mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-24 11:34:50 +08:00
ac803b5686
Convert the driver to use the core virt-dma. The driver will be easier to maintain as it uses the list handling and the tasklet from virt-dma. With the conversion replace the election of a new transfer in the tasklet with the election of the new transfer in the interrupt handler. With this we have a shorter idle window as we remove the scheduling latency of the tasklet. I chose to do this while doing the conversion to virt-dma, because if I made a prerequisite patch with the new transfer election in the irq handler, I would have to duplicate some virt-dma code in the at_hdmac driver that would end up being removed at the virt-dma conversion anyway. So do this in a single step. Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com> Link: https://lore.kernel.org/r/20221025090306.297886-1-tudor.ambarus@microchip.com Link: https://lore.kernel.org/r/20221025090306.297886-33-tudor.ambarus@microchip.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
2269 lines
64 KiB
C
2269 lines
64 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
|
|
*
|
|
* Copyright (C) 2008 Atmel Corporation
|
|
* Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
|
|
*
|
|
* This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
|
|
* The only Atmel DMA Controller that is not covered by this driver is the one
|
|
* found on AT91SAM9263.
|
|
*/
|
|
|
|
#include <dt-bindings/dma/at91.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/overflow.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/*
|
|
* Glossary
|
|
* --------
|
|
*
|
|
* at_hdmac : Name of the ATmel AHB DMA Controller
|
|
* at_dma_ / atdma : ATmel DMA controller entity related
|
|
* atc_ / atchan : ATmel DMA Channel entity related
|
|
*/
|
|
|
|
#define AT_DMA_MAX_NR_CHANNELS 8
|
|
|
|
/* Global Configuration Register */
|
|
#define AT_DMA_GCFG 0x00
|
|
#define AT_DMA_IF_BIGEND(i) BIT((i)) /* AHB-Lite Interface i in Big-endian mode */
|
|
#define AT_DMA_ARB_CFG BIT(4) /* Arbiter mode. */
|
|
|
|
/* Controller Enable Register */
|
|
#define AT_DMA_EN 0x04
|
|
#define AT_DMA_ENABLE BIT(0)
|
|
|
|
/* Software Single Request Register */
|
|
#define AT_DMA_SREQ 0x08
|
|
#define AT_DMA_SSREQ(x) BIT((x) << 1) /* Request a source single transfer on channel x */
|
|
#define AT_DMA_DSREQ(x) BIT(1 + ((x) << 1)) /* Request a destination single transfer on channel x */
|
|
|
|
/* Software Chunk Transfer Request Register */
|
|
#define AT_DMA_CREQ 0x0c
|
|
#define AT_DMA_SCREQ(x) BIT((x) << 1) /* Request a source chunk transfer on channel x */
|
|
#define AT_DMA_DCREQ(x) BIT(1 + ((x) << 1)) /* Request a destination chunk transfer on channel x */
|
|
|
|
/* Software Last Transfer Flag Register */
|
|
#define AT_DMA_LAST 0x10
|
|
#define AT_DMA_SLAST(x) BIT((x) << 1) /* This src rq is last tx of buffer on channel x */
|
|
#define AT_DMA_DLAST(x) BIT(1 + ((x) << 1)) /* This dst rq is last tx of buffer on channel x */
|
|
|
|
/* Request Synchronization Register */
|
|
#define AT_DMA_SYNC 0x14
|
|
#define AT_DMA_SYR(h) BIT((h)) /* Synchronize handshake line h */
|
|
|
|
/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
|
|
#define AT_DMA_EBCIER 0x18 /* Enable register */
|
|
#define AT_DMA_EBCIDR 0x1c /* Disable register */
|
|
#define AT_DMA_EBCIMR 0x20 /* Mask Register */
|
|
#define AT_DMA_EBCISR 0x24 /* Status Register */
|
|
#define AT_DMA_CBTC_OFFSET 8
|
|
#define AT_DMA_ERR_OFFSET 16
|
|
#define AT_DMA_BTC(x) BIT((x))
|
|
#define AT_DMA_CBTC(x) BIT(AT_DMA_CBTC_OFFSET + (x))
|
|
#define AT_DMA_ERR(x) BIT(AT_DMA_ERR_OFFSET + (x))
|
|
|
|
/* Channel Handler Enable Register */
|
|
#define AT_DMA_CHER 0x28
|
|
#define AT_DMA_ENA(x) BIT((x))
|
|
#define AT_DMA_SUSP(x) BIT(8 + (x))
|
|
#define AT_DMA_KEEP(x) BIT(24 + (x))
|
|
|
|
/* Channel Handler Disable Register */
|
|
#define AT_DMA_CHDR 0x2c
|
|
#define AT_DMA_DIS(x) BIT(x)
|
|
#define AT_DMA_RES(x) BIT(8 + (x))
|
|
|
|
/* Channel Handler Status Register */
|
|
#define AT_DMA_CHSR 0x30
|
|
#define AT_DMA_EMPT(x) BIT(16 + (x))
|
|
#define AT_DMA_STAL(x) BIT(24 + (x))
|
|
|
|
/* Channel registers base address */
|
|
#define AT_DMA_CH_REGS_BASE 0x3c
|
|
#define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
|
|
|
|
/* Hardware register offset for each channel */
|
|
#define ATC_SADDR_OFFSET 0x00 /* Source Address Register */
|
|
#define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */
|
|
#define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */
|
|
#define ATC_CTRLA_OFFSET 0x0c /* Control A Register */
|
|
#define ATC_CTRLB_OFFSET 0x10 /* Control B Register */
|
|
#define ATC_CFG_OFFSET 0x14 /* Configuration Register */
|
|
#define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */
|
|
#define ATC_DPIP_OFFSET 0x1c /* Dst PIP Configuration Register */
|
|
|
|
|
|
/* Bitfield definitions */
|
|
|
|
/* Bitfields in DSCR */
|
|
#define ATC_DSCR_IF GENMASK(1, 0) /* Dsc feched via AHB-Lite Interface */
|
|
|
|
/* Bitfields in CTRLA */
|
|
#define ATC_BTSIZE_MAX GENMASK(15, 0) /* Maximum Buffer Transfer Size */
|
|
#define ATC_BTSIZE GENMASK(15, 0) /* Buffer Transfer Size */
|
|
#define ATC_SCSIZE GENMASK(18, 16) /* Source Chunk Transfer Size */
|
|
#define ATC_DCSIZE GENMASK(22, 20) /* Destination Chunk Transfer Size */
|
|
#define ATC_SRC_WIDTH GENMASK(25, 24) /* Source Single Transfer Size */
|
|
#define ATC_DST_WIDTH GENMASK(29, 28) /* Destination Single Transfer Size */
|
|
#define ATC_DONE BIT(31) /* Tx Done (only written back in descriptor) */
|
|
|
|
/* Bitfields in CTRLB */
|
|
#define ATC_SIF GENMASK(1, 0) /* Src tx done via AHB-Lite Interface i */
|
|
#define ATC_DIF GENMASK(5, 4) /* Dst tx done via AHB-Lite Interface i */
|
|
#define AT_DMA_MEM_IF 0x0 /* interface 0 as memory interface */
|
|
#define AT_DMA_PER_IF 0x1 /* interface 1 as peripheral interface */
|
|
#define ATC_SRC_PIP BIT(8) /* Source Picture-in-Picture enabled */
|
|
#define ATC_DST_PIP BIT(12) /* Destination Picture-in-Picture enabled */
|
|
#define ATC_SRC_DSCR_DIS BIT(16) /* Src Descriptor fetch disable */
|
|
#define ATC_DST_DSCR_DIS BIT(20) /* Dst Descriptor fetch disable */
|
|
#define ATC_FC GENMASK(22, 21) /* Choose Flow Controller */
|
|
#define ATC_FC_MEM2MEM 0x0 /* Mem-to-Mem (DMA) */
|
|
#define ATC_FC_MEM2PER 0x1 /* Mem-to-Periph (DMA) */
|
|
#define ATC_FC_PER2MEM 0x2 /* Periph-to-Mem (DMA) */
|
|
#define ATC_FC_PER2PER 0x3 /* Periph-to-Periph (DMA) */
|
|
#define ATC_FC_PER2MEM_PER 0x4 /* Periph-to-Mem (Peripheral) */
|
|
#define ATC_FC_MEM2PER_PER 0x5 /* Mem-to-Periph (Peripheral) */
|
|
#define ATC_FC_PER2PER_SRCPER 0x6 /* Periph-to-Periph (Src Peripheral) */
|
|
#define ATC_FC_PER2PER_DSTPER 0x7 /* Periph-to-Periph (Dst Peripheral) */
|
|
#define ATC_SRC_ADDR_MODE GENMASK(25, 24)
|
|
#define ATC_SRC_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
|
|
#define ATC_SRC_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
|
|
#define ATC_SRC_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
|
|
#define ATC_DST_ADDR_MODE GENMASK(29, 28)
|
|
#define ATC_DST_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
|
|
#define ATC_DST_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
|
|
#define ATC_DST_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
|
|
#define ATC_IEN BIT(30) /* BTC interrupt enable (active low) */
|
|
#define ATC_AUTO BIT(31) /* Auto multiple buffer tx enable */
|
|
|
|
/* Bitfields in CFG */
|
|
#define ATC_PER_MSB(h) ((0x30U & (h)) >> 4) /* Extract most significant bits of a handshaking identifier */
|
|
|
|
#define ATC_SRC_PER GENMASK(3, 0) /* Channel src rq associated with periph handshaking ifc h */
|
|
#define ATC_DST_PER GENMASK(7, 4) /* Channel dst rq associated with periph handshaking ifc h */
|
|
#define ATC_SRC_REP BIT(8) /* Source Replay Mod */
|
|
#define ATC_SRC_H2SEL BIT(9) /* Source Handshaking Mod */
|
|
#define ATC_SRC_PER_MSB GENMASK(11, 10) /* Channel src rq (most significant bits) */
|
|
#define ATC_DST_REP BIT(12) /* Destination Replay Mod */
|
|
#define ATC_DST_H2SEL BIT(13) /* Destination Handshaking Mod */
|
|
#define ATC_DST_PER_MSB GENMASK(15, 14) /* Channel dst rq (most significant bits) */
|
|
#define ATC_SOD BIT(16) /* Stop On Done */
|
|
#define ATC_LOCK_IF BIT(20) /* Interface Lock */
|
|
#define ATC_LOCK_B BIT(21) /* AHB Bus Lock */
|
|
#define ATC_LOCK_IF_L BIT(22) /* Master Interface Arbiter Lock */
|
|
#define ATC_AHB_PROT GENMASK(26, 24) /* AHB Protection */
|
|
#define ATC_FIFOCFG GENMASK(29, 28) /* FIFO Request Configuration */
|
|
#define ATC_FIFOCFG_LARGESTBURST 0x0
|
|
#define ATC_FIFOCFG_HALFFIFO 0x1
|
|
#define ATC_FIFOCFG_ENOUGHSPACE 0x2
|
|
|
|
/* Bitfields in SPIP */
|
|
#define ATC_SPIP_HOLE GENMASK(15, 0)
|
|
#define ATC_SPIP_BOUNDARY GENMASK(25, 16)
|
|
|
|
/* Bitfields in DPIP */
|
|
#define ATC_DPIP_HOLE GENMASK(15, 0)
|
|
#define ATC_DPIP_BOUNDARY GENMASK(25, 16)
|
|
|
|
#define ATC_SRC_PER_ID(id) (FIELD_PREP(ATC_SRC_PER_MSB, (id)) | \
|
|
FIELD_PREP(ATC_SRC_PER, (id)))
|
|
#define ATC_DST_PER_ID(id) (FIELD_PREP(ATC_DST_PER_MSB, (id)) | \
|
|
FIELD_PREP(ATC_DST_PER, (id)))
|
|
|
|
|
|
|
|
/*-- descriptors -----------------------------------------------------*/
|
|
|
|
/* LLI == Linked List Item; aka DMA buffer descriptor */
|
|
struct at_lli {
|
|
/* values that are not changed by hardware */
|
|
u32 saddr;
|
|
u32 daddr;
|
|
/* value that may get written back: */
|
|
u32 ctrla;
|
|
/* more values that are not changed by hardware */
|
|
u32 ctrlb;
|
|
u32 dscr; /* chain to next lli */
|
|
};
|
|
|
|
/**
|
|
* struct atdma_sg - atdma scatter gather entry
|
|
* @len: length of the current Linked List Item.
|
|
* @lli: linked list item that is passed to the DMA controller
|
|
* @lli_phys: physical address of the LLI.
|
|
*/
|
|
struct atdma_sg {
|
|
unsigned int len;
|
|
struct at_lli *lli;
|
|
dma_addr_t lli_phys;
|
|
};
|
|
|
|
/**
|
|
* struct at_desc - software descriptor
|
|
* @vd: pointer to the virtual dma descriptor.
|
|
* @atchan: pointer to the atmel dma channel.
|
|
* @total_len: total transaction byte count
|
|
* @sg_len: number of sg entries.
|
|
* @sg: array of sgs.
|
|
*/
|
|
struct at_desc {
|
|
struct virt_dma_desc vd;
|
|
struct at_dma_chan *atchan;
|
|
size_t total_len;
|
|
unsigned int sglen;
|
|
/* Interleaved data */
|
|
size_t boundary;
|
|
size_t dst_hole;
|
|
size_t src_hole;
|
|
|
|
/* Memset temporary buffer */
|
|
bool memset_buffer;
|
|
dma_addr_t memset_paddr;
|
|
int *memset_vaddr;
|
|
struct atdma_sg sg[];
|
|
};
|
|
|
|
/*-- Channels --------------------------------------------------------*/
|
|
|
|
/**
|
|
* atc_status - information bits stored in channel status flag
|
|
*
|
|
* Manipulated with atomic operations.
|
|
*/
|
|
enum atc_status {
|
|
ATC_IS_PAUSED = 1,
|
|
ATC_IS_CYCLIC = 24,
|
|
};
|
|
|
|
/**
|
|
* struct at_dma_chan - internal representation of an Atmel HDMAC channel
|
|
* @vc: virtual dma channel entry.
|
|
* @atdma: pointer to the driver data.
|
|
* @ch_regs: memory mapped register base
|
|
* @mask: channel index in a mask
|
|
* @per_if: peripheral interface
|
|
* @mem_if: memory interface
|
|
* @status: transmit status information from irq/prep* functions
|
|
* to tasklet (use atomic operations)
|
|
* @save_cfg: configuration register that is saved on suspend/resume cycle
|
|
* @save_dscr: for cyclic operations, preserve next descriptor address in
|
|
* the cyclic list on suspend/resume cycle
|
|
* @dma_sconfig: configuration for slave transfers, passed via
|
|
* .device_config
|
|
* @desc: pointer to the atmel dma descriptor.
|
|
*/
|
|
struct at_dma_chan {
|
|
struct virt_dma_chan vc;
|
|
struct at_dma *atdma;
|
|
void __iomem *ch_regs;
|
|
u8 mask;
|
|
u8 per_if;
|
|
u8 mem_if;
|
|
unsigned long status;
|
|
u32 save_cfg;
|
|
u32 save_dscr;
|
|
struct dma_slave_config dma_sconfig;
|
|
bool cyclic;
|
|
struct at_desc *desc;
|
|
};
|
|
|
|
#define channel_readl(atchan, name) \
|
|
__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
|
|
|
|
#define channel_writel(atchan, name, val) \
|
|
__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
|
|
|
|
/*
|
|
* Fix sconfig's burst size according to at_hdmac. We need to convert them as:
|
|
* 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
|
|
*
|
|
* This can be done by finding most significant bit set.
|
|
*/
|
|
static inline void convert_burst(u32 *maxburst)
|
|
{
|
|
if (*maxburst > 1)
|
|
*maxburst = fls(*maxburst) - 2;
|
|
else
|
|
*maxburst = 0;
|
|
}
|
|
|
|
/*
|
|
* Fix sconfig's bus width according to at_hdmac.
|
|
* 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
|
|
*/
|
|
static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
|
|
{
|
|
switch (addr_width) {
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
return 1;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
return 2;
|
|
default:
|
|
/* For 1 byte width or fallback */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*-- Controller ------------------------------------------------------*/
|
|
|
|
/**
|
|
* struct at_dma - internal representation of an Atmel HDMA Controller
|
|
* @dma_device: dmaengine dma_device object members
|
|
* @atdma_devtype: identifier of DMA controller compatibility
|
|
* @ch_regs: memory mapped register base
|
|
* @clk: dma controller clock
|
|
* @save_imr: interrupt mask register that is saved on suspend/resume cycle
|
|
* @all_chan_mask: all channels availlable in a mask
|
|
* @lli_pool: hw lli table
|
|
* @chan: channels table to store at_dma_chan structures
|
|
*/
|
|
struct at_dma {
|
|
struct dma_device dma_device;
|
|
void __iomem *regs;
|
|
struct clk *clk;
|
|
u32 save_imr;
|
|
|
|
u8 all_chan_mask;
|
|
|
|
struct dma_pool *lli_pool;
|
|
struct dma_pool *memset_pool;
|
|
/* AT THE END channels table */
|
|
struct at_dma_chan chan[];
|
|
};
|
|
|
|
#define dma_readl(atdma, name) \
|
|
__raw_readl((atdma)->regs + AT_DMA_##name)
|
|
#define dma_writel(atdma, name, val) \
|
|
__raw_writel((val), (atdma)->regs + AT_DMA_##name)
|
|
|
|
static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
|
|
{
|
|
return container_of(t, struct at_desc, vd.tx);
|
|
}
|
|
|
|
static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct at_dma_chan, vc.chan);
|
|
}
|
|
|
|
static inline struct at_dma *to_at_dma(struct dma_device *ddev)
|
|
{
|
|
return container_of(ddev, struct at_dma, dma_device);
|
|
}
|
|
|
|
|
|
/*-- Helper functions ------------------------------------------------*/
|
|
|
|
static struct device *chan2dev(struct dma_chan *chan)
|
|
{
|
|
return &chan->dev->device;
|
|
}
|
|
|
|
#if defined(VERBOSE_DEBUG)
|
|
static void vdbg_dump_regs(struct at_dma_chan *atchan)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
|
|
|
|
dev_err(chan2dev(&atchan->vc.chan),
|
|
" channel %d : imr = 0x%x, chsr = 0x%x\n",
|
|
atchan->vc.chan.chan_id,
|
|
dma_readl(atdma, EBCIMR),
|
|
dma_readl(atdma, CHSR));
|
|
|
|
dev_err(chan2dev(&atchan->vc.chan),
|
|
" channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
|
|
channel_readl(atchan, SADDR),
|
|
channel_readl(atchan, DADDR),
|
|
channel_readl(atchan, CTRLA),
|
|
channel_readl(atchan, CTRLB),
|
|
channel_readl(atchan, CFG),
|
|
channel_readl(atchan, DSCR));
|
|
}
|
|
#else
|
|
static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
|
|
#endif
|
|
|
|
static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
|
|
{
|
|
dev_crit(chan2dev(&atchan->vc.chan),
|
|
"desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
|
|
&lli->saddr, &lli->daddr,
|
|
lli->ctrla, lli->ctrlb, &lli->dscr);
|
|
}
|
|
|
|
|
|
static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
|
|
{
|
|
u32 ebci;
|
|
|
|
/* enable interrupts on buffer transfer completion & error */
|
|
ebci = AT_DMA_BTC(chan_id)
|
|
| AT_DMA_ERR(chan_id);
|
|
if (on)
|
|
dma_writel(atdma, EBCIER, ebci);
|
|
else
|
|
dma_writel(atdma, EBCIDR, ebci);
|
|
}
|
|
|
|
static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
|
|
{
|
|
atc_setup_irq(atdma, chan_id, 1);
|
|
}
|
|
|
|
static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
|
|
{
|
|
atc_setup_irq(atdma, chan_id, 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* atc_chan_is_enabled - test if given channel is enabled
|
|
* @atchan: channel we want to test status
|
|
*/
|
|
static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
|
|
|
|
return !!(dma_readl(atdma, CHSR) & atchan->mask);
|
|
}
|
|
|
|
/**
|
|
* atc_chan_is_paused - test channel pause/resume status
|
|
* @atchan: channel we want to test status
|
|
*/
|
|
static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
|
|
{
|
|
return test_bit(ATC_IS_PAUSED, &atchan->status);
|
|
}
|
|
|
|
/**
|
|
* atc_chan_is_cyclic - test if given channel has cyclic property set
|
|
* @atchan: channel we want to test status
|
|
*/
|
|
static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
|
|
{
|
|
return test_bit(ATC_IS_CYCLIC, &atchan->status);
|
|
}
|
|
|
|
/**
|
|
* set_lli_eol - set end-of-link to descriptor so it will end transfer
|
|
* @desc: descriptor, signle or at the end of a chain, to end chain on
|
|
* @i: index of the atmel scatter gather entry that is at the end of the chain.
|
|
*/
|
|
static void set_lli_eol(struct at_desc *desc, unsigned int i)
|
|
{
|
|
u32 ctrlb = desc->sg[i].lli->ctrlb;
|
|
|
|
ctrlb &= ~ATC_IEN;
|
|
ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
|
|
|
|
desc->sg[i].lli->ctrlb = ctrlb;
|
|
desc->sg[i].lli->dscr = 0;
|
|
}
|
|
|
|
#define ATC_DEFAULT_CFG FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
|
|
#define ATC_DEFAULT_CTRLB (FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
|
|
FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
|
|
#define ATC_DMA_BUSWIDTHS\
|
|
(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
|
|
|
|
#define ATC_MAX_DSCR_TRIALS 10
|
|
|
|
/*
|
|
* Initial number of descriptors to allocate for each channel. This could
|
|
* be increased during dma usage.
|
|
*/
|
|
static unsigned int init_nr_desc_per_channel = 64;
|
|
module_param(init_nr_desc_per_channel, uint, 0644);
|
|
MODULE_PARM_DESC(init_nr_desc_per_channel,
|
|
"initial descriptors per channel (default: 64)");
|
|
|
|
/**
|
|
* struct at_dma_platform_data - Controller configuration parameters
|
|
* @nr_channels: Number of channels supported by hardware (max 8)
|
|
* @cap_mask: dma_capability flags supported by the platform
|
|
*/
|
|
struct at_dma_platform_data {
|
|
unsigned int nr_channels;
|
|
dma_cap_mask_t cap_mask;
|
|
};
|
|
|
|
/**
|
|
* struct at_dma_slave - Controller-specific information about a slave
|
|
* @dma_dev: required DMA master device
|
|
* @cfg: Platform-specific initializer for the CFG register
|
|
*/
|
|
struct at_dma_slave {
|
|
struct device *dma_dev;
|
|
u32 cfg;
|
|
};
|
|
|
|
static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
|
|
size_t len)
|
|
{
|
|
unsigned int width;
|
|
|
|
if (!((src | dst | len) & 3))
|
|
width = 2;
|
|
else if (!((src | dst | len) & 1))
|
|
width = 1;
|
|
else
|
|
width = 0;
|
|
|
|
return width;
|
|
}
|
|
|
|
static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
|
|
{
|
|
struct atdma_sg *atdma_sg = &desc->sg[i];
|
|
|
|
if (i)
|
|
desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
|
|
}
|
|
|
|
/**
|
|
* atc_dostart - starts the DMA engine for real
|
|
* @atchan: the channel we want to start
|
|
*/
|
|
static void atc_dostart(struct at_dma_chan *atchan)
|
|
{
|
|
struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
|
|
struct at_desc *desc;
|
|
|
|
if (!vd) {
|
|
atchan->desc = NULL;
|
|
return;
|
|
}
|
|
|
|
vdbg_dump_regs(atchan);
|
|
|
|
list_del(&vd->node);
|
|
atchan->desc = desc = to_atdma_desc(&vd->tx);
|
|
|
|
channel_writel(atchan, SADDR, 0);
|
|
channel_writel(atchan, DADDR, 0);
|
|
channel_writel(atchan, CTRLA, 0);
|
|
channel_writel(atchan, CTRLB, 0);
|
|
channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
|
|
channel_writel(atchan, SPIP,
|
|
FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
|
|
FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
|
|
channel_writel(atchan, DPIP,
|
|
FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
|
|
FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
|
|
|
|
/* Don't allow CPU to reorder channel enable. */
|
|
wmb();
|
|
dma_writel(atchan->atdma, CHER, atchan->mask);
|
|
|
|
vdbg_dump_regs(atchan);
|
|
}
|
|
|
|
static void atdma_desc_free(struct virt_dma_desc *vd)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
|
|
struct at_desc *desc = to_atdma_desc(&vd->tx);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < desc->sglen; i++) {
|
|
if (desc->sg[i].lli)
|
|
dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
|
|
desc->sg[i].lli_phys);
|
|
}
|
|
|
|
/* If the transfer was a memset, free our temporary buffer */
|
|
if (desc->memset_buffer) {
|
|
dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
|
|
desc->memset_paddr);
|
|
desc->memset_buffer = false;
|
|
}
|
|
|
|
kfree(desc);
|
|
}
|
|
|
|
/**
|
|
* atc_calc_bytes_left - calculates the number of bytes left according to the
|
|
* value read from CTRLA.
|
|
*
|
|
* @current_len: the number of bytes left before reading CTRLA
|
|
* @ctrla: the value of CTRLA
|
|
*/
|
|
static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
|
|
{
|
|
u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
|
|
u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
|
|
|
|
/*
|
|
* According to the datasheet, when reading the Control A Register
|
|
* (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
|
|
* number of transfers completed on the Source Interface.
|
|
* So btsize is always a number of source width transfers.
|
|
*/
|
|
return current_len - (btsize << src_width);
|
|
}
|
|
|
|
/**
|
|
* atc_get_llis_residue - Get residue for a hardware linked list transfer
|
|
*
|
|
* Calculate the residue by removing the length of the Linked List Item (LLI)
|
|
* already transferred from the total length. To get the current LLI we can use
|
|
* the value of the channel's DSCR register and compare it against the DSCR
|
|
* value of each LLI.
|
|
*
|
|
* The CTRLA register provides us with the amount of data already read from the
|
|
* source for the LLI. So we can compute a more accurate residue by also
|
|
* removing the number of bytes corresponding to this amount of data.
|
|
*
|
|
* However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
|
|
* race condition may occur: the first read register may refer to one LLI
|
|
* whereas the second read may refer to a later LLI in the list because of the
|
|
* DMA transfer progression inbetween the two reads.
|
|
*
|
|
* One solution could have been to pause the DMA transfer, read the DSCR and
|
|
* CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
|
|
* drawbacks:
|
|
* - If the DMA transfer is paused, RX overruns or TX underruns are more likey
|
|
* to occur depending on the system latency. Taking the USART driver as an
|
|
* example, it uses a cyclic DMA transfer to read data from the Receive
|
|
* Holding Register (RHR) to avoid RX overruns since the RHR is not protected
|
|
* by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
|
|
* residue would break the USART driver design.
|
|
* - The atc_pause() function masks interrupts but we'd rather avoid to do so
|
|
* for system latency purpose.
|
|
*
|
|
* Then we'd rather use another solution: the DSCR is read a first time, the
|
|
* CTRLA is read in turn, next the DSCR is read a second time. If the two
|
|
* consecutive read values of the DSCR are the same then we assume both refers
|
|
* to the very same LLI as well as the CTRLA value read inbetween does. For
|
|
* cyclic tranfers, the assumption is that a full loop is "not so fast". If the
|
|
* two DSCR values are different, we read again the CTRLA then the DSCR till two
|
|
* consecutive read values from DSCR are equal or till the maximum trials is
|
|
* reach. This algorithm is very unlikely not to find a stable value for DSCR.
|
|
* @atchan: pointer to an atmel hdmac channel.
|
|
* @desc: pointer to the descriptor for which the residue is calculated.
|
|
* @residue: residue to be set to dma_tx_state.
|
|
* Returns 0 on success, -errno otherwise.
|
|
*/
|
|
static int atc_get_llis_residue(struct at_dma_chan *atchan,
|
|
struct at_desc *desc, u32 *residue)
|
|
{
|
|
u32 len, ctrla, dscr;
|
|
unsigned int i;
|
|
|
|
len = desc->total_len;
|
|
dscr = channel_readl(atchan, DSCR);
|
|
rmb(); /* ensure DSCR is read before CTRLA */
|
|
ctrla = channel_readl(atchan, CTRLA);
|
|
for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
|
|
u32 new_dscr;
|
|
|
|
rmb(); /* ensure DSCR is read after CTRLA */
|
|
new_dscr = channel_readl(atchan, DSCR);
|
|
|
|
/*
|
|
* If the DSCR register value has not changed inside the DMA
|
|
* controller since the previous read, we assume that both the
|
|
* dscr and ctrla values refers to the very same descriptor.
|
|
*/
|
|
if (likely(new_dscr == dscr))
|
|
break;
|
|
|
|
/*
|
|
* DSCR has changed inside the DMA controller, so the previouly
|
|
* read value of CTRLA may refer to an already processed
|
|
* descriptor hence could be outdated. We need to update ctrla
|
|
* to match the current descriptor.
|
|
*/
|
|
dscr = new_dscr;
|
|
rmb(); /* ensure DSCR is read before CTRLA */
|
|
ctrla = channel_readl(atchan, CTRLA);
|
|
}
|
|
if (unlikely(i == ATC_MAX_DSCR_TRIALS))
|
|
return -ETIMEDOUT;
|
|
|
|
/* For the first descriptor we can be more accurate. */
|
|
if (desc->sg[0].lli->dscr == dscr) {
|
|
*residue = atc_calc_bytes_left(len, ctrla);
|
|
return 0;
|
|
}
|
|
len -= desc->sg[0].len;
|
|
|
|
for (i = 1; i < desc->sglen; i++) {
|
|
if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
|
|
break;
|
|
len -= desc->sg[i].len;
|
|
}
|
|
|
|
/*
|
|
* For the current LLI in the chain we can calculate the remaining bytes
|
|
* using the channel's CTRLA register.
|
|
*/
|
|
*residue = atc_calc_bytes_left(len, ctrla);
|
|
return 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* atc_get_residue - get the number of bytes residue for a cookie.
|
|
* The residue is passed by address and updated on success.
|
|
* @chan: DMA channel
|
|
* @cookie: transaction identifier to check status of
|
|
* @residue: residue to be updated.
|
|
* Return 0 on success, -errono otherwise.
|
|
*/
|
|
static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
|
|
u32 *residue)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct virt_dma_desc *vd;
|
|
struct at_desc *desc = NULL;
|
|
u32 len, ctrla;
|
|
|
|
vd = vchan_find_desc(&atchan->vc, cookie);
|
|
if (vd)
|
|
desc = to_atdma_desc(&vd->tx);
|
|
else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
|
|
desc = atchan->desc;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
if (desc->sg[0].lli->dscr)
|
|
/* hardware linked list transfer */
|
|
return atc_get_llis_residue(atchan, desc, residue);
|
|
|
|
/* single transfer */
|
|
len = desc->total_len;
|
|
ctrla = channel_readl(atchan, CTRLA);
|
|
*residue = atc_calc_bytes_left(len, ctrla);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atc_handle_error - handle errors reported by DMA controller
|
|
* @atchan: channel where error occurs.
|
|
* @i: channel index
|
|
*/
|
|
static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
|
|
{
|
|
struct at_desc *desc = atchan->desc;
|
|
|
|
/* Disable channel on AHB error */
|
|
dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
|
|
|
|
/*
|
|
* KERN_CRITICAL may seem harsh, but since this only happens
|
|
* when someone submits a bad physical address in a
|
|
* descriptor, we should consider ourselves lucky that the
|
|
* controller flagged an error instead of scribbling over
|
|
* random memory locations.
|
|
*/
|
|
dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
|
|
dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
|
|
desc->vd.tx.cookie);
|
|
for (i = 0; i < desc->sglen; i++)
|
|
atc_dump_lli(atchan, desc->sg[i].lli);
|
|
}
|
|
|
|
static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
|
|
unsigned int i)
|
|
{
|
|
struct at_desc *desc;
|
|
|
|
spin_lock(&atchan->vc.lock);
|
|
desc = atchan->desc;
|
|
|
|
if (desc) {
|
|
if (pending & AT_DMA_ERR(i)) {
|
|
atc_handle_error(atchan, i);
|
|
/* Pretend the descriptor completed successfully */
|
|
}
|
|
|
|
if (atc_chan_is_cyclic(atchan)) {
|
|
vchan_cyclic_callback(&desc->vd);
|
|
} else {
|
|
vchan_cookie_complete(&desc->vd);
|
|
atchan->desc = NULL;
|
|
if (!(atc_chan_is_enabled(atchan)))
|
|
atc_dostart(atchan);
|
|
}
|
|
}
|
|
spin_unlock(&atchan->vc.lock);
|
|
}
|
|
|
|
static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct at_dma *atdma = dev_id;
|
|
struct at_dma_chan *atchan;
|
|
int i;
|
|
u32 status, pending, imr;
|
|
int ret = IRQ_NONE;
|
|
|
|
do {
|
|
imr = dma_readl(atdma, EBCIMR);
|
|
status = dma_readl(atdma, EBCISR);
|
|
pending = status & imr;
|
|
|
|
if (!pending)
|
|
break;
|
|
|
|
dev_vdbg(atdma->dma_device.dev,
|
|
"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
|
|
status, imr, pending);
|
|
|
|
for (i = 0; i < atdma->dma_device.chancnt; i++) {
|
|
atchan = &atdma->chan[i];
|
|
if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
|
|
continue;
|
|
atdma_handle_chan_done(atchan, pending, i);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
} while (pending);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*-- DMA Engine API --------------------------------------------------*/
|
|
/**
|
|
* atc_prep_dma_interleaved - prepare memory to memory interleaved operation
|
|
* @chan: the channel to prepare operation on
|
|
* @xt: Interleaved transfer template
|
|
* @flags: tx descriptor status flags
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_dma_interleaved(struct dma_chan *chan,
|
|
struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct data_chunk *first;
|
|
struct atdma_sg *atdma_sg;
|
|
struct at_desc *desc;
|
|
struct at_lli *lli;
|
|
size_t xfer_count;
|
|
unsigned int dwidth;
|
|
u32 ctrla;
|
|
u32 ctrlb;
|
|
size_t len = 0;
|
|
int i;
|
|
|
|
if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
|
|
return NULL;
|
|
|
|
first = xt->sgl;
|
|
|
|
dev_info(chan2dev(chan),
|
|
"%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
|
|
__func__, &xt->src_start, &xt->dst_start, xt->numf,
|
|
xt->frame_size, flags);
|
|
|
|
/*
|
|
* The controller can only "skip" X bytes every Y bytes, so we
|
|
* need to make sure we are given a template that fit that
|
|
* description, ie a template with chunks that always have the
|
|
* same size, with the same ICGs.
|
|
*/
|
|
for (i = 0; i < xt->frame_size; i++) {
|
|
struct data_chunk *chunk = xt->sgl + i;
|
|
|
|
if ((chunk->size != xt->sgl->size) ||
|
|
(dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
|
|
(dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
|
|
dev_err(chan2dev(chan),
|
|
"%s: the controller can transfer only identical chunks\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
len += chunk->size;
|
|
}
|
|
|
|
dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
|
|
|
|
xfer_count = len >> dwidth;
|
|
if (xfer_count > ATC_BTSIZE_MAX) {
|
|
dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
|
|
FIELD_PREP(ATC_DST_WIDTH, dwidth);
|
|
|
|
ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
|
|
ATC_SRC_PIP | ATC_DST_PIP |
|
|
FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
|
|
|
|
desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
|
|
if (!desc)
|
|
return NULL;
|
|
desc->sglen = 1;
|
|
|
|
atdma_sg = desc->sg;
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
lli = atdma_sg->lli;
|
|
|
|
lli->saddr = xt->src_start;
|
|
lli->daddr = xt->dst_start;
|
|
lli->ctrla = ctrla | xfer_count;
|
|
lli->ctrlb = ctrlb;
|
|
|
|
desc->boundary = first->size >> dwidth;
|
|
desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
|
|
desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
|
|
|
|
atdma_sg->len = len;
|
|
desc->total_len = len;
|
|
|
|
set_lli_eol(desc, 0);
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
}
|
|
|
|
/**
|
|
* atc_prep_dma_memcpy - prepare a memcpy operation
|
|
* @chan: the channel to prepare operation on
|
|
* @dest: operation virtual destination address
|
|
* @src: operation virtual source address
|
|
* @len: operation length
|
|
* @flags: tx descriptor status flags
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_desc *desc = NULL;
|
|
size_t xfer_count;
|
|
size_t offset;
|
|
size_t sg_len;
|
|
unsigned int src_width;
|
|
unsigned int dst_width;
|
|
unsigned int i;
|
|
u32 ctrla;
|
|
u32 ctrlb;
|
|
|
|
dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
|
|
&dest, &src, len, flags);
|
|
|
|
if (unlikely(!len)) {
|
|
dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
|
|
return NULL;
|
|
}
|
|
|
|
sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
|
|
desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
|
|
if (!desc)
|
|
return NULL;
|
|
desc->sglen = sg_len;
|
|
|
|
ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
|
|
|
|
/*
|
|
* We can be a lot more clever here, but this should take care
|
|
* of the most common optimization.
|
|
*/
|
|
src_width = dst_width = atc_get_xfer_width(src, dest, len);
|
|
|
|
ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
|
|
FIELD_PREP(ATC_DST_WIDTH, dst_width);
|
|
|
|
for (offset = 0, i = 0; offset < len;
|
|
offset += xfer_count << src_width, i++) {
|
|
struct atdma_sg *atdma_sg = &desc->sg[i];
|
|
struct at_lli *lli;
|
|
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli)
|
|
goto err_desc_get;
|
|
lli = atdma_sg->lli;
|
|
|
|
xfer_count = min_t(size_t, (len - offset) >> src_width,
|
|
ATC_BTSIZE_MAX);
|
|
|
|
lli->saddr = src + offset;
|
|
lli->daddr = dest + offset;
|
|
lli->ctrla = ctrla | xfer_count;
|
|
lli->ctrlb = ctrlb;
|
|
|
|
desc->sg[i].len = xfer_count << src_width;
|
|
|
|
atdma_lli_chain(desc, i);
|
|
}
|
|
|
|
desc->total_len = len;
|
|
|
|
/* set end-of-link to the last link descriptor of list*/
|
|
set_lli_eol(desc, i - 1);
|
|
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
|
|
err_desc_get:
|
|
atdma_desc_free(&desc->vd);
|
|
return NULL;
|
|
}
|
|
|
|
static int atdma_create_memset_lli(struct dma_chan *chan,
|
|
struct atdma_sg *atdma_sg,
|
|
dma_addr_t psrc, dma_addr_t pdst, size_t len)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_lli *lli;
|
|
size_t xfer_count;
|
|
u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
|
|
u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
|
|
FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
|
|
|
|
xfer_count = len >> 2;
|
|
if (xfer_count > ATC_BTSIZE_MAX) {
|
|
dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli)
|
|
return -ENOMEM;
|
|
lli = atdma_sg->lli;
|
|
|
|
lli->saddr = psrc;
|
|
lli->daddr = pdst;
|
|
lli->ctrla = ctrla | xfer_count;
|
|
lli->ctrlb = ctrlb;
|
|
|
|
atdma_sg->len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atc_prep_dma_memset - prepare a memcpy operation
|
|
* @chan: the channel to prepare operation on
|
|
* @dest: operation virtual destination address
|
|
* @value: value to set memory buffer to
|
|
* @len: operation length
|
|
* @flags: tx descriptor status flags
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_desc *desc;
|
|
void __iomem *vaddr;
|
|
dma_addr_t paddr;
|
|
char fill_pattern;
|
|
int ret;
|
|
|
|
dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
|
|
&dest, value, len, flags);
|
|
|
|
if (unlikely(!len)) {
|
|
dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
|
|
dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
|
|
if (!vaddr) {
|
|
dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
/* Only the first byte of value is to be used according to dmaengine */
|
|
fill_pattern = (char)value;
|
|
|
|
*(u32*)vaddr = (fill_pattern << 24) |
|
|
(fill_pattern << 16) |
|
|
(fill_pattern << 8) |
|
|
fill_pattern;
|
|
|
|
desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
|
|
if (!desc)
|
|
goto err_free_buffer;
|
|
desc->sglen = 1;
|
|
|
|
ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
|
|
if (ret)
|
|
goto err_free_desc;
|
|
|
|
desc->memset_paddr = paddr;
|
|
desc->memset_vaddr = vaddr;
|
|
desc->memset_buffer = true;
|
|
|
|
desc->total_len = len;
|
|
|
|
/* set end-of-link on the descriptor */
|
|
set_lli_eol(desc, 0);
|
|
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
|
|
err_free_desc:
|
|
kfree(desc);
|
|
err_free_buffer:
|
|
dma_pool_free(atdma->memset_pool, vaddr, paddr);
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_dma_memset_sg(struct dma_chan *chan,
|
|
struct scatterlist *sgl,
|
|
unsigned int sg_len, int value,
|
|
unsigned long flags)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_desc *desc;
|
|
struct scatterlist *sg;
|
|
void __iomem *vaddr;
|
|
dma_addr_t paddr;
|
|
size_t total_len = 0;
|
|
int i;
|
|
int ret;
|
|
|
|
dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
|
|
value, sg_len, flags);
|
|
|
|
if (unlikely(!sgl || !sg_len)) {
|
|
dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
|
|
if (!vaddr) {
|
|
dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
*(u32*)vaddr = value;
|
|
|
|
desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
|
|
if (!desc)
|
|
goto err_free_dma_buf;
|
|
desc->sglen = sg_len;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
dma_addr_t dest = sg_dma_address(sg);
|
|
size_t len = sg_dma_len(sg);
|
|
|
|
dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
|
|
__func__, &dest, len);
|
|
|
|
if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
|
|
dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
|
|
__func__);
|
|
goto err_free_desc;
|
|
}
|
|
|
|
ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
|
|
len);
|
|
if (ret)
|
|
goto err_free_desc;
|
|
|
|
atdma_lli_chain(desc, i);
|
|
total_len += len;
|
|
}
|
|
|
|
desc->memset_paddr = paddr;
|
|
desc->memset_vaddr = vaddr;
|
|
desc->memset_buffer = true;
|
|
|
|
desc->total_len = total_len;
|
|
|
|
/* set end-of-link on the descriptor */
|
|
set_lli_eol(desc, i - 1);
|
|
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
|
|
err_free_desc:
|
|
atdma_desc_free(&desc->vd);
|
|
err_free_dma_buf:
|
|
dma_pool_free(atdma->memset_pool, vaddr, paddr);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
|
|
* @chan: DMA channel
|
|
* @sgl: scatterlist to transfer to/from
|
|
* @sg_len: number of entries in @scatterlist
|
|
* @direction: DMA direction
|
|
* @flags: tx descriptor status flags
|
|
* @context: transaction context (ignored)
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma_slave *atslave = chan->private;
|
|
struct dma_slave_config *sconfig = &atchan->dma_sconfig;
|
|
struct at_desc *desc;
|
|
u32 ctrla;
|
|
u32 ctrlb;
|
|
dma_addr_t reg;
|
|
unsigned int reg_width;
|
|
unsigned int mem_width;
|
|
unsigned int i;
|
|
struct scatterlist *sg;
|
|
size_t total_len = 0;
|
|
|
|
dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
|
|
sg_len,
|
|
direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
|
|
flags);
|
|
|
|
if (unlikely(!atslave || !sg_len)) {
|
|
dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
|
|
return NULL;
|
|
}
|
|
|
|
desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
|
|
if (!desc)
|
|
return NULL;
|
|
desc->sglen = sg_len;
|
|
|
|
ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
|
|
FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
|
|
ctrlb = ATC_IEN;
|
|
|
|
switch (direction) {
|
|
case DMA_MEM_TO_DEV:
|
|
reg_width = convert_buswidth(sconfig->dst_addr_width);
|
|
ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
|
|
ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
|
|
ATC_DST_ADDR_MODE_FIXED) |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
|
|
FIELD_PREP(ATC_SIF, atchan->mem_if) |
|
|
FIELD_PREP(ATC_DIF, atchan->per_if);
|
|
reg = sconfig->dst_addr;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
struct atdma_sg *atdma_sg = &desc->sg[i];
|
|
struct at_lli *lli;
|
|
u32 len;
|
|
u32 mem;
|
|
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
|
|
GFP_NOWAIT,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli)
|
|
goto err_desc_get;
|
|
lli = atdma_sg->lli;
|
|
|
|
mem = sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
if (unlikely(!len)) {
|
|
dev_dbg(chan2dev(chan),
|
|
"prep_slave_sg: sg(%d) data length is zero\n", i);
|
|
goto err;
|
|
}
|
|
mem_width = 2;
|
|
if (unlikely(mem & 3 || len & 3))
|
|
mem_width = 0;
|
|
|
|
lli->saddr = mem;
|
|
lli->daddr = reg;
|
|
lli->ctrla = ctrla |
|
|
FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
|
|
len >> mem_width;
|
|
lli->ctrlb = ctrlb;
|
|
|
|
atdma_sg->len = len;
|
|
total_len += len;
|
|
|
|
desc->sg[i].len = len;
|
|
atdma_lli_chain(desc, i);
|
|
}
|
|
break;
|
|
case DMA_DEV_TO_MEM:
|
|
reg_width = convert_buswidth(sconfig->src_addr_width);
|
|
ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
|
|
ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE,
|
|
ATC_SRC_ADDR_MODE_FIXED) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
|
|
FIELD_PREP(ATC_SIF, atchan->per_if) |
|
|
FIELD_PREP(ATC_DIF, atchan->mem_if);
|
|
|
|
reg = sconfig->src_addr;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
struct atdma_sg *atdma_sg = &desc->sg[i];
|
|
struct at_lli *lli;
|
|
u32 len;
|
|
u32 mem;
|
|
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
|
|
GFP_NOWAIT,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli)
|
|
goto err_desc_get;
|
|
lli = atdma_sg->lli;
|
|
|
|
mem = sg_dma_address(sg);
|
|
len = sg_dma_len(sg);
|
|
if (unlikely(!len)) {
|
|
dev_dbg(chan2dev(chan),
|
|
"prep_slave_sg: sg(%d) data length is zero\n", i);
|
|
goto err;
|
|
}
|
|
mem_width = 2;
|
|
if (unlikely(mem & 3 || len & 3))
|
|
mem_width = 0;
|
|
|
|
lli->saddr = reg;
|
|
lli->daddr = mem;
|
|
lli->ctrla = ctrla |
|
|
FIELD_PREP(ATC_DST_WIDTH, mem_width) |
|
|
len >> reg_width;
|
|
lli->ctrlb = ctrlb;
|
|
|
|
desc->sg[i].len = len;
|
|
total_len += len;
|
|
|
|
atdma_lli_chain(desc, i);
|
|
}
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/* set end-of-link to the last link descriptor of list*/
|
|
set_lli_eol(desc, i - 1);
|
|
|
|
desc->total_len = total_len;
|
|
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
|
|
err_desc_get:
|
|
dev_err(chan2dev(chan), "not enough descriptors available\n");
|
|
err:
|
|
atdma_desc_free(&desc->vd);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* atc_dma_cyclic_check_values
|
|
* Check for too big/unaligned periods and unaligned DMA buffer
|
|
*/
|
|
static int
|
|
atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
|
|
size_t period_len)
|
|
{
|
|
if (period_len > (ATC_BTSIZE_MAX << reg_width))
|
|
goto err_out;
|
|
if (unlikely(period_len & ((1 << reg_width) - 1)))
|
|
goto err_out;
|
|
if (unlikely(buf_addr & ((1 << reg_width) - 1)))
|
|
goto err_out;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* atc_dma_cyclic_fill_desc - Fill one period descriptor
|
|
*/
|
|
static int
|
|
atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
|
|
unsigned int i, dma_addr_t buf_addr,
|
|
unsigned int reg_width, size_t period_len,
|
|
enum dma_transfer_direction direction)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct dma_slave_config *sconfig = &atchan->dma_sconfig;
|
|
struct atdma_sg *atdma_sg = &desc->sg[i];
|
|
struct at_lli *lli;
|
|
|
|
atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
|
|
&atdma_sg->lli_phys);
|
|
if (!atdma_sg->lli)
|
|
return -ENOMEM;
|
|
lli = atdma_sg->lli;
|
|
|
|
switch (direction) {
|
|
case DMA_MEM_TO_DEV:
|
|
lli->saddr = buf_addr + (period_len * i);
|
|
lli->daddr = sconfig->dst_addr;
|
|
lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
|
|
ATC_DST_ADDR_MODE_FIXED) |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE,
|
|
ATC_SRC_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
|
|
FIELD_PREP(ATC_SIF, atchan->mem_if) |
|
|
FIELD_PREP(ATC_DIF, atchan->per_if);
|
|
|
|
break;
|
|
|
|
case DMA_DEV_TO_MEM:
|
|
lli->saddr = sconfig->src_addr;
|
|
lli->daddr = buf_addr + (period_len * i);
|
|
lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
|
|
ATC_DST_ADDR_MODE_INCR) |
|
|
FIELD_PREP(ATC_SRC_ADDR_MODE,
|
|
ATC_SRC_ADDR_MODE_FIXED) |
|
|
FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
|
|
FIELD_PREP(ATC_SIF, atchan->per_if) |
|
|
FIELD_PREP(ATC_DIF, atchan->mem_if);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
|
|
FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
|
|
FIELD_PREP(ATC_DST_WIDTH, reg_width) |
|
|
FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
|
|
period_len >> reg_width;
|
|
desc->sg[i].len = period_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atc_prep_dma_cyclic - prepare the cyclic DMA transfer
|
|
* @chan: the DMA channel to prepare
|
|
* @buf_addr: physical DMA address where the buffer starts
|
|
* @buf_len: total number of bytes for the entire buffer
|
|
* @period_len: number of bytes for each period
|
|
* @direction: transfer direction, to or from device
|
|
* @flags: tx descriptor status flags
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma_slave *atslave = chan->private;
|
|
struct dma_slave_config *sconfig = &atchan->dma_sconfig;
|
|
struct at_desc *desc;
|
|
unsigned long was_cyclic;
|
|
unsigned int reg_width;
|
|
unsigned int periods = buf_len / period_len;
|
|
unsigned int i;
|
|
|
|
dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
|
|
direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
|
|
&buf_addr,
|
|
periods, buf_len, period_len);
|
|
|
|
if (unlikely(!atslave || !buf_len || !period_len)) {
|
|
dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
|
|
return NULL;
|
|
}
|
|
|
|
was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
|
|
if (was_cyclic) {
|
|
dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(!is_slave_direction(direction)))
|
|
goto err_out;
|
|
|
|
if (direction == DMA_MEM_TO_DEV)
|
|
reg_width = convert_buswidth(sconfig->dst_addr_width);
|
|
else
|
|
reg_width = convert_buswidth(sconfig->src_addr_width);
|
|
|
|
/* Check for too big/unaligned periods and unaligned DMA buffer */
|
|
if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
|
|
goto err_out;
|
|
|
|
desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
|
|
if (!desc)
|
|
goto err_out;
|
|
desc->sglen = periods;
|
|
|
|
/* build cyclic linked list */
|
|
for (i = 0; i < periods; i++) {
|
|
if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
|
|
reg_width, period_len, direction))
|
|
goto err_fill_desc;
|
|
atdma_lli_chain(desc, i);
|
|
}
|
|
desc->total_len = buf_len;
|
|
/* lets make a cyclic list */
|
|
desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
|
|
|
|
return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
|
|
|
|
err_fill_desc:
|
|
atdma_desc_free(&desc->vd);
|
|
err_out:
|
|
clear_bit(ATC_IS_CYCLIC, &atchan->status);
|
|
return NULL;
|
|
}
|
|
|
|
static int atc_config(struct dma_chan *chan,
|
|
struct dma_slave_config *sconfig)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
|
|
dev_vdbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
/* Check if it is chan is configured for slave transfers */
|
|
if (!chan->private)
|
|
return -EINVAL;
|
|
|
|
memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
|
|
|
|
convert_burst(&atchan->dma_sconfig.src_maxburst);
|
|
convert_burst(&atchan->dma_sconfig.dst_maxburst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atc_pause(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
int chan_id = atchan->vc.chan.chan_id;
|
|
unsigned long flags;
|
|
|
|
dev_vdbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
spin_lock_irqsave(&atchan->vc.lock, flags);
|
|
|
|
dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
|
|
set_bit(ATC_IS_PAUSED, &atchan->status);
|
|
|
|
spin_unlock_irqrestore(&atchan->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atc_resume(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
int chan_id = atchan->vc.chan.chan_id;
|
|
unsigned long flags;
|
|
|
|
dev_vdbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
if (!atc_chan_is_paused(atchan))
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&atchan->vc.lock, flags);
|
|
|
|
dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
|
|
clear_bit(ATC_IS_PAUSED, &atchan->status);
|
|
|
|
spin_unlock_irqrestore(&atchan->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atc_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
int chan_id = atchan->vc.chan.chan_id;
|
|
unsigned long flags;
|
|
|
|
LIST_HEAD(list);
|
|
|
|
dev_vdbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
/*
|
|
* This is only called when something went wrong elsewhere, so
|
|
* we don't really care about the data. Just disable the
|
|
* channel. We still have to poll the channel enable bit due
|
|
* to AHB/HSB limitations.
|
|
*/
|
|
spin_lock_irqsave(&atchan->vc.lock, flags);
|
|
|
|
/* disabling channel: must also remove suspend state */
|
|
dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
|
|
|
|
/* confirm that this channel is disabled */
|
|
while (dma_readl(atdma, CHSR) & atchan->mask)
|
|
cpu_relax();
|
|
|
|
if (atchan->desc) {
|
|
vchan_terminate_vdesc(&atchan->desc->vd);
|
|
atchan->desc = NULL;
|
|
}
|
|
|
|
vchan_get_all_descriptors(&atchan->vc, &list);
|
|
|
|
clear_bit(ATC_IS_PAUSED, &atchan->status);
|
|
/* if channel dedicated to cyclic operations, free it */
|
|
clear_bit(ATC_IS_CYCLIC, &atchan->status);
|
|
|
|
spin_unlock_irqrestore(&atchan->vc.lock, flags);
|
|
|
|
vchan_dma_desc_free_list(&atchan->vc, &list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atc_tx_status - poll for transaction completion
|
|
* @chan: DMA channel
|
|
* @cookie: transaction identifier to check status of
|
|
* @txstate: if not %NULL updated with transaction state
|
|
*
|
|
* If @txstate is passed in, upon return it reflect the driver
|
|
* internal state and can be used with dma_async_is_complete() to check
|
|
* the status of multiple cookies without re-checking hardware state.
|
|
*/
|
|
static enum dma_status
|
|
atc_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
unsigned long flags;
|
|
enum dma_status dma_status;
|
|
u32 residue;
|
|
int ret;
|
|
|
|
dma_status = dma_cookie_status(chan, cookie, txstate);
|
|
if (dma_status == DMA_COMPLETE || !txstate)
|
|
return dma_status;
|
|
|
|
spin_lock_irqsave(&atchan->vc.lock, flags);
|
|
/* Get number of bytes left in the active transactions */
|
|
ret = atc_get_residue(chan, cookie, &residue);
|
|
spin_unlock_irqrestore(&atchan->vc.lock, flags);
|
|
|
|
if (unlikely(ret < 0)) {
|
|
dev_vdbg(chan2dev(chan), "get residual bytes error\n");
|
|
return DMA_ERROR;
|
|
} else {
|
|
dma_set_residue(txstate, residue);
|
|
}
|
|
|
|
dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
|
|
dma_status, cookie, residue);
|
|
|
|
return dma_status;
|
|
}
|
|
|
|
static void atc_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&atchan->vc.lock, flags);
|
|
if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
|
|
if (!(atc_chan_is_enabled(atchan)))
|
|
atc_dostart(atchan);
|
|
}
|
|
spin_unlock_irqrestore(&atchan->vc.lock, flags);
|
|
}
|
|
|
|
/**
|
|
* atc_alloc_chan_resources - allocate resources for DMA channel
|
|
* @chan: allocate descriptor resources for this channel
|
|
*
|
|
* return - the number of allocated descriptors
|
|
*/
|
|
static int atc_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
struct at_dma *atdma = to_at_dma(chan->device);
|
|
struct at_dma_slave *atslave;
|
|
u32 cfg;
|
|
|
|
dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
|
|
|
|
/* ASSERT: channel is idle */
|
|
if (atc_chan_is_enabled(atchan)) {
|
|
dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
|
|
return -EIO;
|
|
}
|
|
|
|
cfg = ATC_DEFAULT_CFG;
|
|
|
|
atslave = chan->private;
|
|
if (atslave) {
|
|
/*
|
|
* We need controller-specific data to set up slave
|
|
* transfers.
|
|
*/
|
|
BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
|
|
|
|
/* if cfg configuration specified take it instead of default */
|
|
if (atslave->cfg)
|
|
cfg = atslave->cfg;
|
|
}
|
|
|
|
/* channel parameters */
|
|
channel_writel(atchan, CFG, cfg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atc_free_chan_resources - free all channel resources
|
|
* @chan: DMA channel
|
|
*/
|
|
static void atc_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
|
|
BUG_ON(atc_chan_is_enabled(atchan));
|
|
|
|
vchan_free_chan_resources(to_virt_chan(chan));
|
|
atchan->status = 0;
|
|
|
|
/*
|
|
* Free atslave allocated in at_dma_xlate()
|
|
*/
|
|
kfree(chan->private);
|
|
chan->private = NULL;
|
|
|
|
dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static bool at_dma_filter(struct dma_chan *chan, void *slave)
|
|
{
|
|
struct at_dma_slave *atslave = slave;
|
|
|
|
if (atslave->dma_dev == chan->device->dev) {
|
|
chan->private = atslave;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *of_dma)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct at_dma_chan *atchan;
|
|
struct at_dma_slave *atslave;
|
|
dma_cap_mask_t mask;
|
|
unsigned int per_id;
|
|
struct platform_device *dmac_pdev;
|
|
|
|
if (dma_spec->args_count != 2)
|
|
return NULL;
|
|
|
|
dmac_pdev = of_find_device_by_node(dma_spec->np);
|
|
if (!dmac_pdev)
|
|
return NULL;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
|
|
if (!atslave) {
|
|
put_device(&dmac_pdev->dev);
|
|
return NULL;
|
|
}
|
|
|
|
atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
|
|
/*
|
|
* We can fill both SRC_PER and DST_PER, one of these fields will be
|
|
* ignored depending on DMA transfer direction.
|
|
*/
|
|
per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
|
|
atslave->cfg |= ATC_DST_PER_ID(per_id) | ATC_SRC_PER_ID(per_id);
|
|
/*
|
|
* We have to translate the value we get from the device tree since
|
|
* the half FIFO configuration value had to be 0 to keep backward
|
|
* compatibility.
|
|
*/
|
|
switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
|
|
case AT91_DMA_CFG_FIFOCFG_ALAP:
|
|
atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
|
|
ATC_FIFOCFG_LARGESTBURST);
|
|
break;
|
|
case AT91_DMA_CFG_FIFOCFG_ASAP:
|
|
atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
|
|
ATC_FIFOCFG_ENOUGHSPACE);
|
|
break;
|
|
case AT91_DMA_CFG_FIFOCFG_HALF:
|
|
default:
|
|
atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
|
|
}
|
|
atslave->dma_dev = &dmac_pdev->dev;
|
|
|
|
chan = dma_request_channel(mask, at_dma_filter, atslave);
|
|
if (!chan) {
|
|
put_device(&dmac_pdev->dev);
|
|
kfree(atslave);
|
|
return NULL;
|
|
}
|
|
|
|
atchan = to_at_dma_chan(chan);
|
|
atchan->per_if = dma_spec->args[0] & 0xff;
|
|
atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
|
|
|
|
return chan;
|
|
}
|
|
#else
|
|
static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *of_dma)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*-- Module Management -----------------------------------------------*/
|
|
|
|
/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
|
|
static struct at_dma_platform_data at91sam9rl_config = {
|
|
.nr_channels = 2,
|
|
};
|
|
static struct at_dma_platform_data at91sam9g45_config = {
|
|
.nr_channels = 8,
|
|
};
|
|
|
|
#if defined(CONFIG_OF)
|
|
static const struct of_device_id atmel_dma_dt_ids[] = {
|
|
{
|
|
.compatible = "atmel,at91sam9rl-dma",
|
|
.data = &at91sam9rl_config,
|
|
}, {
|
|
.compatible = "atmel,at91sam9g45-dma",
|
|
.data = &at91sam9g45_config,
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
|
|
#endif
|
|
|
|
static const struct platform_device_id atdma_devtypes[] = {
|
|
{
|
|
.name = "at91sam9rl_dma",
|
|
.driver_data = (unsigned long) &at91sam9rl_config,
|
|
}, {
|
|
.name = "at91sam9g45_dma",
|
|
.driver_data = (unsigned long) &at91sam9g45_config,
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
|
|
static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
|
|
struct platform_device *pdev)
|
|
{
|
|
if (pdev->dev.of_node) {
|
|
const struct of_device_id *match;
|
|
match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
|
|
if (match == NULL)
|
|
return NULL;
|
|
return match->data;
|
|
}
|
|
return (struct at_dma_platform_data *)
|
|
platform_get_device_id(pdev)->driver_data;
|
|
}
|
|
|
|
/**
|
|
* at_dma_off - disable DMA controller
|
|
* @atdma: the Atmel HDAMC device
|
|
*/
|
|
static void at_dma_off(struct at_dma *atdma)
|
|
{
|
|
dma_writel(atdma, EN, 0);
|
|
|
|
/* disable all interrupts */
|
|
dma_writel(atdma, EBCIDR, -1L);
|
|
|
|
/* confirm that all channels are disabled */
|
|
while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
|
|
cpu_relax();
|
|
}
|
|
|
|
static int __init at_dma_probe(struct platform_device *pdev)
|
|
{
|
|
struct at_dma *atdma;
|
|
int irq;
|
|
int err;
|
|
int i;
|
|
const struct at_dma_platform_data *plat_dat;
|
|
|
|
/* setup platform data for each SoC */
|
|
dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
|
|
dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
|
|
dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
|
|
|
|
/* get DMA parameters from controller type */
|
|
plat_dat = at_dma_get_driver_data(pdev);
|
|
if (!plat_dat)
|
|
return -ENODEV;
|
|
|
|
atdma = devm_kzalloc(&pdev->dev,
|
|
struct_size(atdma, chan, plat_dat->nr_channels),
|
|
GFP_KERNEL);
|
|
if (!atdma)
|
|
return -ENOMEM;
|
|
|
|
atdma->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(atdma->regs))
|
|
return PTR_ERR(atdma->regs);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
/* discover transaction capabilities */
|
|
atdma->dma_device.cap_mask = plat_dat->cap_mask;
|
|
atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
|
|
|
|
atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
|
|
if (IS_ERR(atdma->clk))
|
|
return PTR_ERR(atdma->clk);
|
|
|
|
err = clk_prepare_enable(atdma->clk);
|
|
if (err)
|
|
return err;
|
|
|
|
/* force dma off, just in case */
|
|
at_dma_off(atdma);
|
|
|
|
err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
|
|
if (err)
|
|
goto err_irq;
|
|
|
|
platform_set_drvdata(pdev, atdma);
|
|
|
|
/* create a pool of consistent memory blocks for hardware descriptors */
|
|
atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
|
|
&pdev->dev, sizeof(struct at_lli),
|
|
4 /* word alignment */, 0);
|
|
if (!atdma->lli_pool) {
|
|
dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
|
|
err = -ENOMEM;
|
|
goto err_desc_pool_create;
|
|
}
|
|
|
|
/* create a pool of consistent memory blocks for memset blocks */
|
|
atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
|
|
&pdev->dev, sizeof(int), 4, 0);
|
|
if (!atdma->memset_pool) {
|
|
dev_err(&pdev->dev, "No memory for memset dma pool\n");
|
|
err = -ENOMEM;
|
|
goto err_memset_pool_create;
|
|
}
|
|
|
|
/* clear any pending interrupt */
|
|
while (dma_readl(atdma, EBCISR))
|
|
cpu_relax();
|
|
|
|
/* initialize channels related values */
|
|
INIT_LIST_HEAD(&atdma->dma_device.channels);
|
|
for (i = 0; i < plat_dat->nr_channels; i++) {
|
|
struct at_dma_chan *atchan = &atdma->chan[i];
|
|
|
|
atchan->mem_if = AT_DMA_MEM_IF;
|
|
atchan->per_if = AT_DMA_PER_IF;
|
|
|
|
atchan->ch_regs = atdma->regs + ch_regs(i);
|
|
atchan->mask = 1 << i;
|
|
|
|
atchan->atdma = atdma;
|
|
atchan->vc.desc_free = atdma_desc_free;
|
|
vchan_init(&atchan->vc, &atdma->dma_device);
|
|
atc_enable_chan_irq(atdma, i);
|
|
}
|
|
|
|
/* set base routines */
|
|
atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
|
|
atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
|
|
atdma->dma_device.device_tx_status = atc_tx_status;
|
|
atdma->dma_device.device_issue_pending = atc_issue_pending;
|
|
atdma->dma_device.dev = &pdev->dev;
|
|
|
|
/* set prep routines based on capability */
|
|
if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
|
|
atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
|
|
|
|
if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
|
|
atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
|
|
|
|
if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
|
|
atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
|
|
atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
|
|
atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
|
|
}
|
|
|
|
if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
|
|
atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
|
|
/* controller can do slave DMA: can trigger cyclic transfers */
|
|
dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
|
|
atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
|
|
atdma->dma_device.device_config = atc_config;
|
|
atdma->dma_device.device_pause = atc_pause;
|
|
atdma->dma_device.device_resume = atc_resume;
|
|
atdma->dma_device.device_terminate_all = atc_terminate_all;
|
|
atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
|
|
atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
|
|
atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
}
|
|
|
|
dma_writel(atdma, EN, AT_DMA_ENABLE);
|
|
|
|
dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
|
|
dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
|
|
dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
|
|
dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask) ? "slave " : "",
|
|
plat_dat->nr_channels);
|
|
|
|
err = dma_async_device_register(&atdma->dma_device);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "Unable to register: %d.\n", err);
|
|
goto err_dma_async_device_register;
|
|
}
|
|
|
|
/*
|
|
* Do not return an error if the dmac node is not present in order to
|
|
* not break the existing way of requesting channel with
|
|
* dma_request_channel().
|
|
*/
|
|
if (pdev->dev.of_node) {
|
|
err = of_dma_controller_register(pdev->dev.of_node,
|
|
at_dma_xlate, atdma);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "could not register of_dma_controller\n");
|
|
goto err_of_dma_controller_register;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_of_dma_controller_register:
|
|
dma_async_device_unregister(&atdma->dma_device);
|
|
err_dma_async_device_register:
|
|
dma_pool_destroy(atdma->memset_pool);
|
|
err_memset_pool_create:
|
|
dma_pool_destroy(atdma->lli_pool);
|
|
err_desc_pool_create:
|
|
free_irq(platform_get_irq(pdev, 0), atdma);
|
|
err_irq:
|
|
clk_disable_unprepare(atdma->clk);
|
|
return err;
|
|
}
|
|
|
|
static int at_dma_remove(struct platform_device *pdev)
|
|
{
|
|
struct at_dma *atdma = platform_get_drvdata(pdev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
at_dma_off(atdma);
|
|
if (pdev->dev.of_node)
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
dma_async_device_unregister(&atdma->dma_device);
|
|
|
|
dma_pool_destroy(atdma->memset_pool);
|
|
dma_pool_destroy(atdma->lli_pool);
|
|
free_irq(platform_get_irq(pdev, 0), atdma);
|
|
|
|
list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
|
|
device_node) {
|
|
/* Disable interrupts */
|
|
atc_disable_chan_irq(atdma, chan->chan_id);
|
|
list_del(&chan->device_node);
|
|
}
|
|
|
|
clk_disable_unprepare(atdma->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void at_dma_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct at_dma *atdma = platform_get_drvdata(pdev);
|
|
|
|
at_dma_off(platform_get_drvdata(pdev));
|
|
clk_disable_unprepare(atdma->clk);
|
|
}
|
|
|
|
static int at_dma_prepare(struct device *dev)
|
|
{
|
|
struct at_dma *atdma = dev_get_drvdata(dev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
|
|
device_node) {
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
/* wait for transaction completion (except in cyclic case) */
|
|
if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void atc_suspend_cyclic(struct at_dma_chan *atchan)
|
|
{
|
|
struct dma_chan *chan = &atchan->vc.chan;
|
|
|
|
/* Channel should be paused by user
|
|
* do it anyway even if it is not done already */
|
|
if (!atc_chan_is_paused(atchan)) {
|
|
dev_warn(chan2dev(chan),
|
|
"cyclic channel not paused, should be done by channel user\n");
|
|
atc_pause(chan);
|
|
}
|
|
|
|
/* now preserve additional data for cyclic operations */
|
|
/* next descriptor address in the cyclic list */
|
|
atchan->save_dscr = channel_readl(atchan, DSCR);
|
|
|
|
vdbg_dump_regs(atchan);
|
|
}
|
|
|
|
static int at_dma_suspend_noirq(struct device *dev)
|
|
{
|
|
struct at_dma *atdma = dev_get_drvdata(dev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
/* preserve data */
|
|
list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
|
|
device_node) {
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
|
|
if (atc_chan_is_cyclic(atchan))
|
|
atc_suspend_cyclic(atchan);
|
|
atchan->save_cfg = channel_readl(atchan, CFG);
|
|
}
|
|
atdma->save_imr = dma_readl(atdma, EBCIMR);
|
|
|
|
/* disable DMA controller */
|
|
at_dma_off(atdma);
|
|
clk_disable_unprepare(atdma->clk);
|
|
return 0;
|
|
}
|
|
|
|
static void atc_resume_cyclic(struct at_dma_chan *atchan)
|
|
{
|
|
struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
|
|
|
|
/* restore channel status for cyclic descriptors list:
|
|
* next descriptor in the cyclic list at the time of suspend */
|
|
channel_writel(atchan, SADDR, 0);
|
|
channel_writel(atchan, DADDR, 0);
|
|
channel_writel(atchan, CTRLA, 0);
|
|
channel_writel(atchan, CTRLB, 0);
|
|
channel_writel(atchan, DSCR, atchan->save_dscr);
|
|
dma_writel(atdma, CHER, atchan->mask);
|
|
|
|
/* channel pause status should be removed by channel user
|
|
* We cannot take the initiative to do it here */
|
|
|
|
vdbg_dump_regs(atchan);
|
|
}
|
|
|
|
static int at_dma_resume_noirq(struct device *dev)
|
|
{
|
|
struct at_dma *atdma = dev_get_drvdata(dev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
/* bring back DMA controller */
|
|
clk_prepare_enable(atdma->clk);
|
|
dma_writel(atdma, EN, AT_DMA_ENABLE);
|
|
|
|
/* clear any pending interrupt */
|
|
while (dma_readl(atdma, EBCISR))
|
|
cpu_relax();
|
|
|
|
/* restore saved data */
|
|
dma_writel(atdma, EBCIER, atdma->save_imr);
|
|
list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
|
|
device_node) {
|
|
struct at_dma_chan *atchan = to_at_dma_chan(chan);
|
|
|
|
channel_writel(atchan, CFG, atchan->save_cfg);
|
|
if (atc_chan_is_cyclic(atchan))
|
|
atc_resume_cyclic(atchan);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
|
|
.prepare = at_dma_prepare,
|
|
.suspend_noirq = at_dma_suspend_noirq,
|
|
.resume_noirq = at_dma_resume_noirq,
|
|
};
|
|
|
|
static struct platform_driver at_dma_driver = {
|
|
.remove = at_dma_remove,
|
|
.shutdown = at_dma_shutdown,
|
|
.id_table = atdma_devtypes,
|
|
.driver = {
|
|
.name = "at_hdmac",
|
|
.pm = pm_ptr(&at_dma_dev_pm_ops),
|
|
.of_match_table = of_match_ptr(atmel_dma_dt_ids),
|
|
},
|
|
};
|
|
|
|
static int __init at_dma_init(void)
|
|
{
|
|
return platform_driver_probe(&at_dma_driver, at_dma_probe);
|
|
}
|
|
subsys_initcall(at_dma_init);
|
|
|
|
static void __exit at_dma_exit(void)
|
|
{
|
|
platform_driver_unregister(&at_dma_driver);
|
|
}
|
|
module_exit(at_dma_exit);
|
|
|
|
MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
|
|
MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
|
|
MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:at_hdmac");
|