linux/drivers/clk/renesas/rcar-gen3-cpg.c
Wolfram Sang 6f21d145b9 clk: renesas: cpg-lib: Move RPC clock registration to the library
We want to reuse this code for V3U soon. Because its RPCCKCR register is
at a different offset, the moved functions do not use the base register
as an argument anymore but the RPCCKCR register itself. Verified that an
Eagle board with R-Car V3M still works.

Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Link: https://lore.kernel.org/r/20211006085836.42155-2-wsa+renesas@sang-engineering.com
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
2021-10-08 15:09:17 +02:00

550 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* R-Car Gen3 Clock Pulse Generator
*
* Copyright (C) 2015-2018 Glider bvba
* Copyright (C) 2019 Renesas Electronics Corp.
*
* Based on clk-rcar-gen3.c
*
* Copyright (C) 2015 Renesas Electronics Corp.
*/
#include <linux/bug.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/sys_soc.h>
#include "renesas-cpg-mssr.h"
#include "rcar-cpg-lib.h"
#include "rcar-gen3-cpg.h"
#define CPG_PLLECR 0x00d0 /* PLL Enable Control Register */
#define CPG_PLLECR_PLLST(n) BIT(8 + (n)) /* PLLn Circuit Status */
#define CPG_PLL0CR 0x00d8 /* PLLn Control Registers */
#define CPG_PLL2CR 0x002c
#define CPG_PLL4CR 0x01f4
#define CPG_PLLnCR_STC_MASK GENMASK(30, 24) /* PLL Circuit Mult. Ratio */
#define CPG_RCKCR_CKSEL BIT(15) /* RCLK Clock Source Select */
/* PLL Clocks */
struct cpg_pll_clk {
struct clk_hw hw;
void __iomem *pllcr_reg;
void __iomem *pllecr_reg;
unsigned int fixed_mult;
u32 pllecr_pllst_mask;
};
#define to_pll_clk(_hw) container_of(_hw, struct cpg_pll_clk, hw)
static unsigned long cpg_pll_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
unsigned int mult;
u32 val;
val = readl(pll_clk->pllcr_reg) & CPG_PLLnCR_STC_MASK;
mult = (val >> __ffs(CPG_PLLnCR_STC_MASK)) + 1;
return parent_rate * mult * pll_clk->fixed_mult;
}
static int cpg_pll_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
unsigned int min_mult, max_mult, mult;
unsigned long prate;
prate = req->best_parent_rate * pll_clk->fixed_mult;
min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
max_mult = min(div64_ul(req->max_rate, prate), 128ULL);
if (max_mult < min_mult)
return -EINVAL;
mult = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
mult = clamp(mult, min_mult, max_mult);
req->rate = prate * mult;
return 0;
}
static int cpg_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
unsigned int mult, i;
u32 val;
mult = DIV_ROUND_CLOSEST_ULL(rate, parent_rate * pll_clk->fixed_mult);
mult = clamp(mult, 1U, 128U);
val = readl(pll_clk->pllcr_reg);
val &= ~CPG_PLLnCR_STC_MASK;
val |= (mult - 1) << __ffs(CPG_PLLnCR_STC_MASK);
writel(val, pll_clk->pllcr_reg);
for (i = 1000; i; i--) {
if (readl(pll_clk->pllecr_reg) & pll_clk->pllecr_pllst_mask)
return 0;
cpu_relax();
}
return -ETIMEDOUT;
}
static const struct clk_ops cpg_pll_clk_ops = {
.recalc_rate = cpg_pll_clk_recalc_rate,
.determine_rate = cpg_pll_clk_determine_rate,
.set_rate = cpg_pll_clk_set_rate,
};
static struct clk * __init cpg_pll_clk_register(const char *name,
const char *parent_name,
void __iomem *base,
unsigned int mult,
unsigned int offset,
unsigned int index)
{
struct cpg_pll_clk *pll_clk;
struct clk_init_data init = {};
struct clk *clk;
pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
if (!pll_clk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &cpg_pll_clk_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
pll_clk->hw.init = &init;
pll_clk->pllcr_reg = base + offset;
pll_clk->pllecr_reg = base + CPG_PLLECR;
pll_clk->fixed_mult = mult; /* PLL refclk x (setting + 1) x mult */
pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
clk = clk_register(NULL, &pll_clk->hw);
if (IS_ERR(clk))
kfree(pll_clk);
return clk;
}
/*
* Z Clock & Z2 Clock
*
* Traits of this clock:
* prepare - clk_prepare only ensures that parents are prepared
* enable - clk_enable only ensures that parents are enabled
* rate - rate is adjustable.
* clk->rate = (parent->rate * mult / 32 ) / fixed_div
* parent - fixed parent. No clk_set_parent support
*/
#define CPG_FRQCRB 0x00000004
#define CPG_FRQCRB_KICK BIT(31)
#define CPG_FRQCRC 0x000000e0
struct cpg_z_clk {
struct clk_hw hw;
void __iomem *reg;
void __iomem *kick_reg;
unsigned long max_rate; /* Maximum rate for normal mode */
unsigned int fixed_div;
u32 mask;
};
#define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw)
static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
u32 val;
val = readl(zclk->reg) & zclk->mask;
mult = 32 - (val >> __ffs(zclk->mask));
return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
32 * zclk->fixed_div);
}
static int cpg_z_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int min_mult, max_mult, mult;
unsigned long rate, prate;
rate = min(req->rate, req->max_rate);
if (rate <= zclk->max_rate) {
/* Set parent rate to initial value for normal modes */
prate = zclk->max_rate;
} else {
/* Set increased parent rate for boost modes */
prate = rate;
}
req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
prate * zclk->fixed_div);
prate = req->best_parent_rate / zclk->fixed_div;
min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
if (max_mult < min_mult)
return -EINVAL;
mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
mult = clamp(mult, min_mult, max_mult);
req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
return 0;
}
static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
unsigned int i;
mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
parent_rate);
mult = clamp(mult, 1U, 32U);
if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
return -EBUSY;
cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
/*
* Set KICK bit in FRQCRB to update hardware setting and wait for
* clock change completion.
*/
cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
/*
* Note: There is no HW information about the worst case latency.
*
* Using experimental measurements, it seems that no more than
* ~10 iterations are needed, independently of the CPU rate.
* Since this value might be dependent on external xtal rate, pll1
* rate or even the other emulation clocks rate, use 1000 as a
* "super" safe value.
*/
for (i = 1000; i; i--) {
if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
return 0;
cpu_relax();
}
return -ETIMEDOUT;
}
static const struct clk_ops cpg_z_clk_ops = {
.recalc_rate = cpg_z_clk_recalc_rate,
.determine_rate = cpg_z_clk_determine_rate,
.set_rate = cpg_z_clk_set_rate,
};
static struct clk * __init cpg_z_clk_register(const char *name,
const char *parent_name,
void __iomem *reg,
unsigned int div,
unsigned int offset)
{
struct clk_init_data init = {};
struct cpg_z_clk *zclk;
struct clk *clk;
zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
if (!zclk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &cpg_z_clk_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
zclk->reg = reg + CPG_FRQCRC;
zclk->kick_reg = reg + CPG_FRQCRB;
zclk->hw.init = &init;
zclk->mask = GENMASK(offset + 4, offset);
zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
clk = clk_register(NULL, &zclk->hw);
if (IS_ERR(clk)) {
kfree(zclk);
return clk;
}
zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
zclk->fixed_div;
return clk;
}
static const struct clk_div_table cpg_rpcsrc_div_table[] = {
{ 2, 5 }, { 3, 6 }, { 0, 0 },
};
static const struct rcar_gen3_cpg_pll_config *cpg_pll_config __initdata;
static unsigned int cpg_clk_extalr __initdata;
static u32 cpg_mode __initdata;
static u32 cpg_quirks __initdata;
#define PLL_ERRATA BIT(0) /* Missing PLL0/2/4 post-divider */
#define RCKCR_CKSEL BIT(1) /* Manual RCLK parent selection */
#define SD_SKIP_FIRST BIT(2) /* Skip first clock in SD table */
static const struct soc_device_attribute cpg_quirks_match[] __initconst = {
{
.soc_id = "r8a7795", .revision = "ES1.0",
.data = (void *)(PLL_ERRATA | RCKCR_CKSEL | SD_SKIP_FIRST),
},
{
.soc_id = "r8a7795", .revision = "ES1.*",
.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
},
{
.soc_id = "r8a7795", .revision = "ES2.0",
.data = (void *)SD_SKIP_FIRST,
},
{
.soc_id = "r8a7796", .revision = "ES1.0",
.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
},
{
.soc_id = "r8a7796", .revision = "ES1.1",
.data = (void *)SD_SKIP_FIRST,
},
{ /* sentinel */ }
};
struct clk * __init rcar_gen3_cpg_clk_register(struct device *dev,
const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
struct clk **clks, void __iomem *base,
struct raw_notifier_head *notifiers)
{
const struct clk *parent;
unsigned int mult = 1;
unsigned int div = 1;
u32 value;
parent = clks[core->parent & 0xffff]; /* some types use high bits */
if (IS_ERR(parent))
return ERR_CAST(parent);
switch (core->type) {
case CLK_TYPE_GEN3_MAIN:
div = cpg_pll_config->extal_div;
break;
case CLK_TYPE_GEN3_PLL0:
/*
* PLL0 is implemented as a custom clock, to change the
* multiplier when cpufreq changes between normal and boost
* modes.
*/
mult = (cpg_quirks & PLL_ERRATA) ? 4 : 2;
return cpg_pll_clk_register(core->name, __clk_get_name(parent),
base, mult, CPG_PLL0CR, 0);
case CLK_TYPE_GEN3_PLL1:
mult = cpg_pll_config->pll1_mult;
div = cpg_pll_config->pll1_div;
break;
case CLK_TYPE_GEN3_PLL2:
/*
* PLL2 is implemented as a custom clock, to change the
* multiplier when cpufreq changes between normal and boost
* modes.
*/
mult = (cpg_quirks & PLL_ERRATA) ? 4 : 2;
return cpg_pll_clk_register(core->name, __clk_get_name(parent),
base, mult, CPG_PLL2CR, 2);
case CLK_TYPE_GEN3_PLL3:
mult = cpg_pll_config->pll3_mult;
div = cpg_pll_config->pll3_div;
break;
case CLK_TYPE_GEN3_PLL4:
/*
* PLL4 is a configurable multiplier clock. Register it as a
* fixed factor clock for now as there's no generic multiplier
* clock implementation and we currently have no need to change
* the multiplier value.
*/
value = readl(base + CPG_PLL4CR);
mult = (((value >> 24) & 0x7f) + 1) * 2;
if (cpg_quirks & PLL_ERRATA)
mult *= 2;
break;
case CLK_TYPE_GEN3_SD:
return cpg_sd_clk_register(core->name, base, core->offset,
__clk_get_name(parent), notifiers,
cpg_quirks & SD_SKIP_FIRST);
case CLK_TYPE_GEN3_R:
if (cpg_quirks & RCKCR_CKSEL) {
struct cpg_simple_notifier *csn;
csn = kzalloc(sizeof(*csn), GFP_KERNEL);
if (!csn)
return ERR_PTR(-ENOMEM);
csn->reg = base + CPG_RCKCR;
/*
* RINT is default.
* Only if EXTALR is populated, we switch to it.
*/
value = readl(csn->reg) & 0x3f;
if (clk_get_rate(clks[cpg_clk_extalr])) {
parent = clks[cpg_clk_extalr];
value |= CPG_RCKCR_CKSEL;
}
writel(value, csn->reg);
cpg_simple_notifier_register(notifiers, csn);
break;
}
/* Select parent clock of RCLK by MD28 */
if (cpg_mode & BIT(28))
parent = clks[cpg_clk_extalr];
break;
case CLK_TYPE_GEN3_MDSEL:
/*
* Clock selectable between two parents and two fixed dividers
* using a mode pin
*/
if (cpg_mode & BIT(core->offset)) {
div = core->div & 0xffff;
} else {
parent = clks[core->parent >> 16];
if (IS_ERR(parent))
return ERR_CAST(parent);
div = core->div >> 16;
}
mult = 1;
break;
case CLK_TYPE_GEN3_Z:
return cpg_z_clk_register(core->name, __clk_get_name(parent),
base, core->div, core->offset);
case CLK_TYPE_GEN3_OSC:
/*
* Clock combining OSC EXTAL predivider and a fixed divider
*/
div = cpg_pll_config->osc_prediv * core->div;
break;
case CLK_TYPE_GEN3_RCKSEL:
/*
* Clock selectable between two parents and two fixed dividers
* using RCKCR.CKSEL
*/
if (readl(base + CPG_RCKCR) & CPG_RCKCR_CKSEL) {
div = core->div & 0xffff;
} else {
parent = clks[core->parent >> 16];
if (IS_ERR(parent))
return ERR_CAST(parent);
div = core->div >> 16;
}
break;
case CLK_TYPE_GEN3_RPCSRC:
return clk_register_divider_table(NULL, core->name,
__clk_get_name(parent), 0,
base + CPG_RPCCKCR, 3, 2, 0,
cpg_rpcsrc_div_table,
&cpg_lock);
case CLK_TYPE_GEN3_E3_RPCSRC:
/*
* Register RPCSRC as fixed factor clock based on the
* MD[4:1] pins and CPG_RPCCKCR[4:3] register value for
* which has been set prior to booting the kernel.
*/
value = (readl(base + CPG_RPCCKCR) & GENMASK(4, 3)) >> 3;
switch (value) {
case 0:
div = 5;
break;
case 1:
div = 3;
break;
case 2:
parent = clks[core->parent >> 16];
if (IS_ERR(parent))
return ERR_CAST(parent);
div = core->div;
break;
case 3:
default:
div = 2;
break;
}
break;
case CLK_TYPE_GEN3_RPC:
return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
__clk_get_name(parent), notifiers);
case CLK_TYPE_GEN3_RPCD2:
return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
__clk_get_name(parent));
default:
return ERR_PTR(-EINVAL);
}
return clk_register_fixed_factor(NULL, core->name,
__clk_get_name(parent), 0, mult, div);
}
int __init rcar_gen3_cpg_init(const struct rcar_gen3_cpg_pll_config *config,
unsigned int clk_extalr, u32 mode)
{
const struct soc_device_attribute *attr;
cpg_pll_config = config;
cpg_clk_extalr = clk_extalr;
cpg_mode = mode;
attr = soc_device_match(cpg_quirks_match);
if (attr)
cpg_quirks = (uintptr_t)attr->data;
pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks);
spin_lock_init(&cpg_lock);
return 0;
}