmppc_gfn_shared(gfn, kvm);
|
|
ret = H_SUCCESS;
|
|
}
|
|
kvm_release_pfn_clean(pfn);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* H_SVM_PAGE_IN: Move page from normal memory to secure memory.
|
|
*
|
|
* H_PAGE_IN_SHARED flag makes the page shared which means that the same
|
|
* memory in is visible from both UV and HV.
|
|
*/
|
|
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long flags,
|
|
unsigned long page_shift)
|
|
{
|
|
unsigned long start, end;
|
|
struct vm_area_struct *vma;
|
|
int srcu_idx;
|
|
unsigned long gfn = gpa >> page_shift;
|
|
int ret;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (page_shift != PAGE_SHIFT)
|
|
return H_P3;
|
|
|
|
if (flags & ~H_PAGE_IN_SHARED)
|
|
return H_P2;
|
|
|
|
if (flags & H_PAGE_IN_SHARED)
|
|
return kvmppc_share_page(kvm, gpa, page_shift);
|
|
|
|
ret = H_PARAMETER;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(kvm->mm);
|
|
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
goto out;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
/* Fail the page-in request of an already paged-in page */
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
|
|
goto out_unlock;
|
|
|
|
end = start + (1UL << page_shift);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
goto out_unlock;
|
|
|
|
if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
|
|
true))
|
|
goto out_unlock;
|
|
|
|
ret = H_SUCCESS;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
out:
|
|
mmap_read_unlock(kvm->mm);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Fault handler callback that gets called when HV touches any page that
|
|
* has been moved to secure memory, we ask UV to give back the page by
|
|
* issuing UV_PAGE_OUT uvcall.
|
|
*
|
|
* This eventually results in dropping of device PFN and the newly
|
|
* provisioned page/PFN gets populated in QEMU page tables.
|
|
*/
|
|
static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
|
|
{
|
|
struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
|
|
|
|
if (kvmppc_svm_page_out(vmf->vma, vmf->address,
|
|
vmf->address + PAGE_SIZE, PAGE_SHIFT,
|
|
pvt->kvm, pvt->gpa))
|
|
return VM_FAULT_SIGBUS;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release the device PFN back to the pool
|
|
*
|
|
* Gets called when secure GFN tranistions from a secure-PFN
|
|
* to a normal PFN during H_SVM_PAGE_OUT.
|
|
* Gets called with kvm->arch.uvmem_lock held.
|
|
*/
|
|
static void kvmppc_uvmem_page_free(struct page *page)
|
|
{
|
|
unsigned long pfn = page_to_pfn(page) -
|
|
(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
|
|
struct kvmppc_uvmem_page_pvt *pvt;
|
|
|
|
spin_lock(&kvmppc_uvmem_bitmap_lock);
|
|
bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
|
|
spin_unlock(&kvmppc_uvmem_bitmap_lock);
|
|
|
|
pvt = page->zone_device_data;
|
|
page->zone_device_data = NULL;
|
|
if (pvt->remove_gfn)
|
|
kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
|
|
else
|
|
kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
|
|
kfree(pvt);
|
|
}
|
|
|
|
static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
|
|
.page_free = kvmppc_uvmem_page_free,
|
|
.migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
|
|
};
|
|
|
|
/*
|
|
* H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
|
|
*/
|
|
unsigned long
|
|
kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long flags, unsigned long page_shift)
|
|
{
|
|
unsigned long gfn = gpa >> page_shift;
|
|
unsigned long start, end;
|
|
struct vm_area_struct *vma;
|
|
int srcu_idx;
|
|
int ret;
|
|
|
|
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
|
|
return H_UNSUPPORTED;
|
|
|
|
if (page_shift != PAGE_SHIFT)
|
|
return H_P3;
|
|
|
|
if (flags)
|
|
return H_P2;
|
|
|
|
ret = H_PARAMETER;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(kvm->mm);
|
|
start = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(start))
|
|
goto out;
|
|
|
|
end = start + (1UL << page_shift);
|
|
vma = find_vma_intersection(kvm->mm, start, end);
|
|
if (!vma || vma->vm_start > start || vma->vm_end < end)
|
|
goto out;
|
|
|
|
if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
|
|
ret = H_SUCCESS;
|
|
out:
|
|
mmap_read_unlock(kvm->mm);
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
|
|
int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
|
|
{
|
|
unsigned long pfn;
|
|
int ret = U_SUCCESS;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&kvm->arch.uvmem_lock);
|
|
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
|
|
goto out;
|
|
|
|
ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
|
|
0, PAGE_SHIFT);
|
|
out:
|
|
kvm_release_pfn_clean(pfn);
|
|
mutex_unlock(&kvm->arch.uvmem_lock);
|
|
return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
|
|
}
|
|
|
|
int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
|
|
{
|
|
int ret = __kvmppc_uvmem_memslot_create(kvm, new);
|
|
|
|
if (!ret)
|
|
ret = kvmppc_uv_migrate_mem_slot(kvm, new);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
|
|
{
|
|
__kvmppc_uvmem_memslot_delete(kvm, old);
|
|
}
|
|
|
|
static u64 kvmppc_get_secmem_size(void)
|
|
{
|
|
struct device_node *np;
|
|
int i, len;
|
|
const __be32 *prop;
|
|
u64 size = 0;
|
|
|
|
/*
|
|
* First try the new ibm,secure-memory nodes which supersede the
|
|
* secure-memory-ranges property.
|
|
* If we found some, no need to read the deprecated ones.
|
|
*/
|
|
for_each_compatible_node(np, NULL, "ibm,secure-memory") {
|
|
prop = of_get_property(np, "reg", &len);
|
|
if (!prop)
|
|
continue;
|
|
size += of_read_number(prop + 2, 2);
|
|
}
|
|
if (size)
|
|
return size;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
|
|
if (!np)
|
|
goto out;
|
|
|
|
prop = of_get_property(np, "secure-memory-ranges", &len);
|
|
if (!prop)
|
|
goto out_put;
|
|
|
|
for (i = 0; i < len / (sizeof(*prop) * 4); i++)
|
|
size += of_read_number(prop + (i * 4) + 2, 2);
|
|
|
|
out_put:
|
|
of_node_put(np);
|
|
out:
|
|
return size;
|
|
}
|
|
|
|
int kvmppc_uvmem_init(void)
|
|
{
|
|
int ret = 0;
|
|
unsigned long size;
|
|
struct resource *res;
|
|
void *addr;
|
|
unsigned long pfn_last, pfn_first;
|
|
|
|
size = kvmppc_get_secmem_size();
|
|
if (!size) {
|
|
/*
|
|
* Don't fail the initialization of kvm-hv module if
|
|
* the platform doesn't export ibm,uv-firmware node.
|
|
* Let normal guests run on such PEF-disabled platform.
|
|
*/
|
|
pr_info("KVMPPC-UVMEM: No support for secure guests\n");
|
|
goto out;
|
|
}
|
|
|
|
res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
|
|
if (IS_ERR(res)) {
|
|
ret = PTR_ERR(res);
|
|
goto out;
|
|
}
|
|
|
|
kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
|
|
kvmppc_uvmem_pgmap.range.start = res->start;
|
|
kvmppc_uvmem_pgmap.range.end = res->end;
|
|
kvmppc_uvmem_pgmap.nr_range = 1;
|
|
kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
|
|
/* just one global instance: */
|
|
kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
|
|
addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
|
|
if (IS_ERR(addr)) {
|
|
ret = PTR_ERR(addr);
|
|
goto out_free_region;
|
|
}
|
|
|
|
pfn_first = res->start >> PAGE_SHIFT;
|
|
pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
|
|
kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
|
|
sizeof(unsigned long), GFP_KERNEL);
|
|
if (!kvmppc_uvmem_bitmap) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
|
|
pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
|
|
return ret;
|
|
out_unmap:
|
|
memunmap_pages(&kvmppc_uvmem_pgmap);
|
|
out_free_region:
|
|
release_mem_region(res->start, size);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void kvmppc_uvmem_free(void)
|
|
{
|
|
if (!kvmppc_uvmem_bitmap)
|
|
return;
|
|
|
|
memunmap_pages(&kvmppc_uvmem_pgmap);
|
|
release_mem_region(kvmppc_uvmem_pgmap.range.start,
|
|
range_len(&kvmppc_uvmem_pgmap.range));
|
|
kfree(kvmppc_uvmem_bitmap);
|
|
}
|