mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 06:55:13 +08:00
8581fd402a
cgroup.h (therefore swap.h, therefore half of the universe) includes bpf.h which in turn includes module.h and slab.h. Since we're about to get rid of that dependency we need to clean things up. v2: drop the cpu.h include from cacheinfo.h, it's not necessary and it makes riscv sensitive to ordering of include files. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Krzysztof Wilczyński <kw@linux.com> Acked-by: Peter Chen <peter.chen@kernel.org> Acked-by: SeongJae Park <sj@kernel.org> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lore.kernel.org/all/20211120035253.72074-1-kuba@kernel.org/ # v1 Link: https://lore.kernel.org/all/20211120165528.197359-1-kuba@kernel.org/ # cacheinfo discussion Link: https://lore.kernel.org/bpf/20211202203400.1208663-1-kuba@kernel.org
353 lines
9.2 KiB
C
353 lines
9.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Manage cache of swap slots to be used for and returned from
|
|
* swap.
|
|
*
|
|
* Copyright(c) 2016 Intel Corporation.
|
|
*
|
|
* Author: Tim Chen <tim.c.chen@linux.intel.com>
|
|
*
|
|
* We allocate the swap slots from the global pool and put
|
|
* it into local per cpu caches. This has the advantage
|
|
* of no needing to acquire the swap_info lock every time
|
|
* we need a new slot.
|
|
*
|
|
* There is also opportunity to simply return the slot
|
|
* to local caches without needing to acquire swap_info
|
|
* lock. We do not reuse the returned slots directly but
|
|
* move them back to the global pool in a batch. This
|
|
* allows the slots to coalesce and reduce fragmentation.
|
|
*
|
|
* The swap entry allocated is marked with SWAP_HAS_CACHE
|
|
* flag in map_count that prevents it from being allocated
|
|
* again from the global pool.
|
|
*
|
|
* The swap slots cache is protected by a mutex instead of
|
|
* a spin lock as when we search for slots with scan_swap_map,
|
|
* we can possibly sleep.
|
|
*/
|
|
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mm.h>
|
|
|
|
static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
|
|
static bool swap_slot_cache_active;
|
|
bool swap_slot_cache_enabled;
|
|
static bool swap_slot_cache_initialized;
|
|
static DEFINE_MUTEX(swap_slots_cache_mutex);
|
|
/* Serialize swap slots cache enable/disable operations */
|
|
static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type);
|
|
|
|
#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
|
|
#define SLOTS_CACHE 0x1
|
|
#define SLOTS_CACHE_RET 0x2
|
|
|
|
static void deactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = false;
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
static void reactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = true;
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
/* Must not be called with cpu hot plug lock */
|
|
void disable_swap_slots_cache_lock(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
swap_slot_cache_enabled = false;
|
|
if (swap_slot_cache_initialized) {
|
|
/* serialize with cpu hotplug operations */
|
|
cpus_read_lock();
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
cpus_read_unlock();
|
|
}
|
|
}
|
|
|
|
static void __reenable_swap_slots_cache(void)
|
|
{
|
|
swap_slot_cache_enabled = has_usable_swap();
|
|
}
|
|
|
|
void reenable_swap_slots_cache_unlock(void)
|
|
{
|
|
__reenable_swap_slots_cache();
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
}
|
|
|
|
static bool check_cache_active(void)
|
|
{
|
|
long pages;
|
|
|
|
if (!swap_slot_cache_enabled)
|
|
return false;
|
|
|
|
pages = get_nr_swap_pages();
|
|
if (!swap_slot_cache_active) {
|
|
if (pages > num_online_cpus() *
|
|
THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
|
|
reactivate_swap_slots_cache();
|
|
goto out;
|
|
}
|
|
|
|
/* if global pool of slot caches too low, deactivate cache */
|
|
if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
|
|
deactivate_swap_slots_cache();
|
|
out:
|
|
return swap_slot_cache_active;
|
|
}
|
|
|
|
static int alloc_swap_slot_cache(unsigned int cpu)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots, *slots_ret;
|
|
|
|
/*
|
|
* Do allocation outside swap_slots_cache_mutex
|
|
* as kvzalloc could trigger reclaim and get_swap_page,
|
|
* which can lock swap_slots_cache_mutex.
|
|
*/
|
|
slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
return -ENOMEM;
|
|
|
|
slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots_ret) {
|
|
kvfree(slots);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if (cache->slots || cache->slots_ret) {
|
|
/* cache already allocated */
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
|
|
kvfree(slots);
|
|
kvfree(slots_ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!cache->lock_initialized) {
|
|
mutex_init(&cache->alloc_lock);
|
|
spin_lock_init(&cache->free_lock);
|
|
cache->lock_initialized = true;
|
|
}
|
|
cache->nr = 0;
|
|
cache->cur = 0;
|
|
cache->n_ret = 0;
|
|
/*
|
|
* We initialized alloc_lock and free_lock earlier. We use
|
|
* !cache->slots or !cache->slots_ret to know if it is safe to acquire
|
|
* the corresponding lock and use the cache. Memory barrier below
|
|
* ensures the assumption.
|
|
*/
|
|
mb();
|
|
cache->slots = slots;
|
|
cache->slots_ret = slots_ret;
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
|
|
bool free_slots)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots = NULL;
|
|
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if ((type & SLOTS_CACHE) && cache->slots) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
swapcache_free_entries(cache->slots + cache->cur, cache->nr);
|
|
cache->cur = 0;
|
|
cache->nr = 0;
|
|
if (free_slots && cache->slots) {
|
|
kvfree(cache->slots);
|
|
cache->slots = NULL;
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
}
|
|
if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
if (free_slots && cache->slots_ret) {
|
|
slots = cache->slots_ret;
|
|
cache->slots_ret = NULL;
|
|
}
|
|
spin_unlock_irq(&cache->free_lock);
|
|
kvfree(slots);
|
|
}
|
|
}
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* This function is called during
|
|
* 1) swapoff, when we have to make sure no
|
|
* left over slots are in cache when we remove
|
|
* a swap device;
|
|
* 2) disabling of swap slot cache, when we run low
|
|
* on swap slots when allocating memory and need
|
|
* to return swap slots to global pool.
|
|
*
|
|
* We cannot acquire cpu hot plug lock here as
|
|
* this function can be invoked in the cpu
|
|
* hot plug path:
|
|
* cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
|
|
* -> memory allocation -> direct reclaim -> get_swap_page
|
|
* -> drain_swap_slots_cache
|
|
*
|
|
* Hence the loop over current online cpu below could miss cpu that
|
|
* is being brought online but not yet marked as online.
|
|
* That is okay as we do not schedule and run anything on a
|
|
* cpu before it has been marked online. Hence, we will not
|
|
* fill any swap slots in slots cache of such cpu.
|
|
* There are no slots on such cpu that need to be drained.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
drain_slots_cache_cpu(cpu, type, false);
|
|
}
|
|
|
|
static int free_slot_cache(unsigned int cpu)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
return 0;
|
|
}
|
|
|
|
void enable_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
if (!swap_slot_cache_initialized) {
|
|
int ret;
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
|
|
alloc_swap_slot_cache, free_slot_cache);
|
|
if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
|
|
"without swap slots cache.\n", __func__))
|
|
goto out_unlock;
|
|
|
|
swap_slot_cache_initialized = true;
|
|
}
|
|
|
|
__reenable_swap_slots_cache();
|
|
out_unlock:
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
}
|
|
|
|
/* called with swap slot cache's alloc lock held */
|
|
static int refill_swap_slots_cache(struct swap_slots_cache *cache)
|
|
{
|
|
if (!use_swap_slot_cache || cache->nr)
|
|
return 0;
|
|
|
|
cache->cur = 0;
|
|
if (swap_slot_cache_active)
|
|
cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
|
|
cache->slots, 1);
|
|
|
|
return cache->nr;
|
|
}
|
|
|
|
int free_swap_slot(swp_entry_t entry)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
if (likely(use_swap_slot_cache && cache->slots_ret)) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
/* Swap slots cache may be deactivated before acquiring lock */
|
|
if (!use_swap_slot_cache || !cache->slots_ret) {
|
|
spin_unlock_irq(&cache->free_lock);
|
|
goto direct_free;
|
|
}
|
|
if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
|
|
/*
|
|
* Return slots to global pool.
|
|
* The current swap_map value is SWAP_HAS_CACHE.
|
|
* Set it to 0 to indicate it is available for
|
|
* allocation in global pool
|
|
*/
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
}
|
|
cache->slots_ret[cache->n_ret++] = entry;
|
|
spin_unlock_irq(&cache->free_lock);
|
|
} else {
|
|
direct_free:
|
|
swapcache_free_entries(&entry, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
swp_entry_t get_swap_page(struct page *page)
|
|
{
|
|
swp_entry_t entry;
|
|
struct swap_slots_cache *cache;
|
|
|
|
entry.val = 0;
|
|
|
|
if (PageTransHuge(page)) {
|
|
if (IS_ENABLED(CONFIG_THP_SWAP))
|
|
get_swap_pages(1, &entry, HPAGE_PMD_NR);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Preemption is allowed here, because we may sleep
|
|
* in refill_swap_slots_cache(). But it is safe, because
|
|
* accesses to the per-CPU data structure are protected by the
|
|
* mutex cache->alloc_lock.
|
|
*
|
|
* The alloc path here does not touch cache->slots_ret
|
|
* so cache->free_lock is not taken.
|
|
*/
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
|
|
if (likely(check_cache_active() && cache->slots)) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
if (cache->slots) {
|
|
repeat:
|
|
if (cache->nr) {
|
|
entry = cache->slots[cache->cur];
|
|
cache->slots[cache->cur++].val = 0;
|
|
cache->nr--;
|
|
} else if (refill_swap_slots_cache(cache)) {
|
|
goto repeat;
|
|
}
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
if (entry.val)
|
|
goto out;
|
|
}
|
|
|
|
get_swap_pages(1, &entry, 1);
|
|
out:
|
|
if (mem_cgroup_try_charge_swap(page, entry)) {
|
|
put_swap_page(page, entry);
|
|
entry.val = 0;
|
|
}
|
|
return entry;
|
|
}
|